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a b s t r a c t

The paper determines the number of states in two-way deterministic finite automata
(2DFA) over a one-letter alphabet sufficient and in theworst case necessary to represent the
results of basic language-theoretic operations on 2DFAswith a certain number of states. It is
proved that (i) intersection of anm-state 2DFA and an n-state 2DFA requires betweenm+n
andm+n+1 states; (ii) union of anm-state 2DFA and an n-state 2DFA, betweenm+n and
2m+ n+ 4 states; (iii) Kleene star of an n-state 2DFA, (g(n)+O(n))2 states, where g(n) =
e(1+o(1))

√
n ln n is the maximum value of lcm(p1, . . . , pk) for


pi 6 n, known as Landau’s

function; (iv) k-th power of an n-state 2DFA, between (k − 1)g(n) − k and k(g(n) + n)
states; (v) concatenation of an m-state 2DFA and an n-state 2DFA, e(1+o(1))

√
(m+n) ln(m+n)

states. It is furthermore demonstrated that the Kleene star of a two-way nondeterministic
automaton (2NFA) with n states requires 2(g(n)) states in the worst case, its k-th power
requires (k·g(n))2(1) states, and the concatenation of anm-state 2NFA and an n-state 2NFA,
e2(
√

(m+n) ln(m+n)) states.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The study of the number of states in one-way deterministic finite automata (1DFA) needed to represent the results of
basic operations on regular languages dates back to Maslov [14], who showed that a concatenation of anm-state 1DFA with
an n-state 1DFA is representable by a 1DFAwithm ·2n

−2n−1 states, and that this number of states is necessary in the worst
case. Similarly, the Kleene star of an n-state 1DFA requires up to 3

42
n states, etc.; this function is known as the state complexity

of an operation. For the case of a one-letter alphabet Σ = {a}, Yu et al. [21] showed that the complexity of most operations
is significantly different from the case of larger alphabets: for instance, the Kleene star requires (n − 1)2 + 1 states. For
one-way nondeterministic automata (1NFA), both over unary and larger alphabets, the complexity of all basic operations
was determined by Holzer and Kutrib [6]. The first results of this kind for the intermediate family of unambiguous finite
automata (1UFA) were recently obtained by Okhotin [17], who showed that complementation of a unary 1UFA requires at

least n2−o(1) states and at most eO(
3√

n ln2 n) states.
State complexity of operations on two-way automata (2DFA and 2NFA) has so far attractedmuch less attention, probably

due to the lack of any general lower bound methods. An attempt to study the complexity of operations on 2DFAs using the
constructions and the lower bound techniques developed for 1DFAs was made by Jirásková and Okhotin [7], and, for most

✩ A preliminary version of this paper was presented at the workshop on Descriptional Complexity of Formal Systems (DCFS 2011, Limburg, Germany,
25–27 July 2011), and its extended abstract appeared in the workshop proceedings.
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operations, led to very rough estimations, such as a 1
n2

n
2−1 lower bound and a 2O(nn+1) upper bound on the state complexity

of the Kleene star. However, a few precise results were obtained as well: for instance, the 2n state complexity of inverse
homomorphisms. These results essentially relied upon an alphabet of exponential size.

This paper is aimed at determining the state complexity of basic operations on 2DFAs in the special case of a one-letter
alphabet. The study of unary 2DFAs began with a paper by Chrobak [1], who showed that the language recognized by an
n-state 2DFA is ultimately periodic with period lcm(p1, . . . , pk), for some numbers p1, . . . , pk > 1 with p1 + · · · + pk 6 n.
The authors’ [10] recent analysis of 2DFAs over a one-letter alphabet refined this understanding with a precise estimation
of the starting point of periodicity, known as the length of the tail of the minimal 1DFA, or the index of the corresponding
monoid: a unary language recognized by an n-state 2DFA has period lcm(p1, . . . , pk) beginning from ℓ, for some numbers
p1, . . . , pk, ℓ > 1 with p1+· · ·+pk+ ℓ 6 n+1 [10, Cor. 2]. The greatest value of the least commonmultiple of partitions of
a number n is known as Landau’s function g(n) and estimated as g(n) = e

√
n ln n(1+o(1)) [13], and the exact number of states

in a 1DFA needed to simulate an n-state unary 2DFA is accordingly expressed as max16ℓ6n g(n+ 1− ℓ)+ ℓ.
Another model considered in this paper is the two-way nondeterministic finite automata (2NFA). For a general alphabet,

Kapoutsis [8] determined that transforming n-state 2NFAs to 1NFAs requires exactly
 2n
n+1


states in the worst case, while

1DFAs equivalent to n-state 2NFAs require up to exactly


i,j∈{0,...,n−1}

n
i

n
j


(2i
−1)j states. In the domain of unary languages,

Chrobak’s [1] investigation of 2DFAs was continued for their nondeterministic case by Mereghetti and Pighizzini [15], who
found that n-state unary 2NFAs require, in the worst case, g(n)+ O(n2) states in equivalent 1DFAs, and by Geffert et al. [4],
who established an nO(log n)-state upper bound on the transformation of unary 2NFAs to equivalent 2DFAs. The first result
on the state complexity of operations on this model is due to Geffert et al. [5], who sketched a construction of a 2NFA with
O(n8) states for the complement of a given n-state unary 2NFA, which implemented the Immerman–Szelepcsényi inductive
counting. For union and intersection, the authors [11] have shown that the union of an m-state 2NFA and an n-state 2NFA
requires exactlym+ n states in the worst case, while intersection requires betweenm+ n andm+ n+ 1 states1; the lower
bound proofs used cyclicwitness languages, and relied on a number-theoretic lemmawith a large computer-generated basis
of induction.

This paper begins with investigating the complexity of Boolean operations for 2DFAs. As shown in Section 3, for the
intersection, the obvious (m+n+1)-state upper bound is matched by an almost tight lower bound ofm+n states, obtained
by intersecting a language with a long period and no tail, with a language with period 2 and a long tail. The union of two
2DFAs can be directly represented, as long as one of them halts on every input. The latter condition can be ensured by the
authors’ [12] upcoming result that every n-state unary 2DFA can be transformed to a reversible 2DFA with 2n + 3 states.
This leads to a (2m+ n+ 3)-state upper bound for the union. A lower bound ofm+ n states is proved similarly to the case
of intersection. Admittedly, the lower bounds on the union and intersection of 2DFAs presented in this paper overlap with
the authors’ [11] recent results on the union and intersection of 2NFAs. However, the results in this paper are established in
a different way, specific for 2DFAs; there are far fewer exceptions in their statements, and the proofs contain no machine-
generated components.

Thenext groupof results is concernedwith concatenation and thederived operations: concatenation closure (Kleene star)
and the operation of concatenating k copies of a language: the k-th power. The effect of concatenation and star on unary
1DFAs was first studied by Yu et al. [21], who showed that the worst-case complexity is achieved when the arguments are
cyclic languages and the result is a co-finite language; their methodwas applied for the power operation by Rampersad [19].
Since 2DFAs for co-finite unary languages are as large as 1DFAs, thismethod can be extended to showing the state complexity
of operations on 2DFAs. For the Kleene star, discussed in Section 4, the resulting complexity is (g(n) + O(n))2; the next
Section 5 shows that the k-th power operation has state complexity between (k − 1)g(n) − k and kg(n) + O(kn). For the
case of concatenation of two unary languages given by 2DFAs, its worst-case complexity is explained in terms of a variant of
Landau’s function, g(m, n), which is in turn found to have growth rate g(m, n) = e

√
(m+n) ln(m+n)(1+o(1)).

The last subject of this paper, investigated in Section 7, is the state complexity of concatenation, Kleene star and the
k-th power for unary 2NFAs. The general idea is to remake the arguments for 2DFAs, presented in Sections 4–6, for the
nondeterministic case. This time, the proofs rely on the transformation of an n-state unary 2NFA to a 1DFAwith g(n)+O(n2)
states, due to Mereghetti and Pighizzini [15], and use the representation of languages by 1NFAs to apply concatenation and
star without increasing the number of states. The differences in the underlying methods lead to estimations of complexity
that are not exactly the same as in the deterministic case: the star of an n-state 2NFA is found to require Θ(g(n)) states, the
concatenation requires betweenΩ(

√
g(m, n)) and g(m)+g(n)+O((m+n)2) states, and the k-th power needs (k ·g(n))Θ(1)

states.

2. Unary 2DFAs and their expressive power

A 1DFA over a unary alphabet is just a directed graph of out-degree 1. It has a unique path from the initial state, which
eventually converges to a cycle. Zero or more states visited before entering the cycle are called the tail of the 1DFA.

Computations of 2DFAs are more complicated and more challenging to understand, even in the unary case. Given an
input string w, a 2DFA operates on a tape containing the string ⊢w⊣, where ⊢ and ⊣ are special symbols known as the

1 With some exceptions for small values ofm or n, where the known lower bound ism+ n− 1 orm+ n− 2.
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left-endmarker and the right-endmarker, respectively. According to the standard definition, a 2DFA begins its computation
at the left-end marker and accepts at the right-end marker [8]. In this paper, as well as in the authors’ recent work [10], the
definition is extended to allow acceptance on both sides: this leads to symmetric constructions and allows avoiding some
awkward exceptions in the results. Changing the mode of acceptance affects the size of an automaton by at most one state.

A 2DFA (with two-sided acceptance) is defined as a sextuple A = (Σ,Q , q0, δ, F⊢, F⊣), in which:

• Σ is a finite alphabet with ⊢,⊣ /∈ Σ ,
• Q is a finite set of states,
• q0 ∈ Q is the initial state,
• δ : Q × (Σ ∪ {⊢,⊣})→ Q × {−1,+1} is a partially defined transition function, and
• F⊢, F⊣ ⊆ Q are sets of states accepting on the left-end marker ⊢ and on the right-end marker ⊣, respectively.

When A is in a state q ∈ Q and observes a square of the tape with a symbol a ∈ Σ ∪ {⊢,⊣}, the value δ(q, a) indicates
the next state and the direction of motion. The computation of A on a string ⊢w⊣ = ⊢a1 . . . aℓ⊣, with ℓ > 0 and
a1, . . . , aℓ ∈ Σ , begins in state q0, with the head observing ⊢. If it eventually reaches an accepting state in F⊢ or in F⊣
while on the corresponding end-marker, the string w is accepted; otherwise, it either encounters an undefined transition
or gets into an infinite loop. The set of strings accepted by a 2DFA A is denoted by L(A).

Every 2DFA can be transformed to an equivalent 1DFA, which is often much larger than the original 2DFA. In the case of
a one-letter alphabet Σ = {a}, there are essentially two possibilities for a 2DFA to provide a more succinct description than
a 1DFA. First, a 2DFA can count divisibility separately for several numbers, while an equivalent 1DFA would need to count
modulo the least common multiple of those numbers; this is illustrated in the following example.

Example 1. Let p1, . . . , pk > 2 be any integers and denote p = lcm(p1, . . . , pk). Take an arbitrary f ∈ {0, . . . , p− 1}. Then
the language L = af (ap)∗ is recognized by a (p1 + · · · + pk)-state 2DFA, while the minimal 1DFA for L has p states. For
k = 2, p1 = 4, p2 = 3 and f = 5, this gives a 7-state 2DFA recognizing the language a5(a12)∗, which has the set of states
Q = {q0, q1, q2, q3, r0, r1, r2}, transitions δ(q0,⊢) = (q0,+1), δ(qi, a) = (q(i+1) mod 4,+1), δ(ri, a) = (r(i+1) mod 3,−1),
δ(q1,⊣) = (r0,−1), and F⊢ = {r2}, F⊣ = ∅.

The second advantage of a 2DFA over a 1DFA in terms of succinctness of description is that a 2DFA can recognize a
language with tail of length ℓ+ 1 and period p by counting up to ℓ, and then using one of its cycles to distinguish the string
aℓ, which is accepted in one of the states of the cycle, from longer strings aℓ+ip with i > 1, which are rejected by infinitely
looping using this cycle.

Example 2 ([10]). Let p > 2, f ∈ {0, . . . , p − 1} and ℓ > 0 be any numbers with ℓ ≢ f (mod p). Then the language
L = af (ap)∗ ∪ {aℓ

} is recognized by a (p+ ℓ)-state 2DFA with acceptance only on the right-end marker, while the minimal
1DFA recognizing L has p + ℓ + 1 states. A 2DFA recognizing such a language L with p = 2, f = 0 and ℓ = 3 is illustrated
below:

All strings of even length are accepted after one left-to-right traversal in the states {q0, q1}; if the string is found to be of odd
length, the automaton then traverses it from right to left, with a countdown using the states r3, r2, r1. Note how the string
a3 is accepted, because the left-end marker is reached at the right moment, and the string a5 is rejected by re-entering the
cycle.

A unary 1DFA is defined by the structure of its transitions, which is completely described by the length of its tail and
its cycle, and by the combination of accepting states over this structure. The following result recently established by the
authors [10] asserts that for a 1DFA equivalent to an n-state unary 2DFA, its structure cannot be of any other form than a
long cycle, obtained as in Example 1, preceded by a tail, as in Example 2.
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Theorem A ([10]). Let A be an n-state 2DFA over Σ = {a}. Then there exist k > 1 and numbers p1, . . . , pk > 1 and ℓ > 1, with
p1 + · · · + pk + ℓ 6 n+ 1, such that there exists a 1DFA for L(A) with tail of length ℓ and period p = lcm(p1, . . . , pk).

This result can also be presented in the following equivalent form.

Theorem B ([10]). Let L ⊆ a∗ be a regular language with the minimal 1DFA with tail of length ℓ and period p. Let p = p1 · · · pk,
where p1, . . . , pk are powers of distinct primes, be the prime factorization of p (for p = 1, assume that 1 = 1 is a prime
factorization). Then, every 2DFA recognizing L must have at least p1 + · · · + pk +max(ℓ, 1)− 1 states.

In particular, this result implies that a language with a long tail requires a 2DFA with as many states as the length of the
tail. This will be used in Sections 4–6 to prove lower bounds using co-finite languages.

How large could a least common multiple of numbers p1, . . . , pk be, if the sum of these numbers is bounded by n? As a
function of n, this number

g(n) = max{lcm(p1, . . . , pk) | k > 1, p1 + · · · + pk 6 n}

is known as Landau’s function, as its e(1+o(1))
√
n ln n asymptotics was determined by Landau [13] (see also Miller [16] for a

more accessible argument). For example, the value g(12) = 60 is attained for k = 3, p1 = 3, p2 = 4 and p3 = 5. It is worth
noting, that the numbers p1, . . . , pk, on which the maximum is reached, can be assumed to be powers of distinct primes.2

For any positive integer n, the number g(n) is the longest period of a language recognized by an n-state unary 2DFA. In
order to take the length of the tail in the corresponding minimal 1DFAs into account, consider the following simple variant
of Landau’s function,3 which adds the unused portion of n to the resulting value:

g+(n) = max
06ℓ<n

g(n− ℓ)+ ℓ = max{lcm(p1, . . . , pk)+ ℓ | k > 1, p1 + · · · + pk + ℓ = n}.

For example, g+(12) = 60 and g+(13) = 61, because g(12) = g(13) = 60 and g(11) = 30≪ 60. In terms of this function,
the 2DFA–1DFA tradeoff is expressed as follows.

Theorem C ([10]). Let n > 1. Then, for every unary 2DFA with n states, there exists an equivalent complete 1DFA with g+(n)+1
states. For n > 3, this number of states is required already for the transformation of 2DFAs to 1NFAs.

Another related result on the succinctness tradeoffs between deterministic automata over a unary alphabet concerns
the sweeping 2DFAs [20], in which the head may change its direction of motion only on the end-markers. Chrobak [1] has
claimed without a proof that every n-state 2DFA can be transformed to an equivalent sweeping 2DFA with n states. This
conjecture was in fact almost correct.

Theorem D ([10]). Let n > 1. Then for every unary 2DFA with n states, there exists an equivalent sweeping 2DFA with n + 1
states. For n > 2, this bound is the best possible.

All existing knowledge on the capabilities and limitations of unary 2DFAs is, unfortunately, limited to the bounds on the
periods and the tails of the languages they recognize, as listed in Theorems A and B. Once a regular language L ⊆ a∗ has
period lcm(p1, . . . , pk) and a tail of length ℓ, there are no known methods to determine whether there is a 2DFA with a
given number of states n > p1 + . . .+ pk + ℓ− 1 recognizing this particular language, and if it exists, there are no general
methods of constructing it. Consider the following example.

Example 3. The language L = {a4, a5, a9, a10, a11}(a12)∗ is recognized by a 7-state 2DFA with the following transitions:

In particular, this 2DFA accepts the string a5 after four traversals, and rejects the string a6 by looping.
As shown by exhaustive calculations, the given automaton is the unique 7-state 2DFA for L, up to permutation of states.

Furthermore, the complement of L has no 7-state 2DFA.

2 If two numbers are not relatively prime, one can divide one of them by their common divisor, and once all numbers are relatively prime, each product
of powers of different primes can be split into their sum. All these transformations reduce the sum of the numbers, while maintaining the same greatest
common multiple g(n).
3 OEIS sequence A039952.
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The 2DFA in Example 3 is given to illustrate the sophisticated combinatorics that may occur in the operation of unary
2DFAs. Why does this language have a 7-state 2DFA, while its complement does not have one? The lack of methods for
answering this question illustrates the general absence ofmethods for proving precise state complexity of languages, beyond
those given in Theorems A and B.

It should be noted that in this small 7-state example, the computations are still simple enough. Each computation
alternates between counting modulo 4 on left-to-right traversals, and modulo 3 on the traversals from right to left, and
one can observe the operation of this 2DFA by considering all residues modulo 12. However, tracing the computations of
a given automaton does not explain its existence. Even though the number 12 might be small enough to devise a brute-
force combinatorial proof that the complement of this language requires more than 7 states, such an approach would be
inadequate for automata that count modulo larger numbers and contain multiple cycles, used in various order in different
computations. Proving any general characterization of languages, which can be represented by some 2DFA of a given size,
is way beyond the current knowledge.

3. Intersection and union

The intersection of an m-state and an n-state 1DFAs can be represented by a 1DFA with mn states [14]. This number of
states is necessary already for a unary alphabet, as long as m and n are relatively prime, because, under this assumption,
(am)∗ ∩ (an)∗ = (amn)∗. When m and n are not relatively prime, intersection of unary 1DFAs sometimes has a lower state
complexity, witnessed by languages of a different form [18].

For 2DFAs, intersection can always be represented with m + n + 1 states, and the only known lower bound of
m + n − o(m + n) states was established using growing alphabets of enormous size [7]. This paper improves the lower
bound to m + n using only unary alphabet. The main idea is to choose one of the languages being intersected to be of the
form presented in Example 1, with a period obtained as a prime factorization and with no tail, and let the other 2DFA be
of the form as in Example 2, using period 2 and a tail as long as possible. If everything works as planned, the intersection
should have both a long period and a long tail.

The period of the first 2DFA will be obtained using the following result:

Theorem E (Dressler [3]). Every number greater than 9 is representable as a sum of distinct odd primes.

Since the constructions of 2DFAs as in Example 1 work for any powers of primes, one can relax the assumptions of
Theorem E and extend its statement to smaller numbers as follows.

Corollary E.1. Every number n > 3 with n /∈ {4, 6} can be represented as a sum of powers of distinct odd primes.

Proof. If n > 10, such a partition is given by Theorem E. It remains to construct partitions of smaller numbers. Every number
n ∈ {3, 5, 7} is an odd prime itself, and is trivially representable as itself. The number n = 8 is represented as 3 + 5, and
n = 9, as 32. �

The almost tight bounds on the complexity of intersection are now established for all values ofm and n greater than one,
with only two exceptions.

Theorem 1. For every m, n > 2 with (m, n) /∈ {(2, 2), (6, 6)}, the state complexity of intersection of an m-state 2DFA and an
n-state 2DFA over a unary alphabet is at least m+ n. It is at most m+ n+ 1 for all m, n > 1, for a general alphabet.

Proof. The construction of an (m+ n+ 1)-state 2DFA for the intersection is straightforward [7]. Given two 2DFAs A and B
with the sets of states Q and R, respectively, the new 2DFA C has the set of states Q ∪ {q←} ∪ R. It begins its computation by
simulating A, and if A accepts on the left-end marker, it proceeds with simulating B, until it accepts or rejects. Whenever
A accepts on the right-end marker, C gets back to the left-end marker in the special state q←, and then proceeds with
simulating B.

Note that this special state is necessary only if A may accept on both markers. If all accepting states of A are on one of
the markers, then the simulation of B may begin directly in an accepting state of A (when the marker on which A accepts
is the right-end marker ⊣, the automaton B is simulated with all transitions reversed). Hence, C may use onlym+ n states
in this case.

Turning to the lower bound argument, first assume that the numbers m and n are not both in {2, 4, 6}. Without loss of
generality, let n /∈ {2, 4, 6}, and let m > 2 be any number. Then, by Corollary E.1, there is a partition n = p1 + · · · + pk,
where p1, . . . , pk > 3 are powers of pairwise distinct odd primes. Consider the languages

K = {aℓ
| ℓ ≡ m− 1 (mod 2) or ℓ = m− 2} = a(m−1) mod 2(a2)∗ ∪ {am−2}

and

L = {aℓ
| ℓ ≡ m− 2 (mod p1 · · · pk)} = a(m−2) mod p1···pk(ap1···pk)∗,

which are recognized by an m-state 2DFA as in Example 2, and by an n-state 2DFA from Example 1, respectively. Their
intersection is

K ∩ L = aj(a2·p1···pk)∗ ∪ {am−2},
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where j ∈ {0, 1, . . . , 2 · p1 · · · pk − 1} is the unique offset with j ≡ m − 1 (mod 2) and j ≡ m − 2 (mod p1 · · · pk),
which exists by the Chinese Remainder Theorem. The minimal 1DFA for this language has tail of length m − 1 and period
p = 2 · p1 · · · pk. Since the latter is the prime factorization of p, Theorem B is applicable, and it asserts that every 2DFA
recognizing this intersection must have at least 2+ p1 + · · · + pk +max(m− 1, 1)− 1 = m+ n states.

Consider the remaining cases of (m, n) ∈ {(4, 2), (4, 4), (6, 2), (6, 4)}, and let the two languages be

K = {aℓ
| ℓ ≡ m+ 1 (mod 3) or ℓ = m− 3} = a(m+1) mod 3(a3)∗ ∪ {am−3}

and

L = {aℓ
| ℓ ≡ m− 3 (mod n)} = a(m−3) mod n(an)∗,

with anm-state and an n-state 2DFA as in Example 2 (this time with the cycle of length 3) and Example 1, respectively. The
intersection of these languages is

K ∩ L = {aℓ
| ℓ ≡ m+ 1 (mod 3) and ℓ ≡ m− 3 (mod n)} ∪ {am−3},

The minimal 1DFA for this language has tail of lengthm− 2 and period p = 3 · n. Since the latter is a prime factorization of
p, by Theorem B, every 2DFA recognizing K ∩ L has at least 3+ n+max(m− 2, 1)− 1 = m+ n states. �

Concerning the two exceptions in the statement of Theorem 1, an exhaustive calculation of all 2DFAs over a one-letter
alphabet with up to 4 states indicates that an intersection of two 2-state unary 2DFAs is always representable by a 2DFA
with 4 states. Furthermore, this bound is reached on the witness languages L1 = a(aa)∗ ∪ {ε} and L2 = aaa∗ ∪ {ε}, each
recognized by a 2-state 2DFA, and whose intersection aaa(aa)∗ ∪ {ε} requires a 4-state 2DFA. As for the case of two 6-state
2DFAs, since the number 6 is not representable as a sum of powers of distinct primes, proving a lower bound of 12 states by
the same methods as in Theorem 1 is impossible. All that can be said about the intersection of two 6-state automata is that
it requires between 11 and 13 states, where the lower bound follows from Theorem 1 withm = 6 and n = 5.

Theorem 1 leaves a natural question of whether the actual complexity of intersection ism+n orm+n+1. Asmentioned
in the proof, if one of the 2DFAs to be intersected has all accepting states on the same side, then the state q← is not needed,
and the intersection can be recognized withm+n states. Is this extra state ever needed? First of all, there is no known proof
that for some language, every 2DFA with a given number of states requires acceptance on both sides. Secondly, even if such
proofs existed, it would still be possible that the intersection of two languages with essentially two-sided acceptance could
always be represented without adding an extra state, and any counterexample would require another nontrivial proof. The
lack of methods for proving statements of this kind has been explained in the comments to Example 3.

Turning to the union operation, representing a union of two 2DFAs is straightforward, if one of them halts on every
input. Geffert et al. [5] showed that any n-state 2DFA can be transformed to an equivalent 4n-state 2DFA that halts on every
input; since Geffert et al. [5] used a slightly different definition of acceptance in 2DFAs than in this paper, their construction
produces 4n + const states under the definition assumed in the present paper. From this fact, Jirásková and Okhotin [7]
inferred a (4m + n + const)-state upper bound on the complexity of union for 2DFAs, which was accompanied by a lower
bound ofm+ n− o(m+ n) states.

For the unary case, there is a stronger result on transforming 2DFAs to reversible 2DFAs [9,12], which, in particular, halt
on every input. A 2DFA (Σ,Q , q0, δ, F⊢, F⊣) is called reversible, if

1. for every state q ∈ Q , all transitions leading to qmove the head in the same direction d(q) ∈ {−1,+1}, with d(q0) = +1
for the initial state, and

2. the transitions from any two different states by the same symbol cannot lead to a single state, that is, whenever
δ(p, a) = δ(p′, a) = (q, d(q)), the states p and p′ must be the same.

Kondacs andWatrous [9] proved that every 1DFA can be simulated by a reversible 2DFAwith twice as many states. Their
ideas led to the following reversibility construction for 2DFAs over a unary alphabet.

Theorem F (Kunc and Okhotin [12]). For every n-state 2DFA over a unary alphabet, there exists an equivalent reversible 2DFA
with 2n+ 3 states. Every computation of this automaton terminates on the left-end marker, either in a unique accepting state, or
in a unique rejecting state. Conversely, for every n, there exists a unary language recognized by an n-state 2DFA, for which every
reversible 2DFA requires at least 2n− 2 states.

The proof proceeds by first transforming a given n-state 2DFA to an equivalent sweeping 2DFAwith n+1 states, according
to Theorem D, and then applying a new reversibility construction for sweeping 2DFAs, which develops the idea of the
construction by Kondacs and Watrous [9] for transforming a 1DFA to a reversible 2DFA, and turns any m-state sweeping
2DFA into a (2m + 1)-state reversible 2DFA (at the expense of losing the sweeping property). The combined number of
states is 2n+ 3.

Since every reversible 2DFAhalts on every input, it can be complemented by exchanging its accepting and rejecting states.
Thus, the first part of Theorem F directly implies that the complexity of complementing unary 2DFAs is at most 2n+ 3.

Besides giving an upper bound for the complementation, the reversibility construction in Theorem F also yields an
improved upper bound on the state complexity of union for unary 2DFAs, mentioned in the next theorem.
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Theorem 2. For every m, n > 2 with (m, n) /∈ {(2, 2), (6, 6)}, the state complexity of union of an m-state 2DFA and an n-state
2DFA over a unary alphabet is at least m+ n. For all m, n > 1, it is at most 2m+ n+ 3.

Proof. For the upper bound, consider a pair of unary 2DFAs A and B, withm and n states, respectively. The new automaton
recognizing L(A)∪ L(B) begins its computation by simulating a (2m+3)-state reversible 2DFA A′ recognizing L(A), which
exists by Theorem F. If the simulated A′ ends its computation in an accepting configuration, the new automaton accepts. If
A′ rejects, it always does so in a configuration known beforehand, from which the new 2DFA proceeds with simulating B,
accepting whenever B accepts.

The lower bound is proved similarly to the proof of Theorem 1. Consider first the case of n /∈ {2, 4, 6} and arbitrarym > 2,
and, according to Corollary E.1, represent n as n = p1 + · · · + pk, where p1, . . . , pk > 3 are powers of pairwise distinct odd
primes. Consider the language K = a(m−1) mod 2(a2)∗ ∪ {am−2}, recognized by anm-state 2DFA as in Example 2, and another
language L = {aℓ

| ℓ ≢ m− 2 (mod p1 · · · pk)}, representable by an n-state 2DFA; note that L is the complement of the
language from Example 1, used in the proof of Theorem 1. Their union is

K ∪ L = {aℓ
| ℓ ≢ m− 2 (mod p1 · · · pk) or ℓ ≢ m (mod 2)} ∪ {am−2}.

The minimal 1DFA for this language has tail of length m − 1 and period p = 2 · p1 · · · pk. Since the latter is a prime
factorization of p, Theorem B is applicable, and it asserts that every 2DFA recognizing this union must have at least
2+ p1 + · · · + pk +max(m− 1, 1)− 1 = m+ n states.

The remaining cases of (m, n) ∈ {(4, 2), (4, 4), (6, 2), (6, 4)} can be handled in the very same way as for intersection,
again using the complement of L. �

Consider the cases m = n = 2 and m = n = 6 not covered by Theorem 2. According to the calculations, the union of
any two 2-state unary 2DFAs is representable by a 2DFA with 3 states, which is necessary in the worst case. For the union
of two 6-state 2DFAs, a lower bound of 11 states is given by Theorem 2 form = 6 and n = 5.

The gap between the lower bound m + n and the upper bound 2m + n + 3 is still wide, and narrowing it requires
further studies. This gap originates from the lack of knowledge on the exact complexity of transforming a unary 2DFA to an
equivalent 2DFA that always halts: this can be done by making the 2DFA reversible, according to Theorem F, and thus using
2n + 3 states. Though Theorem F provides a (2n − 2)-state lower bound on the complexity of transforming a unary 2DFA
to a reversible 2DFA, it does not apply to the rest of the constructions. Even if a 2DFA for a language L requires doubling its
number of states to recognize L reversibly, this does not rule out having another small irreversible 2DFA for L that halts on
every input. Even if there were a proof that 2DFAs for K and L both require doubling (or at least increasing) their number of
states to have the property of halting on every input, this would not mean that there is no small 2DFA for their union. All
these 2DFAs might be as inexplicable as the one in Example 3, and before such examples could be understood and formally
investigated, one can hardly expect any lower bounds on the state complexity of union for 2DFAs.

4. Kleene star

Consider the concatenation closure operation, known as the Kleene star: L∗ =

∞

k=0 L
k, where Lk denotes a concatenation

of k copies of L. For 1DFAs, the state complexity of the Kleene star is 3
42

n for alphabets containing at least two letters [14],
but only (n− 1)2 + 1 for the unary alphabet [21]. The latter result is implied by the following two properties:

Theorem G (Yu, Zhuang and Salomaa [21]). (i) Let A be a unary 1DFA with n states. Then there is a 1DFA for L(A)∗ with
(n− 1)2 + 1 states.

(ii) For every n > 2, the language L = an−1(an)∗ has an n-state 1DFA, while the language L∗ is co-finite, and its minimal 1DFA
has tail of length (n− 1)2 and period 1.

This result can be ‘‘lifted’’ to 2DFAs, in the following sense. First, the star of a 2DFA can be represented by first converting
it to a 1DFA and then applying the construction of Theorem G(i). Secondly, the periodic witness language in Theorem G(ii)
can be inflated to L = ag(n)−1(ag(n))∗ using a 2DFA with n states, and then the language L∗ requires a large 2DFA, because it
is co-finite. This leads to the following asymptotically tight bounds:

Theorem 3. (i) The Kleene star of every n-state unary 2DFA can be represented by a 2DFA with (g+(n))2 + 1 states.
(ii) For every n > 2, the language L = ag(n)−1(ag(n))∗ is representable by an n-state 2DFA, but every 2DFA recognizing L∗ has

at least (g(n)− 1)2 states.

Proof. To show the upper bound, consider an arbitrary n-state unary 2DFA recognizing a language L ⊆ a∗. By Theorem C,
there exists a 1DFA with g+(n)+ 1 states recognizing the same language. The latter 1DFA can be transformed, according to
Theorem G(i), to another 1DFA with (g+(n))2 + 1 states recognizing the language L∗.

Turning to the lower bound, let n > 1 and g(n) = p1 · · · pk, where pi are powers of distinct primes, and consider the
language L = ag(n)−1(ag(n))∗. This language is recognized by a 2DFA with p1 + · · · + pk 6 n states of the form given
in Example 1, which checks that the length of the input string is congruent to pi − 1 modulo each pi. At the same time,
according to Theorem G(ii), the minimal 1DFA for the language L∗ has tail of length (g(n)− 1)2 and period 1. Therefore, by
Theorem B, every 2DFA for L∗ requires at least (g(n)− 1)2 states. �
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These bounds are asymptotically equivalent, and the state complexity of Kleene star for unary 2DFAs is hence estimated
as (1 + o(1))g(n)2 = e(2+o(1))

√
n ln n. It could be possible to tighten these bounds further, by first determining the state

complexity of star for unary 1DFAs as a function of both their tail and their cycle, along the lines of Pighizzini and Shallit
[18, Sect. 5], and then using that result instead of Theorem G(i) in an upper bound proof, as in Theorem 3.

The lower bound can also be improved by transferring the portion of n unused in g(n) to the tail, as in the definition of
g+(n). For example, for n = 21, these two functions assume values g(21) = 420 and g+(21) = 422, and hence Theorem 3
gives a lower bound of 4192

= 175561 states; this lower bound is witnessed by the language L = a419(a420)∗, recognized
by a 19-state 2DFA, whose Kleene star L∗ has tail 175561 and period 1. However, there is another language, L′ = a421(a420)∗,
recognizedby a 21-state 2DFA, forwhich (L′)∗ has tail 176401 andperiod 1. This languagewitnesses that the state complexity
of star of 21-state unary 2DFAs is at least 176401, which is closer to the upper bound of 4222

+ 1 = 178085 states given in
Theorem 3.

However, generalizing these examples to every n, andmaking any substantial improvements to the bounds of Theorem3,
would require a deeper understanding of the effect of the Kleene star on unary regular languages than is currently attained.

5. Power

Viewing concatenation as a product of languages, one can consider the k-th power of a language, defined as the
concatenation of k of its copies, Lk = L · · · L. For 1DFAs over a general alphabet, Domaratzki and Okhotin [2] demonstrated
that the k-th power operation requiresΘ(n2(k−1)n) states. In theunary case, Rampersad [19] proved that the state complexity
of Lk for 1DFAs is exactly kn− k+ 1. More precisely, the following facts are known.
Theorem H (Rampersad [19]). (i) For every k > 1 and for every unary 1DFA A with n states (with tail ℓ > 0 and period p > 1),
the language L(A)k is representable by a 1DFA with kn− k+ 1 states (with tail kℓ+ (k− 1)p− k+ 1 and period p).

(ii) For each n > 1, the language L = an−1(an)∗ is recognized by an n-state 1DFA, while, for every k > 1, the minimal 1DFA
for Lk has kn− k+ 1 states, with tail (k− 1)(n− 1) and period n.

These properties shall now be lifted to 2DFAs similarly to the case of the Kleene star.
Theorem 4. Let k > 2. The state complexity of Lk for unary 2DFAs is at least (k− 1)g(n)− k and at most kg+(n)+ 1.
Proof. For the lower bound, let p1, . . . , pm > 2 be the numbers from the definition of Landau’s function for n, which
satisfy p1 + · · · + pm 6 n and lcm(p1, . . . , pm) = g(n). Then there is an n-state 2DFA recognizing the inflated language
L = ag(n)−1(ag(n))∗. By Theorem H(ii), the minimal 1DFA for Lk has tail of length (k− 1)(g(n)− 1) and period g(n). Then, by
Theorem B, every 2DFA for Lk must have at least p1 + · · · + pm + (k− 1)(g(n)− 1)− 1 > (k− 1)g(n)− k states.

Upper bound: Let L be recognized by an n-state 2DFA. By Theorem C, there is an equivalent 1DFA with g+(n)+ 1 states.
Then Theorem H asserts that there is a 1DFA for Lk with kg+(n)+ 1 states. �

Unfortunately, the bounds in Theorem 4 do not lead to any asymptotical estimation better than Θ(g(n)). The reason
can be traced to the limitations of the lower bound method of Theorems A and B, which estimate the number of states
needed to represent a period g(n) only as Ω(n). On the other hand, in all upper bound arguments, such a period cannot
in general be represented using fewer than g(n) states, because it is not known whether this particular language has an
efficient representation by an n-state 2DFA (like the language in Example 3). If all that is known about a language is its tail
and its period, this kind of gap between the lower and the upper bound is inevitable, at least until the existence of such
automata as the one in Example 3 is understood.

6. Concatenation

The state complexity of concatenation for unary 1DFAs is determined by methods much like those used for the star and
the power operations. In particular, the lower bound is witnessed by two cyclic languages with a co-finite concatenation.
Theorem I (Yu, Zhuang and Salomaa [21]). For all relatively prime m and n, the languages K = am−1(am)∗ and L = an−1(an)∗
are recognized by an m-state 1DFA and an n-state 1DFA, respectively, while their concatenation KL is a co-finite language, for
which the minimal 1DFA has tail mn− 1 and period 1.

Yu et al. [21] also gave a matching upper bound ofmn states in a 1DFA representing a concatenation of anm-state and an
n-state 1DFA. The following more refined upper bound also reflects the dependence of tail and cycle lengths of the minimal
1DFA for concatenation on the tails and the cycles of the arguments.
Theorem J (Pighizzini and Shallit [18]). Let K ⊆ a∗ be represented by a 1DFA with tail k and period p, and let L ⊆ a∗ have a
1DFA with tail ℓ and period q. Then there is a 1DFA recognizing KL with tail k+ ℓ+ lcm(p, q)− 1 and period lcm(p, q).

Attempting to lift the lower bound in Theorem I to 2DFAs in the same way as in Sections 4 and 5 leads to the
following ultimately unsuccessful argument. Given m and n, one would choose one set of cycle lengths p1, . . . , pk with
p1 + · · · + pk 6 m and g(m) = p1 · · · pk, as well as another set of cycle lengths q1, . . . , qℓ with q1 + · · · + qℓ 6 n and
g(n) = q1 · · · qℓ, and construct a pair of an m-state and an n-state 2DFA with these cycle lengths, which recognize the
languages K = ag(m)−1(ag(m))∗ and L = ag(n)−1(ag(n))∗, expecting to obtain a lower bound g(m)g(n) on the state complexity
of their concatenation. However, the last step would not work out, because the numbers g(m) and g(n) are almost never
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Table 1
The values of the function g(m, n) = max{lcm(p1, . . . , pk, q1, . . . , qℓ) | p1 + · · · + pk 6 m, q1 + · · · + qℓ 6 n}.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 2 3 4 6 6 12 15 20 30 30 60 60 84 105
2 2 6 6 10 10 14 30 30 42 42 70 70 90 210
3 6 12 15 15 30 30 60 60 84 105 120 210 210
4 12 20 20 30 60 60 84 84 140 140 210 420
5 30 30 60 60 70 105 140 210 210 420 420
6 30 60 60 70 105 140 210 210 420 420
7 84 105 140 210 210 420 420 420 420
8 120 210 210 420 420 420 420 840
9 210 420 420 420 420 660 840

10 420 420 420 840 840 924
11 420 840 840 1260 1260
12 840 1260 1260 1540
13 1260 1320 2310
14 2310 2520
15 4620

relatively prime, and their greatest common divisor is typically large. The latter, according to Theorem J, would imply that
the concatenation KL can be represented by a 1DFA with a much shorter tail than intended, which would in turn diminish
the lower bound on a 2DFA for this language.

For this argument to work, for every pair of numbers m, n, one has to find partitions of each of these numbers into
powers of distinct primes, so that no primes are shared between the partitions. Landau’s function as it is does not provide
such partitions, and hence it is necessary to define its variant

g(m, n) = max{lcm(p1, . . . , pk, q1, . . . , qℓ) | p1 + · · · + pk 6 m, q1 + · · · + qℓ 6 n} 6 g(m+ n),

where the upper bound is by taking the same numbers p1, . . . , pk, q1, . . . , qℓ within the definition of g(m + n). As in the
definition of g(n), one can assume that p1, . . . , pk, q1, . . . , qℓ are relatively prime: there is no loss of generality in this
assumption, because for every pair of numbers p, p′ in this list, one of them can be divided by gcd(p, p′) without affecting
the least common multiple.

For example, the value g(9, 14) = 660 is reached on the numbers p1 = 22, p2 = 5, q1 = 3 and p4 = 11, and it is less
than g(9+ 14) = 840. On the other hand, g(10, 13) = 840 = g(10+ 13) = lcm(3, 5, 7, 23), because these four numbers
can be arranged into two blocks as p1 = 3, p2 = 7, q1 = 5, q2 = 23.

From the calculated values of g(m, n) given in Table 1, it appears that if both m and n are large enough, then g(m, n)
becomes equal to g(m + n). For example, if m + n = 89, then g(m, n) = g(89), as long as m, n > 11; however,
g(10, 79) = g(88) < g(89). But proving or even formulating any related results apparently requires a nontrivial analysis
of the combinatorial properties of the partitions in the definition of Landau’s function, which is not attempted in this paper.

A close relation between these two functions can be established by showing that ln g(m, n) is asymptotically equivalent
to ln g(m+ n).

Lemma 1. g(m, n) = e(1+o(1))
√

(m+n) ln(m+n).

Proof. The argument follows the general outline of Miller’s [16] proof of Landau’s [13] asymptotics of g(n).
Let πi denote the i-th prime, and define a variant of Landau’s function, in which the cycle lengths are preset to be the first

primes:

f (n) = π1 · · ·πk,

where k is the greatest number with π1 + · · · + πk 6 n. Denote the next prime by

h(n) = πk+1.

The proof given by Miller [16] proceeds by showing that ln g(n) ∼ ln f (n) and ln f (n) ∼
√
n ln n. The latter argument also

contains an estimation of h as h(n) ∼
√
n ln n.

Following the same course, consider a variant of g(m, n), inwhich asmany first primes as possible are used in the partition
ofm, and the subsequent primes are used for n:

f (m, n) = π1 · · ·πk · πk+1 · · ·πℓ,

where k is the greatest number with π1 + · · · + πk 6 m, and ℓ is the greatest number with πk+1 + · · · + πℓ 6 n.
This function can be tightly bounded as follows:

f (m+ n)
h(m+ n)

6 f (m, n) 6 f (m+ n),
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where the upper bound holds by definition, and the denominator h(m + n) in the lower bound reflects that at most one
prime is unused due to the partition of the numberm+n intom and n. To prove the lower bound, let k be the largest integer
with π1 + · · · + πk 6 m, and write f (m+ n) as f (m+ n) = π1 · · ·πk · πk+1 · · ·πℓ. Then f (m, n) equals either f (m+ n) or
π1 · · ·πk · πk+1 · · ·πℓ−1, since πk+1 + · · · + πℓ−1 6 πk+2 + · · · + πℓ 6 n. Consequently, f (m, n) > f (m+n)

πℓ
> f (m+n)

h(m+n) .
Turning to the function g(m, n), it can now be estimated as follows:

f (m+ n)
h(m+ n)

6 f (m, n) 6 g(m, n) 6 g(m+ n).

Since both the upper and the lower bounds are asymptotically e(1+o(1))
√

(m+n) ln(m+n) [16], so is g(m, n). �

With this estimation of the function g(m, n), the complexity of concatenation can be expressed in terms of this function,
and be in turn estimated.
Theorem 5. The state complexity of concatenation of an m-state 2DFA and an n-state 2DFA over a unary alphabet is at least
g(m, n)− 1 and at most 2g(m, n)+m+ n.
Proof. Lower bound: According to the definition of g(m, n), let p1, . . . , pk > 2 and q1, . . . , qℓ > 2 be the relatively prime
numbers with p1 + · · · + pk 6 m and q1 + · · · + qℓ 6 n, for which g(m, n) = lcm(p1, . . . , pk, q1, . . . , qℓ). The numbers
lcm(p1, . . . , pk) = p1 · · · pk and lcm(q1, . . . , qℓ) = q1 · · · qℓ are relatively prime as well.

Consider the languages K = ap1···pk−1(ap1···pk)∗ and L = aq1···qℓ−1(aq1···qℓ)∗, recognized by anm-state 2DFA and an n-state
2DFA, respectively (both as in Example 1). Since their periods are relatively prime, by Theorem I, the minimal 1DFA for their
concatenation KL has tail of length p1 · · · pk · q1 · · · qℓ − 1 = g(m, n)− 1 and period 1. Then, by Theorem B, every 2DFA for
this language requires at least g(m, n)− 1 states.

Upper bound: Given a 2DFA A withm states, by Theorem A there exists an equivalent 1DFA A′ with tail of length ℓ and
period lcm(p1, . . . , pk), where k > 1 and p1, . . . , pk, ℓ > 1 satisfy p1 + · · · + pk + ℓ 6 m+ 1. Similarly, for a 2DFA B with n
states, let B ′ be an equivalent 1DFA with tail of length ℓ′ and period lcm(q1, . . . , qk′), where k′ > 1 and q1, . . . , qk′ , ℓ′ > 1
are such that q1 + · · · + qk′ + ℓ′ 6 n+ 1.

Then, by Theorem J, the language L(A′)L(B ′) has a 1DFA with tail of length ℓ+ ℓ′+ lcm(p1, . . . , pk, q1, . . . , qk′)− 1 and
period lcm(p1, . . . , pk, q1, . . . , qk′). The total number of states in this 1DFA is at most

ℓ+ ℓ′ + 2lcm(p1, . . . , pk, q1, . . . , qk′) 6 m+ n+ 2g(m, n). �

Accordingly, the state complexity of concatenation of anm-state 2DFA and an n-state 2DFA is estimated asΘ(g(m, n)) =
e(1+o(1))

√
(m+n) ln(m+n).

7. Concatenation and related operations for 2NFAs

The last topic to be investigated in this paper is the state complexity of basic operations for two-way nondeterministic
finite automata (2NFA) over a one-letter alphabet. Only Boolean operations were previously considered: Geffert et al. [5]
established that an n-state unary 2NFA can be complemented using O(n8) states, and the authors [11] showed that the
complexity of union of an m-state 2NFA and an n-state 2NFA is exactly m + n, while intersection requires between m + n
and m+ n+ 1 states.4

A 2NFA is obtained by adding nondeterminism to the definition of a 2DFA. It is defined as a sextuple A =

(Σ,Q ,Q0, δ, F⊢, F⊣), where:

• Σ is the input alphabet with ⊢,⊣ /∈ Σ ,
• Q is a finite set of states,
• Q0 ⊆ Q is the set of initial states,
• δ : Q × (Σ ∪ {⊢,⊣})→ 2Q×{−1,+1} is a transition function, which lists possible actions in a given state, when observing

a given symbol, and
• F⊢, F⊣ ⊆ Q are sets of accepting states, effective on the left-end marker ⊢ and on the right-end marker ⊣, respectively.

A computation of A on a string ⊢w⊣ = ⊢a1 . . . aℓ⊣, with ℓ > 0 and a1, . . . , aℓ ∈ Σ , begins in any state from Q0, with the
head over the left-endmarker⊢. At every step,whenA is in a state q and observes a symbol a ∈ Σ∪{⊢,⊣}, itmay choose any
element (q′, d) from the set δ(q, a), and then enter the state q′ andmove the head in the direction d. If, eventually,A reaches
any state from F⊢ while on the left-end marker ⊢, or any state from F⊣ while on the right-end marker ⊣, the computation is
accepting. The language L(A) is the set of input strings, on which there is at least one accepting computation.

The known lower bounds on the state complexity of operations on unary 2NFAs [11]were exclusively based on the period
of languages. On the other hand, as evident from Sections 4–6, concatenation and related operations produce languageswith
long tails, and the desired complexity results require lower bounds on the number of states in 2NFAs based on the length
of these tails. Suitable bounds can be inferred from the following known transformation of an n-state unary 2NFA to an
equivalent 1DFA, which gives a quadratic upper bound on the length of the tail.

4 With some exceptions, for which the lower bounds are only m+ n− 1 (these are the cases of m or n equal to 6, as well as finitely many other cases),
and with one further exceptionm = n = 6 with (m+ n− 2)-state lower bounds.
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Theorem K (Mereghetti and Pighizzini [15, Thm. 3.6]). For every n > 1 and for every unary 2NFA A with n states, there exists
an equivalent complete 1DFA with the tail containing at most 5 · n2

+ 1 states.
This result directly implies the following lower bound on the number of states in a 2NFA recognizing a language with a

tail of a certain length.

Corollary K.1. Let L ⊆ a∗ be a regular language with the tail of length ℓ > 0. Then, every 2NFA for L requires at least Ω(
√

ℓ)
states.

The plan is to obtain bounds on the state complexity of the Kleene star, the k-th power and the concatenation for unary
2NFAs, by using this lower bound method in the same way as Theorem B was used in Sections 4–6. The earlier upper bound
arguments for 2DFAs actually constructed 1DFAs for the results of the operations; the corresponding arguments for 2NFAs
can produce smaller 1NFAs instead. Thus, references to Theorems G and I shall be replaced by the following fact about the
complexity of operations on unary 1NFAs.
Theorem L (Holzer and Kutrib [6, Thms. 8,9]). (i) The Kleene star of an n-state unary 1NFA over the alphabet {a} is representable
by a 1NFA with n+ 1 states, and this number is necessary in the worst case.

(ii) The concatenation of an m-state 1NFA and an n-state 1NFA over the alphabet {a} is representable by a 1NFA with m + n
states, and at least m+ n− 1 states are necessary in the worst case.

Even though the same arguments as used for 2DFAs generally work for 2NFAs, the gap between the lower bound and the
upper bound is much wider this time.
Theorem 6. The Kleene star of every n-state 2NFA over a unary alphabet is representable by a 2NFA with g(n) + O(n2) states.
For every n > 1, the language L = ag(n)−1(ag(n))∗ is representable by an n-state 2NFA, but every 2NFA accepting L∗ has at least
Ω(g(n)) states.
Proof. The proof follows the one for Theorem 3. The upper bound is obtained by first converting an n-state 2NFA to an
equivalent 1DFA with g(n)+ O(n2) states, according to Theorem K. Then, by Theorem L(i), the star of the same language is
represented by a 1NFA with one extra state, that is, with g(n)+ O(n2) states.

For the lower bound, take a number n > 1 and consider the numbers p1, . . . , pk > 2 from the definition of Landau’s
function, for which g(n) = p1 · · · pk. Then the language L = ag(n)−1(ag(n))∗ is recognized by a 2DFA with n states. By
Theorem G(ii), the minimal 1DFA for L∗ has tail of length (g(n) − 1)2. To recognize a language with such a tail, a 2NFA
needs at least Ω(


(g(n)− 1)2) = Ω(g(n)) states by Corollary K.1. �

Thus, the state complexity of the Kleene star operation for 2NFAs is asymptotically estimated asΘ(g(n)) = e(1+o(1))
√
n ln n.

The bounds on the concatenation obtained by the same method are much less precise.
Theorem 7. The state complexity of concatenation of an m-state 2NFA and an n-state 2NFA over a unary alphabet is at least
Ω(
√
g(m, n)) and at most g(m)+ g(n)+ O((m+ n)2).

Proof. The proof similarly follows that of Theorem 5.
For the lower bound, given m, n > 2, consider the relatively prime numbers p1, . . . , pk > 2, q1, . . . , qℓ > 2 with

p1 + · · · + pk 6 m and q1 + · · · + qℓ 6 n, for which g(m, n) = lcm(p1, . . . , pk, q1, . . . , qℓ). Let K = ap1···pk−1(ap1···pk)∗
and L = aq1···qℓ−1(aq1···qℓ)∗; these languages are recognized by anm-state 2DFA and an n-state 2DFA, respectively. They have
relatively prime periods, and therefore, by Theorem I, their concatenation KL has tail of length p1 · · · pk · q1 · · · qℓ − 1 =
g(m, n)− 1. Then, by Corollary K.1, every 2NFA for KL requires at least Ω(

√
g(m, n)− 1) states.

Turning to the upper bound, let A and B be 2NFAs with m and n states, respectively. Then, by Theorem K, there exist
equivalent 1DFAs A′ and B ′ with g(m)+O(m2) and g(n)+O(n2) states, respectively. By Theorem L(ii), their concatenation
is representable by a 1NFA with g(m)+ g(n)+ O(m2)+ O(n2) states. �

Therefore, the state complexity of concatenation for unary 2NFAs can be roughly estimated as eΘ(
√

(m+n) ln(m+n)).
Before approaching the state complexity of the last operation, the k-th power, for 2NFAs, consider its effect on the size of

1NFAs. For 1NFAs over multiple-letter alphabets, the state complexity of Lk was proved to be exactly kn by Domaratzki and
Okhotin [2]. The precise complexity in the unary casewas left as an open problem, with the following easy bounds implicitly
mentioned.
Proposition (Domaratzki and Okhotin [2, Thm. 3, Clm. 5]). The state complexity of Lk for unary 1NFAs is at least kn− k+ 1 and
at most kn, with the lower bound witnessed by the languages Ln = {an−1}.
Theorem 8. For each k > 2, the state complexity of the k-th power operation for unary 2NFAs is at most O(k · g(n)) and at least
Ω(
√
k · g(n)).

Proof. If a language L ⊆ a∗ is recognized by a 2NFA with n states, then, by Theorem K, there is an equivalent 1DFA with
g(n)+O(n2) states. Applying Theorem H(i) to the latter 1DFA gives a 1DFA for the language Lk with k(g(n)+O(n2))− k+ 1
states.

Let n > 2 and consider the numbers p1, . . . , pk > 2 with g(n) = p1 · · · pk. The language L = ag(n)−1(ag(n))∗ has an n-state
2DFA. By Theorem H(ii), the language Lk has tail of length (k − 1)(g(n) − 1). By Corollary K.1, any 2NFA for the language
with such a tail requires at least Ω(

√
(k− 1)(g(n)− 1)) = Ω(

√
k · g(n)) states. �

Therefore, the k-th power operation requires asymptotically (k · g(n))Θ(1)
= kΘ(1)

· eΘ(
√
n ln n) states for 2NFAs.
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Table 2
State complexity of operations for one-way and two-way automata over a unary alphabet: complementation (∼), intersection (∩), union (∪), concatenation
(·), Kleene star (∗) and k-th power (k). Notation: g(n) is Landau’s function, g(m, n) is its two-argument generalization defined in Section 6, and g+(n) =
max06ℓ<n g(n− ℓ)+ ℓ.

1DFA 1NFA 2DFA 2NFA

∼ n g(n)+ O(n2) [6] n 6 · 6 2n+ 3 [12] n 6 · 6 C · n8 [5]
∩ mn mn m+ n 6 · 6 m+ n+ 1 m+ n 6 · 6 m+ n+ 1 [11]
∪ mn m+ n+ 1 [6] m+ n 6 · 6 2m+ n+ 4 m+ n [11]
· mn [21] m+ n− 1 6 · 6 m+ n [6] g(m, n)− 1 6 · 6 2g(m+ n)+m+ n Ω(

√
g(m, n)) 6 · 6 g(m)+ g(n)+ O((m+ n)2)

∗ (n− 1)2 + 1 [21] n+ 1 [6] (g(n)− 1)2 6 · 6 g+(n)2 + 1 Ω(g(n)) 6 · 6 g(n)+ O(n2)
k kn− k+ 1 [19] kn− k+ 1 6 · 6 kn [2] (k− 1)g(n)− k 6 · 6 kg+(n)+ 1 Ω(

√
k · g(n)) 6 · 6 k(g(n)+ O(n2))

Table 3
State complexity of operations for 2DFAs, compared for a unary and for a general alphabet:
complementation (∼), intersection (∩), union (∪), concatenation (·), Kleene star (∗), k-
th power (k), reversal (R) and inverse homomorphisms (h−1). Notation: g(n) is Landau’s
function, g(m, n) is its two-argument generalization, g+(n) = max06ℓ<n g(n− ℓ)+ ℓ.

alphabet Σ = {a} any alphabet Σ

∼ n 6 · 6 2n+ 3 [12] n 6 · 6 4n+ const [5]
∩ m+ n 6 · 6 m+ n+ 1 m+ n 6 · 6 m+ n+ 1
∪ m+ n 6 · 6 2m+ n+ 3 m+ n 6 · 6 4m+ n+ const
· g(m, n)− 1 6 · 6 2g(m+ n)+m+ n Ω(m

n )+ 2Ω(n)

logm 6 · 6 2mm+1
· 2nn+1 [7]

∗ (g(n)− 1)2 6 · 6 g+(n)2 + 1 1
n 2

n
2−1 6 · 6 2O(nn+1) [7]

k (k− 1)g(n)− k 6 · 6 kg+(n)+ 1 1
n 2

n
2−1 6 · 6 2O(nn+1) [7]

R n n+ 1 [7]
h−1 2n [7]

8. Summary

The state complexity of operations over a unary alphabet for one-way and two-way finite automata, deterministic and
nondeterministic, is compared in the Table 2.

Comparing the new results on unary 2DFAs to the known results for multiple-letter alphabets by Jirásková and
Okhotin [7], the new lower bounds for union and for intersection improve over the previous bound m + n − o(m + n),
and do so using only a unary alphabet, vs. an alphabet of exponential size. Turning to the concatenation, star and power
operations, their state complexity for multiple-letter alphabets is 2Ω(n) [7], while the complexity for a unary alphabet is tied
to Landau’s function and is therefore smaller. A comparison of the unary case to the general case is given in Table 3.
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