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a b s t r a c t

Let G = (V , E) be a graph. A set S ⊆ V is a total restrained dominating set if every vertex
is adjacent to a vertex in S and every vertex in V − S is adjacent to a vertex in V − S.
The total restrained domination number of G, denoted γtr (G), is the smallest cardinality of
a total restrained dominating set of G. We will show that if G is claw-free, connected, has
minimumdegree at least two andG is not one of nine exceptional graphs, then γtr (G) ≤

4n
7 .

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

For notation and graph theory terminology we, in general, follow [6]. Specifically, let G = (V , E) be a graph with vertex
set V and edge set E. For a set S ⊆ V , the subgraph induced by S is denoted ⟨S⟩G or just ⟨S⟩ if the context is clear. If G1 is an
induced subgraph of G, then G − G1 will denote the induced subgraph ⟨V (G) − V (G1)⟩. If K is a set of graphs and G has a
component that is isomorphic to a graph in K , then we will say that G has a component in K . The minimum degree (resp.,
maximum degree) among the vertices of G is denoted by δ(G) (resp., ∆(G)).

A set S ⊆ V is a dominating set ofG, denotedDS, if every vertex not in S is adjacent to a vertex in S. The domination number
of G, denoted γ (G), is the minimum cardinality of a DS. The concept of domination in graphs, with its many variations, is
now well studied in graph theory. A thorough study of domination appears in [6,7].

A set S ⊆ V is a total restrained dominating set, denoted TRDS, if every vertex is adjacent to a vertex in S and every
vertex in V − S is adjacent to a vertex in V − S. Every graph without isolated vertices has a total restrained dominating
set, since S = V is such a set. The total restrained domination number of G, denoted γtr(G), is the minimum cardinality of a
TRDS of G. If |S| = γtr(G), then S will be referred to as a γtr-set. Total restrained domination was introduced by Telle and
Proskurowski [10], albeit indirectly, as a vertex partitioning problem and further studied, for example, in [1,9,2,3,5,4,8,11].
A specific application of the total restrained domination number of a graph is discussed in [1].

The number of vertices (edges respectively) of a graph is denoted by n (m respectively). A graph G is said to be claw-free
if for any vertex u of degree at least three, we have that if v, w, x ∈ N(u), then ⟨{v, w, x, u}⟩ is not isomorphic to K1,3. In the
other case, ⟨{v, w, x, u}⟩ is a claw and u is called the center of the claw.

In [8], total restrained domination was studied in graphs with minimum degree at least two. The following bound was
derived.

Theorem 1. If G is a connected graph with n ≥ 4, δ ≥ 2 and ∆ ≤ n − 2 then γtr(G) ≤ n −
∆

2 − 1.
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In [9] the bound in Theorem 1 was further improved for claw-free graphs with ∆ ≥ 6, with the following result:

Theorem 2. If G is a connected claw-free graph with n ≥ 4, δ ≥ 2 and ∆ ≤ n − 2 then γtr(G) ≤ n − ∆ + 1.

Let B be the graph obtained by joining a degree two vertex of a C3 to the two vertices of a K2. Let K = {B, C3, C5,
C6, C7, C10, C11, C15, C19}. In [1] the following result is derived:

Proposition 3. If n = 4q + r for some positive integer q and r ∈ {0, 1, 2, 3}, then γtr(Cn) = 2q + r.

Proposition 4. Let G be a claw-free graph with δ(G) ≥ 2. The following conditions hold:

1. If G = B then γtr(G) > 4n
7 .

2. If G = Cn then γtr(Cn) ≤
4n
7 if and only if n ∉ {3, 5, 6, 7, 10, 11, 15, 19}.

Consider a path P : x = v0, v1, v2, . . . , vj+1 = y, where deg(vi) = 2, for i = 1, 2, . . . , j, and deg(x) ≥ 3 and
deg(y) ≥ 3. The path P will be called a 2-path. If we set x = y then P will be called a 2-cycle. For a 2-path P define
H(P) = {v ∈ V (G) − V (P) | v ∈ N(x) ∩ N(y)}.

Throughout the paper, if G has an induced subgraph D in K then we will let the vertices u1, u2, . . . , ui denote the
Hamiltonian path of D (by default), with i ∈ {3, 5, 6, 7, 10, 11, 15, 19}, provided that the vertex labels have not already
been used. Clearly, if D = B then deg(u3) = 4.

Consider a path P ′
: v1, v2, . . . , vj, with 2 ≤ j ≤ 4. Let deg(vk) = 1 for k ∈ {1, j} and deg(vk) = 2 for k ∈ {2, 3, . . . , j−1}.

Let D ∈ K . We describe the following construction.
Construction:

1. If D ∈ K − {B, C3} then join vj to at least u1 and u2 in D.
2. If D = C3 and j ≥ 3 then join vj to at least u1 in D.
3. If D = B then join vj to at least u1 in D.

Additional edges may be added between the vertices of P ′
− {vj} and D and between the non-adjacent vertices of P ′.

If a graph is obtained by using the construction mentioned above, we will refer to it as a necklace. The path P ′ will be
referred to as the attachment. Wewill refer to v1 (vj respectively) as the initial vertex (end vertex respectively) of the necklace.

We are now ready to proceed to the main result of this paper. We shall show the following:

Theorem 5. Let G be a connected claw-free graph with minimum degree at least two. If G ∉ K , then γtr(G) ≤
4n
7 .

2. Proof of Theorem 5

We will prove our main result by contradiction. Suppose, to the contrary, that there is at least one connected claw-free
graph J of order n and minimum degree at least two, such that J ∉ K and γtr(J) > 4n

7 . Among all the counter examples,
choose G to have minimum size.

The proof of Theorem 5 will follow from a series of key lemmas. We will start by making a few observations that will
play an essential part in the proofs of these lemmas.

Suppose that G has a necklace G1 as an induced subgraph. For the purpose of the next observation, we will label the
vertices of G1 in exactly the same way as described in our construction. Let G2 = G − G1.

Observation 6. Suppose that V (G2) = ∅, or δ(G2) ≥ 2 and G2 has no components in K . Then:

1. The attachment of the necklace G1 has length at most two.
2. The initial vertex of the necklace G1 has no neighbor in V (G2).

Proof. Let S be any γtr-set of G2. Note that G2 is claw-free. Suppose that V (G2) = ∅, or δ(G2) ≥ 2 and G2 has no com-
ponents in K . Suppose, to the contrary, that the attachment either has length three or that it has length at most two,
with v1 having a neighbor v in V (G2). Note that in the case where the attachment has length three, v1 has a neighbor v

in V (G2) ∪ (V (G1) − {v1, v2}). Since G2 has smaller size than G, it follows that |S| ≤
4n(G2)

7 =
4(n−i−j)

7 . We will produce a
contradiction by showing that γtr(G) ≤

4n
7 . Let i = 4q + r , where q is a positive integer and r ∈ {1, 2, 3}.

Case 1: i = 4q + 3.
We will first look at the case where j = 4. If q ≥ 1 then the set S ∪ {v1, v2, u1, ui} ∪

q−1
k=0{u4k+3, u4k+4} is a TRDS of G.

Hence, γtr(G) ≤ |S| + 4 + 2q ≤
4n
7 −

4
7 (4q + 7) +

14q
7 +

28
7 ≤

4n
7 . If q = 0 then if v ∈ V (G2) − S or v ∈ {u1, v4} then

S∪{v2, v3, u2, u3} is a TRDS of G. If v ∈ S or v = v3 then S∪{v3, v4, u1} is a TRDS of G. If v ∈ {u2, u3} then S∪{v2, v3, v4, u1}

is a TRDS of G. Hence, γtr(G) ≤ |S| + 4 ≤
4n
7 −

28
7 +

28
7 =

4n
7 .

Suppose that j = 3. If q ≥ 1 and v ∉ S then the set S ∪{v2, v3, ui−1}∪
q−1

k=0{u4k+4, u4k+5} is a TRDS of G. If v ∈ S then the
set S∪{v3, u1}∪

q−1
k=0{u4k+4, u4k+5} is a TRDS ofG. Hence, γtr(G) ≤ |S|+3+2q ≤

4n
7 −

4
7 (4q+6)+ 14q

7 +
21
7 ≤

4n
7 . If q = 0 then

if v ∈ S then S∪{v3, u1} is a TRDS ofG. If v ∉ S then S∪{v2, v3, u1} is a TRDS ofG. Hence, γtr(G) ≤ |S|+3 ≤
4n
7 −

24
7 +

21
7 ≤

4n
7 .
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Suppose j = 2. If q = 0 then i = 3. By the second point of the construction mentioned above, we must have that
j ≥ 3 which is a contradiction. It follows that q ≥ 1. The set S ∪ {v1, v2, u1} ∪

q−1
k=0{u4k+4, u4k+5} is a TRDS of G. Hence,

γtr(G) ≤ |S| + 3 + 2q ≤
4n
7 −

4
7 (4q + 5) +

14q
7 +

21
7 ≤

4n
7 .

Case 2: i = 4q + 2.
We will first look at the case where j = 4. If v ∈ V (G2) − S or v ∈ V (G1) − {v1, v2, v3, v4} −

q−1
k=0{u4k+4, u4k+5} then

the set S ∪ {v2, v3, v4} ∪
q−1

k=0{u4k+4, u4k+5} is a TRDS of G. If v ∈ S or v ∈ {v3, v4} ∪
q−1

k=0{u4k+4, u4k+5} then the set
S ∪ {v3, v4} ∪

q−1
k=0{u4k+4, u4k+5} is a TRDS of G. Hence, γtr(G) ≤ |S| + 3 + 2q ≤

4n
7 −

4
7 (4q + 6) +

14q
7 +

21
7 ≤

4n
7 .

Suppose that j = 3. If v ∉ S then the set S ∪ {v2, v3} ∪
q−1

k=0{u4k+4, u4k+5} is a TRDS of G. If v ∈ S then the set
S ∪ {v1, u1, ui} ∪

q−1
k=0{u4k+4, u4k+5} is a TRDS of G. Hence, γtr(G) ≤ |S| + 3 + 2q ≤

4n
7 −

4
7 (4q + 5) +

14q
7 +

21
7 ≤

4n
7 .

Suppose j = 2. The set S∪{v1, v2}∪
q−1

k=0{u4k+4, u4k+5} is a TRDS ofGwhen v ∈ S or v ∉ S. Hence, γtr(G) ≤ |S|+2+2q ≤
4n
7 −

4
7 (4q + 4) +

14q
7 +

14
7 ≤

4n
7 .

Case 3: i = 5.
We consider first the case where D = C5. Suppose first that j = 4. The set S ∪ {v1, v2, u1, u4, u5} is a TRDS of G. Hence,

γtr(G) ≤ |S| + 5 ≤
4n
7 −

36
7 +

35
7 ≤

4n
7 .

Suppose that j = 3. If v ∉ S then the set S ∪ {v2, v3, u4, u5} is a TRDS of G. If v ∈ S then the set S ∪ {v3, u1, u4, u5} is a
TRDS of G. Hence, γtr(G) ≤ |S| + 4 ≤

4n
7 −

32
7 +

28
7 ≤

4n
7 .

Suppose j = 2. If v ∉ S then the set S ∪ {u1, u5, u4, v2} is a TRDS of G. If v ∈ S then the set S ∪ {u1, u5, u4} is a TRDS of G.
Hence, γtr(G) ≤ |S| + 4 ≤

4n
7 −

28
7 +

28
7 =

4n
7 .

We now consider the case where D = B. If j = 4 then the set S ∪ {v1, v2, u1, u2, u3} is a TRDS of G. Hence,
γtr(G) ≤ |S| + 5 ≤

4n
7 −

36
7 +

35
7 ≤

4n
7 .

If j = 3 then the set S ∪ {v1, v2, u2, u3} is a TRDS of G. Hence, γtr(G) ≤ |S| + 4 ≤
4n
7 −

32
7 +

28
7 ≤

4n
7 .

Suppose j = 2. If v ∉ S then the set S ∪ {u1, u5, u4, v2} is a TRDS of G. If v ∈ S then the set S ∪ {v1, u3, u4, u5} is a TRDS
of G. Hence, γtr(G) ≤ |S| + 4 ≤

4n
7 −

28
7 +

28
7 =

4n
7 . �

Consider a path PA : v1, v2, v3, v4 of G, where either v1 and v4 are adjacent or v1 is adjacent to a vertex v0 ∈ V (G)−V (PA)
and v4 is adjacent to a vertex v5 ∈ V (G) − V (PA). Let G2 = G − ⟨{v1, v2, v3, v4}⟩. We form the graph GA from G2 as follows.
If v1 is adjacent to v4 or v0 = v5, then let GA = G2. If v0 ≠ v5 then either let GA = G2 if v0 is adjacent to v5 or form GA from
G2 by joining v0 and v5. For a path PB : v1, v2, v3, v4 where v4 is adjacent to v2, we let GB = G − ⟨{v1, v2, v3, v4}⟩.

Observation 7. If GA (GB respectively) is claw-free, has no components in K and δ(GA) ≥ 2 (δ(GB) ≥ 2 respectively) then
γtr(G) ≤

4n
7 , a contradiction.

Proof. Suppose that GA (GB respectively) is claw-free, has no components in K and δ(GA) ≥ 2 (δ(GB) ≥ 2 respectively).
Since GA (GB respectively) is of smaller size than G it follows that γtr(GA) ≤

4(n−4)
7


γtr(GB) ≤

4(n−4)
7 respectively


.

Now for a γtr-set S of GB we have that S ∪ {v1, v2} is a TRDS of G. Hence, γtr(G) ≤ |S| + 2 ≤
4n
7 −

16
7 +

14
7 ≤

4n
7 .

For a γtr-set S of GA we have that if v0, v5 ∉ S or v1 is adjacent to v4, then S ∪ {v2, v3} is a TRDS of G. If, without loss
of generality, v0 ∉ S and v5 ∈ S, then S ∪ {v1, v2} is a TRDS of G. If v0, v5 ∈ S then S ∪ {v1, v4} is a TRDS of G. Hence,
γtr(G) ≤ |S| + 2 ≤

4n
7 −

16
7 +

14
7 ≤

4n
7 . �

Observation 8. Suppose that D ∈ K is an induced subgraph of G. If v ∈ V (G) − V (D) and v is adjacent to a vertex of D then
we have the following:

1. If D ∈ K − {B, C3} then v is adjacent to two consecutive vertices on the cycle D.
2. If D = B then N(v) ∩ (V (D) − {u3}) ≠ ∅.

Proof. Suppose that D is an induced subgraph of G, where D ∈ K . Furthermore, let v ∈ V (G) − V (D) where v is adjacent to
a vertex of D. If D ∈ K − {B, C3} then suppose that v is adjacent to say u1. Since ⟨{v, ui, u2, u1}⟩ is not a claw and ui is not
adjacent to u2 we have that v is adjacent to say u2. Hence, v is adjacent to two consecutive vertices on the cycle D. If D = B
and v is adjacent to u3 then since ⟨{v, u4, u1, u3}⟩ is not a claw and u4 is not adjacent to u1 we have that v is adjacent to a
vertex in V (D) − {u3}. �

Let P : v1, v2, v3, v4 be a path of G. Define G1 = ⟨V (P)⟩ and G2 = G − G1.

Observation 9. Suppose that δ(G2) ≥ 2 and that G2 is disconnected. If G2 consists of exactly two components U and U′ and v1
(v4 respectively) is adjacent to a vertex of U (U′ respectively) then U ∉ {C3, B} or U′

∉ {C3, B}.

Proof. Let G2 be disconnected and let U and U′ be the two components of G2. Suppose that v1 (v4 respectively) is adjacent
to a vertex of U (U′ respectively). Assume, to the contrary, that U ∈ {C3, B} and U′

∈ {C3, B}. Let P ′
: u1, . . . , ui

(P ′′
: w1, . . . , wj respectively) be the Hamiltonian path of U (U′ respectively). Using Observation 8, we have that v1 (v4

respectively) is adjacent to say u1 (w1 respectively).
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By symmetry, we need only to consider the case where U = C3 and U′
∈ {C3, B} and the case where U = U′

= B.
If U = U′

= C3 then n(G) = 10 and the set {v1, u1, v4, w1} is a TRDS of G. Hence, γtr(G) ≤ 4 < 4.10
7 =

4n
7 which

is a contradiction. If U = C3 and U′
= B then n(G) = 12 and the set {v1, u1, v4, w1, w2, w3} is a TRDS of G. Hence,

γtr(G) ≤ 6 < 4.12
7 =

4n
7 which is a contradiction. If U = U′

= B then n(G) = 14 and the set {v1, u1, u2, u3, v4, w1, w2, w3}

is a TRDS of G. Hence, γtr(G) ≤ 8 =
4.14
7 =

4n
7 which is a contradiction. �

Suppose that D ∈ K is an induced subgraph of G and let v ∈ V (G) − V (D) be adjacent to a vertex of D. Define
G1 = ⟨V (D) ∪ {v}⟩ and G2 = G − G1, and suppose that V (G2) ≠ ∅.

Observation 10. We have the following:

1. If D ∈ K − {B, C3} then G2 has at least one component in K or δ(G2) ≤ 1.
2. If D = B and v is adjacent to a vertex w ∈ V (G2) then G2 has at least one component in K or δ(G2) ≤ 1.

Proof. If D ∈ K − {B, C3} then suppose, to the contrary, that G2 has no component in K and δ(G2) ≥ 2. By Observation 8,
G1 ∉ K . The graph G2 (G1 respectively) has a TRDS S2 (S1 respectively) of cardinality at most 4n(G2)

7


4n(G1)

7 respectively

.

The set S1 ∪ S2 is a TRDS of G and so γtr(G) ≤ |S1| + |S2| ≤
4n(G1)

7 +
4n(G2)

7 =
4n
7 , a contradiction. Hence, G2 has at least one

component in K or δ(G2) ≤ 1.
Suppose that D = B and that v is adjacent to a vertex w ∈ V (G2). Assume, to the contrary, that G2 has no component in

K and δ(G2) ≥ 2. The graph G2 has a TRDS S of cardinality at most 4n(G2)
7 . By Observation 8, v is adjacent to say u1. If w ∈ S

(w ∉ S respectively) the set S∪{u3, u2} (S∪{u1, u3, u2} respectively) is a TRDS ofG and soγtr(G) ≤ |S|+3 ≤
4n
7 −

24
7 +

21
7 < 4n

7 ,
a contradiction. Hence, G2 has at least one component in K or δ(G2) ≤ 1. �

Observation 11. Let e be an edge of G. If the graph G−e is claw-free and has no component isomorphic to C3, then δ(G−e) ≤ 1.

Proof. Let e = xy be an edge of G. Suppose that G − e is claw-free and that G − e has no component isomorphic to C3.
Suppose, to the contrary, that δ(G − e) ≥ 2.
Case 1: G−e is connected. If G−e ∉ K then since G−e has smaller size than G, we have that G−e has a TRDS S of cardinality
atmost 4n

7 . Since S is also a TRDS of Gwe have that γtr(G) = |S| ≤
4n
7 , a contradiction. Suppose first that G−e ∈ K −{B, C3}.

If x and y are at distance more than two apart on G − e, then x, y and the two vertices adjacent to y on G − e form a claw in
G, which is a contradiction. Thus x and y are at distance two apart on G − e. Hence γtr(G) ≤

4n
7 , which is a contradiction. If

G − e = B then n(G) = 5 and γtr(G) = 2 < 4n
7 , a contradiction.

Case 2: G − e is disconnected. Let D and D′ be the two components of G − e. Neither D nor D′ is in K − {B, C3}, since
otherwise G will not be claw-free. Let x ∈ V (D) and y ∈ V (D′). Certainly, D is not isomorphic to C3. If D = B then, by
Observation 8, x is say u1. Note that G′

= G − xu3 is claw-free, connected, G′
∉ K and δ(G′) ≥ 2. Furthermore, G′ has

smaller size than G and so G′ has a TRDS S of cardinality at most 4n(G′)

7 . Since S is also a TRDS of G we have that γtr(G) ≤
4n
7 ,

which is a contradiction. Hence, neither D nor D′ is in K . Since D (D′ respectively) has smaller size than G it follows that D
(D′ respectively) has a TRDS S1 (S2 respectively) of cardinality at most 4n(D)

7


4n(D′)

7 respectively

. Then S1 ∪ S2 is a TRDS of

G, and so γtr(G) ≤ |S1| + |S2| ≤
4n(D)

7 +
4n(D′)

7 =
4n
7 which is a contradiction. �

To complete the proof of Theorem5wewill first state our key lemmas, then briefly explain the importance of each lemma
and then use them to prove our main result. The proof of each of the following lemmas will be provided in the next section
and each proof will rely on the observations mentioned above.

Lemma 12. The graph G has no 2-paths of length greater than three.

Lemma 13. Suppose that G has a path P : v1, v2, v3, v4 of which deg(v1) = deg(v4) = 2. If G1 = ⟨V (P)⟩ and G2 = G − G1
then δ(G2) ≤ 1.

Lemma 14. Suppose that G has a path P : v1, v2, v3, v4 of which the vertices v1 and v4 have degree at least two and deg(v3) = 2.
If G1 = ⟨{v1, v2, v3, v4}⟩ and G2 = G − G1 then δ(G2) ≤ 1.

Lemma 15. The graph G has no 2-paths of length three.

Lemma 16. The graph G either has no 2-cycles or it has a 2-path of length two.

Lemma 17. If P is a 2-path of G that has length two then H(P) = ∅.

Lemma 18. The graph G has no 2-paths of length two.

Lemma 19. The graph G does not have minimum degree at least three.
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The proof of Theorem 5 will follow from Lemmas 16, 18 and 19. Lemmas 12–15 will be used to prove Lemmas 16–18.
Lemma 17 will be essential in the proof of Lemma 18. We are now ready to complete the proof of Theorem 5.

Suppose first that δ(G) = 2. If G = Cn then Proposition 4 provides a contradiction. Hence, G has either a 2-path or a
2-cycle. If G has a 2-cycle then, by Lemma 16, we have that G must have a 2-path of length two. But this fact contradicts
Lemma 18. Hence, G has no 2-cycles. It follows, by Lemmas 12 and 15, that G must have a 2-path of length two and so we
contradict Lemma 18. Hence, δ(G) ≥ 3 and so we contradict Lemma 19. It immediately follows that G does not exist and so
we obtain a contradiction which proves Theorem 5. �

3. Proofs of key lemmas

Proof of Lemma 12. Suppose, to the contrary, that G has a 2-path P : x = v0, v1, v2, . . . , vj+1 = y, with j ≥ 3.
Suppose that j ≥ 4.
If j ≥ 5 or j = 4 and x is not adjacent to y then we let G2 = G− ⟨{v1, v2, . . . , v4}⟩ and we form GA from G2 by joining the

vertices x and v5. The graph GA is claw-free and δ(GA) ≥ 2. Furthermore, GA is connected and GA ∉ K . By Observation 7 we
get a contradiction.

Hence, j = 4 and x is adjacent to y. Let G2 = G − ⟨{v1, v2, . . . , v4}⟩. The graph G2 is claw-free, connected and δ(G2) ≥ 2.
If G2 ∉ K then, by Observation 7, we get a contradiction. Hence, G2 ∈ K .

If G2 ∈ {C3, B} then G is a necklace with an attachment that has length three. By the first part of Observation 6 we get a
contradiction. Hence, G2 ∈ K − {C3, B}. For u ∈ N(x) − {v1, y} the graph ⟨{u, v1, y, x}⟩ is a claw, which is a contradiction.

Hence, we may assume that j = 3.

Claim 1. The only degree two vertex adjacent to x (y respectively) is v1 (v3 respectively).

Proof. Let u ∈ N(y) ∩ (V (G) − V (P)) and suppose, to the contrary, that deg(u) = 2.
Case 1. The vertex u is adjacent to x.

If x (y respectively) has a neighbor v ∈ V (G) − V (P) − {u} (v′
∈ V (G) − V (P) − {u} respectively), then the graph

⟨{u, v, v1, x}⟩ (⟨{u, v′, v3, y}⟩ respectively) induces a claw, a contradiction. Hence, N(x) = {u, v1, y} and N(y) = {u, v3, x}.
Furthermore, n(G) = 6 and the set {x, v1, v2} is a TRDS of G. Hence, γtr(G) ≤ 3 < 4.6

7 =
4n
7 which is a contradiction.

Case 2. The vertex u is not adjacent to x.
If x is adjacent to y then ⟨{u, x, v3, y}⟩ is a claw which is a contradiction. Thus, x and y are not adjacent. The fact that

⟨N(y)−{v3}⟩ is complete, implies that deg(y) = 3. Let u′
∈ N(y)−{v3, u}. Clearly, u′ is adjacent to u. The graph G′

= G−yu′

is claw-free and connected. If deg(u′) ≥ 3 then δ(G′) ≥ 2 and this contradicts Observation 11. Hence, deg(u′) = 2. Note
that the graph G1 = ⟨V (P) ∪ {u, u′

} − {x}⟩ is a necklace, where the path P − x − y is the attachment with initial vertex v1.
Let G2 = G − G1. Now G2 is connected and δ(G2) ≥ 2. Note that v1 has a neighbor in V (G2). If G2 ∉ K then we contradict
Observation 6. Hence, G2 ∈ K . Since deg(v1) = 2 we have, by the first part of Observation 8, that G2 ∈ {C3, B}.

If G2 = C3 then n(G) = 9 and the set {x, v1, v2, v3, y} is a TRDS of G and so γtr(G) ≤ 5 < 4.9
7 =

4n
7 , a contradiction.

If G2 = B we have, by Observation 8, that x is say u1. The graph G′
= G − xu3 is claw-free and connected. In addition,

δ(G′) ≥ 2 and this contradicts Observation 11. Our claim follows by symmetry. �
Let G1 = ⟨V (P) − {x}⟩ and let G2 = G − G1. Note that δ(G2) ≥ 1.

Case 1. δ(G2) = 1.
Let v be a degree one vertex of G2. If v ∈ V (G) − V (P) then v is adjacent to y and deg(v) = 2, contradicting Claim 1.

It follows that v = x. Hence, for some u ∈ N(x) ∩ (V (G) − V (P)) we have that N(x) = {y, v1, u}. Now if H(P) = ∅ then
G′

= G−xy is claw-free, connected and hasminimumdegree at least two. This contradicts Observation 11. Hence, u ∈ H(P)
and deg(u) ≥ 3. If y has a neighbor u′

∈ N(y)−{v3, x, u} then ⟨{x, v3, u′, y}⟩ induces a claw, which is a contradiction. Hence,
N(y) = {x, v3, u}.
Case 1.1. deg(u) = 3.

Let w1 ∈ N(u) − {y, x}. In this case N(u) = {w1, x, y}. Assume first that deg(w1) ≥ 3. Let G′

1 = ⟨V (P) ∪ {u}⟩ and
G′

2 = G − G′

1. Note that G′

2 is claw-free, connected and δ(G′

2) ≥ 2. Suppose first that G′

2 ∈ K . By Observation 8 and the fact
that deg(u) = 3, we have that G′

2 ∈ {C3, B}. Observation 8 implies that say w1 = u1.
If G′

2 = C3 then n(G) = 9 and {u1, u, x, v1, v2} is a TRDS of G and so γtr(G) ≤ 5 < 4.9
7 =

4n
7 , a contradiction.

If G′

2 = B then the graph G′
= G − u1u3 is claw-free, connected and has minimum degree at least two. This contradicts

Observation 11.
Hence, G′

2 ∉ K . Note that G′

2 has smaller size than G and so G′

2 has a TRDS S2 with cardinality at most 4(n−6)
7 . The set

S2 ∪ {x, v1, v2} is a TRDS of G. Hence, γtr(G) ≤ |S2| + 3 ≤
4n
7 −

24
7 +

21
7 < 4n

7 which is a contradiction.
We may assume that deg(w1) = 2. Let w2 ∈ N(w1) − {u}. Since N(u) = {x, y, w1} we can find a 2-path P ′

:

u, w1, w2, . . . , wj+1, where wi ∈ V (G) − V (P) − {u} for i = 2, . . . , j + 1. Since every 2-path has length at most four
we have that j = 1, 2, 3. We let G′

1 = ⟨V (P) ∪ V (P ′) − {wj+1}⟩ and G′

2 = G − G′

1. Note that G′

2 is claw-free and δ(G′

2) ≥ 2.
Also,wj has a neighbor in V (G′

2). Suppose first that G
′

2 ∉ K . If j ≥ 2 then G′

1 is a necklace and sowe contradict Observation 6.
Hence, j = 1. The graph G′

2 has a TRDS S2 of cardinality at most 4(n−7)
7 . Ifw2 ∈ S2 then {x, v1, v2}∪S2 is a TRDS of G. Ifw2 ∉ S2
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then {x, v1, v2, u} ∪ S2 is a TRDS of G. Hence, γtr(G) ≤ |S2| + 4 ≤
4n
7 −

28
7 +

28
7 =

4n
7 which is a contradiction. Therefore,

G′

2 ∈ K .
Since deg(wj) = 2 we have, by Observation 8, that G′

2 ∈ {C3, B}. Let G′′

1 = ⟨V (G′

2) ∪ V (P ′) − {u}⟩ and G′′

2 = G− G′′

1 . Note
that if G′

2 = B and j ≥ 2 or if G′

2 = C3 and j = 3 then the graph G′′

1 is a necklace with attachment P ′
− u − wj+1 and initial

vertex w1. If j = 1 and G′

2 = C3 then by Observation 7 we get a contradiction. If j = 1 and G′

2 = B then by Observation 8 we
have that w2 is say u1. Furthermore, G′

= G − u1u3 is claw-free, connected and δ(G′) ≥ 2. This contradicts Observation 11.
If j = 3 or j = 2 and G′

2 = B, then we contradict Observation 6. Hence, j = 2 and G′

2 = C3. Note that n(G) = 11 and so
{w2, w3, y, v3, v2} is a TRDS of G and so γtr(G) ≤ 5 < 4.11

7 =
4n
7 , a contradiction.

Case 1.2. deg(u) ≥ 4.
Let w, w′

∈ N(u) − {x, y}. Since G is claw-free we have that ⟨N(u) − {x, y}⟩ is complete. If deg(w) = 2 then w is
adjacent to w′ and deg(u) = 4. If deg(w′) ≥ 3 then G′

= G − uw′ is claw-free, connected and δ(G′) ≥ 2. This contradicts
Observation 11. Hence, deg(w′) = 2 and so n(G) = 8. The set {u, x, v1, v2} is a TRDS of G and so γtr(G) ≤ 4 < 4.8

7 =
4n
7 ,

a contradiction. Hence, u is not adjacent to any degree two vertex and so if we define G′

1 = ⟨V (P) ∪ {u}⟩ and G′

2 = G − G′

1
we see that δ(G′

2) ≥ 2. Now since ⟨N(u) − {x, y}⟩ is complete we have that G′

2 is connected. If G′

2 ∉ K then note that G′

2
has smaller size than G and so G′

2 has a TRDS S2 of cardinality at most 4(n−6)
7 . The set S2 ∪ {x, v1, v2} is a TRDS of G. Hence,

γtr(G) ≤ |S2| + 3 ≤
4n
7 −

24
7 +

21
7 < 4n

7 which is a contradiction. It follows that G′

2 ∈ K . By Observation 8, u is adjacent to
say u1.

If G′

2 ∈ K − {C3, B} then, by Observation 8, u is adjacent to say u2. If there are edges between the vertex u and the set
V (G′

2) − {u1, u2}, then we may form G′, from G, by removing all these edges. The graph G′ is claw-free, connected, G′
∉ K

and G′ has smaller size than G. Hence, γtr(G) ≤
4n
7 which is a contradiction. It can be concluded that P : u2, u3, . . . , ui, u1 is

a 2-path. By all previous arguments we have that i = 5. Hence, n(G) = 11 and so {y, v3, v2, u1, u2, u3} is a TRDS of G. Thus,
γtr(G) ≤ 6 < 4.11

7 =
4n
7 which is a contradiction.

If G′

2 = C3 then n(G) = 9 and so {y, v3, v2, u1, u} is a TRDS of G, and so γtr(G) ≤ 5 < 4.9
7 =

4n
7 which is a contradiction.

If G′

2 = B then clearly n(G) = 11. Constructing a γtr-set of G of cardinality at most six will suffice since then
γtr(G) ≤ 6 < 4.11

7 =
4n
7 , a contradiction. The set {y, v3, v2, u1, u2, u3} is a TRDS of G.

Case 2. δ(G2) ≥ 2.
If G2 has no components in K then, by Observation 7, we get a contradiction. We may assume that G2 has a component

U ∈ K .
Case 2.1. The vertex x lies on the component U.

Note that since δ(G2) ≥ 2 we have that x is adjacent to a vertex u ∈ V (U). If x is adjacent to a vertex w ∈

V (G) − V (U) − {y, v1, v2, v3} then ⟨{w, u, v1, x}⟩ is a claw which is a contradiction. Hence, N[x] ⊆ V (U) ∪ {v1, y}. Since
deg(v1) = 2 we have, by Observation 8, that U ∈ {C3, B}.

By Observation 8, x is say u1. Assume first that y is adjacent to a vertex z ∈ V (U). Note thatN[z] ⊆ V (U)∪{v1, y}. If y has
a neighborw ∈ V (G)−V (P)−V (U) then ⟨{v3, z, w, y}⟩would induce a claw, a contradiction. Hence,N(y) ⊆ V (U)∪{v3}. It
follows that G is a necklace with attachment P − x and initial vertex y. Since the attachment has length three, we contradict
Observation 6. Thus, y is adjacent to no vertex of V (U) and so u2 will have degree two in G. This contradicts Claim 1.
Case 2.2. The vertex x does not lie on the component U.

By the previous case we may assume that x lies on a component that is not in K . Furthermore, y is adjacent to some
vertex of U and V (U) ⊆ V (G) − V (P). Using Observation 8, we can assume that y is adjacent to say u1. If U ∈ K − {C3, B}

then ymust be adjacent to u2. Also note that if y has a neighbor u ∈ V (G2)−V (U) then ⟨{u, u1, v3, y}⟩ induces a clawwhich
is a contradiction. Hence, N(y) ⊆ {v3}∪V (U). The graph G′

1 = ⟨V (U)∪V (P)−{x}⟩ is a necklace with attachment P −x and
initial vertex v1. The graph G′

2 = G − G′

1 is claw-free, has no components in K, v1 has a neighbor in V (G′

2) and δ(G′

2) ≥ 2.
By Observation 6 we get a contradiction. �

Proof of Lemma 13. Let P : v1, v2, v3, v4 be a path of which deg(v1) = deg(v4) = 2. Define G1 = ⟨V (P)⟩ and G2 = G− G1.
If V (G2) = ∅ then γtr(G) ≤

4n
7 , a contradiction. We may assume, to the contrary, that δ(G2) ≥ 2. If G2 has no component in

K then, by Observation 7, we have that G has a TRDS of cardinality at most 4n
7 , a contradiction. Hence, G2 has a component

U in K . The following claim will be useful.

Claim 1. Let D be a component of G2 that is in K . If D has a vertex adjacent to v2, neither v1 nor v4 is adjacent to a vertex of
D and v1 is not adjacent to v3, then D ∈ {C3, B}.

Proof. Assume that v2 is adjacent to a vertex of D, neither v1 nor v4 is adjacent to a vertex of D and that v1 and v3 are
not adjacent. Suppose, to the contrary, that D ∈ K − {C3, B}. By Observation 8, v2 must be adjacent to say u1 and u2. In
addition, the fact that ⟨{v3, u1, v1, v2}⟩ (⟨{v3, u2, v1, v2}⟩ respectively) is not a claw, implies that v3 is adjacent to both u1
and u2. Furthermore, if v2 is adjacent to uj where j = 3, . . . , i, then either ⟨{v1, uj, u1, v2}⟩ or ⟨{v1, uj, u2, v2}⟩ will induce
a claw which is a contradiction. By symmetry we have that v3 is not adjacent to uj, with j = 3, . . . , i. Hence, the path
P ′

: u2, u3, . . . , ui, u1 is a 2-path of length greater than three and so we contradict Lemma 12. Hence, D ∈ {C3, B}. �
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Case 1. The vertex v1 is adjacent to a vertex of U.
Since deg(v1) = 2, we have, by Observation 8, that U ∈ {C3, B} and v1 is adjacent to say u1.

Case 1.1. V (G2) − V (U) = ∅.
Note that G2 = U. Hence, G is a necklace with an attachment that has length three. By the first part of Observation 6 we

get a contradiction.
Case 1.2. V (G2) − V (U) ≠ ∅.

Let z ∈ V (G2) − V (U).
Case 1.2.1. v2 is adjacent to either z or v4.

Let G′

1 = ⟨{v1} ∪ V (U)⟩ and G′

2 = G − G′

1. Clearly, G
′

2 is connected and δ(G′

2) ≥ 1. Note that if v2 is adjacent to z then
since ⟨{z, v1, v3, v2}⟩ does not induce a claw, we have that v3 is adjacent to z and so G′

2 has a triangle. If v2 is adjacent to v4
then G′

2 contains a triangle. We may therefore assume that G′

2 has an induced triangle.
Suppose first that δ(G′

2) ≥ 2. If G′

2 ∈ K then since G′

2 has a triangle and at least four vertices, we must have that
G′

2 = B. Now G′

2 has a TRDS S of cardinality three. If U = C3, then n(G) = 9. The set {v1, u1} ∪ S is a TRDS of G and so
γtr(G) ≤ 5 < 4.9

7 =
4n
7 , which is a contradiction. If U = B then n(G) = 11. If v2 ∈ S (v2 ∉ S respectively) we have that

{u3, u2} ∪ S ({u3, u2, u1} ∪ S respectively) is a TRDS of G. Hence, γtr(G) ≤ 6 < 4.11
7 =

4n
7 which is a contradiction.

We may assume that G′

2 ∉ K . If U = B then since v1 is adjacent to the vertex v2 ∈ V (G′

2), we have that the second
part of Observation 10 implies that δ(G′

2) ≤ 1 or G′

2 ∈ K which is a contradiction. It follows that U = C3. Since G′

1 has a
Hamiltonian path and n(G′

1) = 4 we obtain, by Observation 7, a contradiction.
We may assume that δ(G′

2) = 1.
Since degG′

2
(v2) ≥ 2 and degG′

2
(v3) ≥ 2, we have that degG′

2
(v4) = 1. Hence, v4 must be adjacent to a vertex of U and so

v2 is adjacent to z. Recall that v3 is also adjacent to z. If v4 is adjacent to u1 then ⟨{v4, v1, u3, u1}⟩ induces a claw. Hence, if
U = C3 then v4 must be adjacent to say u2. If U = B then since deg(v4) = 2, we have, by Observation 8, that v4 is adjacent
to u2 or say u4.

Let G′′

1 = ⟨V (P) ∪ V (U)⟩ and G′′

2 = G − G′′

1 .
Suppose first that G′′

2 is disconnected. Let U′ (U′′ respectively) be a component of G′′

2 that contains (does not contain
respectively) the vertex z. Without loss of generality, v2 is adjacent to some z ′

∈ V (U′′) and so ⟨{z ′, z, v1, v2}⟩ induces a
claw which is a contradiction. Hence, G′′

2 is connected. Since δ(G2) ≥ 2, we must have that δ(G′′

2) ≥ 2. Note that δ(G′′

1) ≥ 2.

Furthermore, the fact that G′′

1 ∉ K implies that G′′

1 has a TRDS S1 of cardinality at most 4n(G′′
1)

7 .

If G′′

2 ∉ K then G′′

2 has a TRDS S2 of cardinality at most 4n(G′′
2)

7 . Hence, γtr(G) ≤ |S1| + |S2| ≤
4n(G′′

1)

7 +
4n(G′′

2)

7 =
4n
7 which is

a contradiction.
Hence, G′′

2 ∈ K . Let P ′
: w1, . . . , wj be the Hamiltonian path of G′′

2 . Now G′′

2 is clearly a component of G2. Furthermore,
every vertex of G′′

2 is adjacent to neither v1 nor v4, v1 is not adjacent to v3 and v2 is adjacent to the vertex z in V (G′′

2). By
applying Claim 1 to the component G′′

2 , we have that G′′

2 ∈ {C3, B}.
Suppose that G′′

2 = B. Note that G′′

2 has a TRDS S of cardinality three. If U = B and v4 is adjacent to u2 then
{u3, u4, u5, v2, v3} ∪ S is a TRDS of G. If U = B and v4 is adjacent to u4 then {u3, u5, v2, v3} ∪ S is a TRDS of G. Clearly,
n(G) = 14 and γtr(G) ≤ 5 + |S| = 8 =

4.14
7 =

4n
7 which is a contradiction. If U = C3 then n(G) = 12. By Observation 8, we

may assume that v2 is adjacent to say w1. The fact that ⟨{w1, v1, v3, v2}⟩ is not a claw implies that v3 is adjacent to w1 also.
The set {w1, w2, w3, u1, u2, u3} is a TRDS of G and so γtr(G) ≤ 6 < 4.12

7 =
4n
7 , which is a contradiction.

Suppose that G′′

2 = C3. If U = B then n(G) = 12. Without loss of generality, let z = w1. If v4 is adjacent to u2 then
{z, v2, v3, u3, u4, u5} is a TRDS ofG. If v4 is adjacent to u4 then {u5, u3, v2, v3, z} is a TRDS ofG. Hence, γtr(G) ≤ 6 < 4.12

7 =
4n
7

which is a contradiction. If U = C3 then n(G) = 10. The set {u1, v1, v2, v3, z} is a TRDS of G and so γtr(G) ≤ 5 < 4.10
7 =

4n
7 ,

which is a contradiction.
Case 1.2.2. N(v2) ⊆ {v1, v3} ∪ V (U).

Let G′

1 = ⟨V (P) ∪ V (U)⟩ and G′

2 = G − G′

1. Note that G′

1 is a necklace. Since G is connected we have that G′

2 has a vertex
that is adjacent to either v3 or v4. If a vertex z ∈ V (G′

2) is adjacent to v3 then since ⟨{z, v2, v4, v3}⟩ is not a clawwe have that
v4 is adjacent to z. This fact implies that v4 has a neighbor in V (G′

2) and since deg(v4) = 2, we have that G′

2 is connected.
Since δ(G2) ≥ 2 we have that δ(G′

2) ≥ 2. If G′

2 ∉ K then, by Observation 6, we are done.
If G′

2 ∈ K then since deg(v4) = 2, we have, by Observation 8, that G′

2 ∈ {C3, B}. Clearly, G2 consists out of two
components which are both in the set {C3, B}. By Observation 9 we get a contradiction.
Case 2. The vertex v1 is not adjacent to a vertex in V (U).

By symmetry, we have that v4 is not adjacent to any vertex in V (U). Since G is connected, we have, without loss
of generality, that v2 is adjacent to some vertex in V (U). By Observation 8, v2 is adjacent to say u1. Define G′

1 =

⟨{v1, v2, v3, v4} ∪ V (U)⟩ and G′

2 = G − G′

1. Note that if V (G′

2) ≠ ∅ then since δ(G2) ≥ 2 we have that δ(G′

2) ≥ 2.
If G′

2 has a component U′
∈ K then U′ is also a component of G2, and, by Case 1, every vertex of U′ is adjacent to neither

v1 nor v4. Since G is connected, we must have that some z in V (U′) is adjacent to either v2 or v3. If z is adjacent to v2 then
⟨{z, v1, u1, v2}⟩ is a claw, a contradiction. Hence, z is adjacent to v3 and no vertex of U′ is adjacent to v2. If v1 is adjacent
to v3 then ⟨{z, v4, v1, v3}⟩ is a claw, a contradiction. Hence, v1 is not adjacent to v3. The fact that ⟨{u1, v3, v1, v2}⟩ is a not a
claw implies that v3 is adjacent to u1 and so ⟨{u1, v4, z, v3}⟩ is a claw, a contradiction.
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We may assume that either V (G′

2) = ∅, or V (G′

2) ≠ ∅ with G′

2 not having any component in K . In both cases G′

2 has a

TRDS S of cardinality at most 4n(G′
2)

7 .
Case 2.1. v1 is adjacent to v3.

Clearly, G′

1 is a necklace with initial vertex v4 and end vertex v2. By Observation 6 we get a contradiction.
Case 2.2. v1 and v3 are not adjacent.

Since ⟨{u1, v3, v1, v2}⟩ is not a claw we have that u1 and v3 are adjacent. By symmetry, v4 is not adjacent to v2. By Claim
1 we have that U ∈ {C3, B}. Suppose that U = B (U = C3 respectively). If v1 or v4, say v1, is adjacent to a vertex
in S then S ∪ {v3, v4, u2, u3} (S ∪ {v3, v4, u1} respectively) is a TRDS of G. If v1 is adjacent to v4 or v1 and v4 both have
neighbors in V (G′

2) − S, then S ∪ {v2, v3, u1, u2, u3} (S ∪ {v2, v3, u1} respectively) is a TRDS of G. Hence, if U = B then
γtr(G) ≤ 5 + |S| < 4n

7 −
36
7 +

35
7 < 4n

7 and if U = C3 then γtr(G) ≤ 3 + |S| < 4n
7 −

28
7 +

21
7 < 4n

7 . In both cases, we get a
contradiction. �

Proof of Lemma 14. Let P : v1, v2, v3, v4 be a path of which the vertices v1 and v4 have degree at least two and deg(v3) = 2
and define G1 = ⟨{v1, v2, v3, v4}⟩ and G2 = G − G1. If V (G2) = ∅ then γtr(G) ≤

4n
7 , a contradiction. We may assume, to the

contrary, that δ(G2) ≥ 2. If G2 has no component in K then, by Observation 7, we have that G has a TRDS of cardinality at
most 4n

7 , a contradiction. Hence, G2 has a component U in K .

Claim 1. Any component in G2 has a vertex that is adjacent to either v1 or v4.

Proof. Let D be a component of G2. Since G is connected there is some vertex v ∈ V (D) adjacent to either v1, v4 or v2. If v is
adjacent to say v2 then since ⟨{v, v3, v1, v2}⟩ is not a claw we must have that v is adjacent to v1 and so we are done. �

Case 1. V (G2) − V (U) = ∅.
In this case G2 = U. By Claim 1 and Observation 8, the graph G is a necklace with attachment that has length three. This

contradicts Observation 6.
Case 2. V (G2) − V (U) ≠ ∅.
Case 2.1. v4 is adjacent to say u1.

If v4 is adjacent to a vertex v ∈ V (G2) − V (U), then ⟨{v, u1, v3, v4}⟩ is a claw which is a contradiction. Hence,
N(v4) ⊂ V (U) ∪ V (P). Note that if U ∉ {C3, B} then v4 is adjacent to say u2. Clearly, the path P together with U forms
a necklace and so we define G′

1 = ⟨V (P) ∪ V (U)⟩ and G′

2 = G − G′

1. If V (G′

2) = ∅ then we obtain a contradiction by
Observation 6. Now clearly δ(G′

2) ≥ 2 and if G′

2 has no components in K then we get, by Observation 6, a contradiction.
Hence, G′

2 has a component U′ in K . Since N(v4) ⊂ V (U) ∪ V (P), we have, by Claim 1, that v1 must be adjacent to a vertex
of U′.

Suppose that either V (G′

2) − V (U′) ≠ ∅ or v1 is adjacent to two vertices of U′. The path P − v1 together with U forms
a necklace and so we define G′′

1 = ⟨V (P) ∪ V (U) − {v1}⟩ and G′′

2 = G − G′′

1 . If v1 is adjacent to two vertices of U′ then
obviously deg(v1) ≥ 3. If V (G′

2) − V (U′) ≠ ∅ then since N(v4) ⊂ V (U) ∪ V (P), we have, by Claim 1, that there is a vertex
v ∈ V (G′

2) − V (U′) adjacent to v1. Hence, deg(v1) ≥ 3. It follows that δ(G′′

2) ≥ 2. Since N(v4) ⊂ V (U) ∪ V (P) we have, by
Claim 1, that G′′

2 is connected and G′′

2 ∉ K . By Observation 6 we are done.
Hence, V (G′

2) − V (U′) = ∅ and v1 is adjacent to exactly one vertex of U′. The first part of Observation 8 must imply
that U′

∈ {C3, B}. The path P − v4 together with U′ forms a necklace and so we define G′′

1 = ⟨V (P) ∪ V (U′) − {v4}⟩

and G′′

2 = G − G′′

1 . If v4 is adjacent to two vertices of U then δ(G′′

2) ≥ 2. Furthermore, G′′

2 ∉ K . By Observation 6 we
get a contradiction. Therefore, v4 is adjacent to exactly one vertex of U. The first part of Observation 8 must imply that
U ∈ {C3, B}.

It follows thatV (G2) = V (U′)∪V (U) and that v1 (v4 respectively) is adjacent to exactly one vertex ofU′ (U respectively).
By Observation 9 we get a contradiction.
Case 2.2. v1 is adjacent to u1.

Suppose that U′ is a component of G2, with U′
∈ K . If U′

≠ U and v4 is adjacent to a vertex of U′, then wemay re-label
U′ asU and so by the previous casewe are done. It follows that ifG2 has a component inK , then no vertex of this component
can be adjacent to v4. Note that the path P together with U is a necklace. Let G′

1 = ⟨V (P) ∪ V (U)⟩ and G′

2 = G − G′

1. If
V (G′

2) = ∅ then we obtain a contradiction by Observation 6. Since δ(G2) ≥ 2, we may assume that δ(G′

2) ≥ 2. If G′

2 has no
components in K , then, by Observation 6, we get a contradiction. Hence, G′

2 has a component U′ in K .
Note thatU′ is also a component ofG2. By Claim1 and the fact that v4 is not adjacent to any vertex ofU′, we have that v1 is

adjacent to a vertex v ofU′. In addition,N(v4) ⊆ V (G)−{v4}−V (U)−V (U′). Since ⟨{v, u1, v2, v1}⟩ is not a clawwehave that
v2 is adjacent to v or v2 is adjacent to u1.We also claim that v1 is not adjacent to a vertexw ∈ V (G2)−V (U)−V (U′). Suppose,
to the contrary, that v1 is adjacent tow. Then ⟨{w, v, u1, v1}⟩ induces a clawwhich is a contradiction. Also, if v4 is adjacent to
v1 then ⟨{u1, v, v4, v1}⟩ induces a claw. Hence,N(v1) ⊆ {v2}∪V (U)∪V (U′) andN(v4) ⊆ {v3, v2}∪V (G2)−V (U)−V (U′).

If v2 is adjacent to v, then let G′′

1 = ⟨{v1} ∪ V (U)⟩. If v2 is adjacent to u1, then re-label U′ as U and U as U′ and set
G′′

1 = ⟨{v1} ∪ V (U)⟩. Define G′′

2 = G − G′′

1 . Note that δ(G′′

2) ≥ 2. The fact that N(v1) ⊆ {v2} ∪ V (U) ∪ V (U′) implies that
G′′

2 is connected. Clearly, G′′

2 ∉ K . If U = C3 (U = B respectively) then by Observation 7 (second part of Observation 10
respectively) we are done. Hence, U ∉ {C3, B}. By the first part of Observation 10 we get a contradiction. �
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Proof of Lemma 15. Suppose, to the contrary, that G has a 2-path P : x, v1, v2, y. Let G1 = ⟨V (P)⟩ and G2 = G − G1. Since
x and y both have degree greater than two and deg(v2) = 2, we may apply Lemma 14 to deduce that δ(G2) ≤ 1. Let v be a
vertex of G2, with degG2(v) ≤ 1.

Case 1. degG2(v) = 0.
Obviously, N(v) = {x, y}. If x is adjacent to a vertex w in V (G) − V (P) − {v}, then ⟨{v, w, v1, x}⟩ is a claw which is a

contradiction. Hence, N(x) = {v1, v, y}. We can show, in similar fashion, that N(y) = {v2, v, x}. Hence, n(G) = 5 and {x, v1}

is a TRDS of G and so γtr(G) ≤ 2 ≤
4.5
7 =

4n
7 which is a contradiction.

Case 2. degG2(v) = 1.
Case 2.1. The vertex v is adjacent to both x and y.

Since degG2(v) = 1 we must have that deg(v) = 3.
Case 2.1.1. x is adjacent to a vertex w ∈ V (G) − V (P) − {v}.

Since ⟨N[x]−{v1}⟩ is complete, wemust have that v is adjacent tow and so N(v) = {x, y, w}. Furthermore, {v, w, v1} ⊆

N(x) ⊆ {v, w, v1, y}. Since ⟨N[y]−{v2}⟩ is complete anddeg(v) = 3,we can conclude thatN(y)∩(V (G)−V (P)−{v, w}) = ∅.
Hence, {v, v2} ⊂ N(y) ⊆ {v, v2, w, x}. We may form G′ by deleting from G the edge yw (if it exists) and xy (if it exists). Note
that δ(G′) ≥ 2 and G′

∉ K . If G′ is a claw-free graph then G′ has smaller size than G and so it follows that G′ has a TRDS S ′ of
cardinality at most 4n(G′)

7 . Clearly, S ′ is a TRDS of G and so γtr(G) ≤ |S ′
| ≤

4n
7 which is a contradiction. Hence, G′ has a claw

⟨{w4, w3, w2, w1}⟩. Note that, without loss of generality, w2 = y and w3 ∈ {x, w}.
If w3 = x then the fact that {v, v2} ⊂ N(y) ⊆ {v, v2, w, x} implies that w1 = v. But since N(v) = {x, y, w}, we have

that w4 = w. Hence, w4 is adjacent to w3 which is a contradiction. Hence, w3 = w. It follows once more that w1 = v and
so w4 = x. But then w4 and w3 are adjacent which is a contradiction.
Case 2.1.2. N(x) = {v1, y, v} and N(y) = {v2, x, v}.

Let w1 ∈ N(v) − {x, y}. Suppose first that deg(w1) ≥ 3. Let G′

1 = ⟨V (P) ∪ {v}⟩ and we consider the connected claw-free
graph G′

2 = G − G′

1. Now G′

2 has minimum degree at least two. If G′

2 ∉ K then G′

2 has a TRDS S2 with cardinality at most
4(n−5)

7 . The set {x, v1} ∪ S2 is a TRDS of G and so γtr(G) ≤ |S2| + 2 ≤
4n
7 −

20
7 +

14
7 ≤

4n
7 , a contradiction. Hence, G′

2 ∈ K . By
the first part of Observation 8, and the fact that deg(v) = 3, we can conclude that G′

2 ∈ {C3, B}. By Observation 8 we may
also assume that v is adjacent to say u1.

If G′

2 = C3 then n(G) = 8 and {v, u1, x, v1} is a TRDS of G and so γtr(G) ≤ 4 < 4.8
7 =

4n
7 , which is a contradiction.

If G′

2 = B then we form G′
= G − u1u3. The graph G′ is connected and claw-free. By Observation 11, we are done.

Hence, deg(w1) = 2. Let w2 ∈ N(w1) − {v}. We have that there exists a 2-path P ′
: v, w1, w2, . . . , wj, wj+1, where

wi ∈ V (G) − V (P) − {v} for i = 1, 2, . . . , j + 1. By Lemma 12 we have that j = 1 or j = 2.
Case 2.1.2.1. j = 2.

We let G′′

1 = ⟨V (P ′) ∪ V (P) − {w3}⟩ and G′′

2 = G − G′′

1 . If G′′

2 ∉ K then G′′

2 has a TRDS S2 with cardinality at
most 4(n−7)

7 . If w3 ∈ S2 then {v, x, v1} ∪ S2 is a TRDS of G. If w3 ∉ S2 then {v, w1, x, v1} ∪ S2 is a TRDS of G. Hence,
γtr(G) ≤ |S2| + 4 ≤

4n
7 −

28
7 +

28
7 ≤

4n
7 which is a contradiction. We may therefore conclude that G′′

2 ∈ K .
By the first part of Observation 8, and the fact that deg(w2) = 2, we can deduce that G′′

2 ∈ {C3, B}. By Observation 8 we
may also assume that say u1 = w3.

If G′′

2 = C3 then n(G) = 10 and {u1, w2, x, v1} is a TRDS of G and so γtr(G) ≤ 4 ≤
4.10
7 =

4n
7 , a contradiction.

If G′′

2 = B then we form G′
= G − u1u3. The graph G′ is connected and claw-free. By Observation 11, we obtain a

contradiction.
Case 2.1.2.2. j = 1.

We let G′′

1 = ⟨V (P) ∪ {v, w1}⟩ and G′′

2 = G − G′′

1 . Note that G′′

2 is claw-free, connected and has minimum degree at least
two. If G′′

2 ∉ K then G′′

2 has a TRDS S2 with cardinality at most 4(n−6)
7 . If w2 ∉ S2 then {v, x, v1} ∪ S2 is a TRDS of G. If w2 ∈ S2

then {x, v1} ∪ S2 is a TRDS of G. Hence, γtr(G) ≤ |S2| + 3 ≤
4n
7 −

24
7 +

21
7 < 4n

7 which is a contradiction. Hence, G′′

2 ∈ K .
By the first part of Observation 8, and the fact that deg(w1) = 2, we can deduce that G′′

2 ∈ {C3, B}. By Observation 8 we
may also assume that say u1 = w2.

If G′′

2 = C3 then n(G) = 9 and {u1, w1, x, v1} is a TRDS of G and so γtr(G) ≤ 4 < 4.9
7 =

4n
7 .

If G′′

2 = B then we form G′
= G − u1u3. The graph G′ is connected and claw-free. By Observation 11, we obtain a

contradiction.
Case 2.2. The vertex v is adjacent to only x.

Clearly, deg(v) = 2. If x is adjacent to y then, since ⟨N(x) − {v1}⟩ is complete, we must have that v is adjacent to
y, which is a contradiction. Hence, x and y are not adjacent. It follows, since deg(x) ≥ 3, that there is a vertex w in
N(x) ∩ (V (G) − V (P) − {v}). The completeness of ⟨N(x) − {v1}⟩ also implies that N(x) = {v1, v, w}. If deg(w) ≥ 3 then the
graph G′

= G − xw is claw-free and connected. By Observation 11, we get a contradiction. So deg(w) = 2.
If y has a degree two neighbor v′

∈ V (G) − V (P) − {v, w} then, by the same argument, there is a vertex w′
∈

V (G) − V (P) − {v, w, v′
}, such that N(y) = {v2, v

′, w′
} and deg(w′) = 2. Hence, n(G) = 8. The set {x, v1, v2, y} is a

TRDS of G and so γtr(G) ≤ 4 < 4.8
7 =

4n
7 , a contradiction.
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Wemay assume that the only degree two vertex adjacent to y is v2. Note that G′

1 = ⟨V (P)∪N(x)⟩ induces a necklacewith
attachment P − x. Let G′

2 = G − G′

1 and note that since G is claw-free we have that G′

2 is connected. Also, G′

2 has minimum
degree at least two. If G′

2 ∉ K then, by Observation 6, we have a contradiction. Hence, G′

2 ∈ K .
Suppose that G′

2 ∈ K −{B}. Wemay assume that y is adjacent to say u1. If i ≥ 5 then we have, since N(y)−{v2} induces
a clique, that deg(y) = 3. Furthermore, by the first part of Observation 8, y is adjacent to say u1 and u2. Also, u2, . . . , ui, u1
is a 2-path of length greater than or equal to four. This will contradict Lemma 12. Hence, i = 3 and so n(G) = 9. The set
{x, v1, v2, y, u1} is a TRDS of G and so γtr(G) ≤ 5 < 4.9

7 =
4n
7 .

If G′

2 = B then n(G) = 11. By the second part of Observation 8, y is adjacent to u1. The set {u1, u2, u3, x, v1} is a TRDS of
G. Hence, γtr(G) ≤ 5 < 4.11

7 =
4n
7 . �

Proof of Lemma 16. If G has a 2-path of length greater than or equal to two, then, by Lemmas 12 and 15, we are done.
Hence, we may assume that G has no 2-path. Suppose, to the contrary, that G has a 2-cycle P : x, v1, v2, . . . , vj+1 = x. Let
w ∈ N(x) − {v1, vj}.

Claim 1. There are no 2-cycles on more than three vertices.

Proof. For the 2-cycle P : x, v1, v2, . . . , vj+1 = x, suppose, to the contrary, that j ≥ 3. Then ⟨{w, v1, vj, x}⟩ is a claw, a
contradiction. Hence, j = 2. �

Claim 2. No vertex in N(x) − {v1, v2} has degree two.

Proof. Suppose, to the contrary, that a vertex v ∈ N(x) − {v1, v2} has degree two. Let N(v) = {x, v′
}. By Claim 1 and the

fact that G has no 2-path, deg(v′) = 2 and N(v′) = {x, v}. Since G is claw-free we have that deg(x) = 4 and so G = B, a
contradiction. �

Case 1. deg(x) = 3.
By Claim2, deg(w) ≥ 3. Letw′, w′′

∈ N(w)−{x}. SinceG is claw-free,w′ is adjacent tow′′. Suppose first that deg(w′) = 2.
If deg(w′′) ≥ 3 then ww′w′′ is a 2-path, a contradiction. Hence, deg(w′′) = 2. It follows that n(G) = 6 and the set {x, w}

is a TRDS of G and so γtr(G) ≤ 2 < 4.6
7 =

4n
7 . Hence, deg(w′) ≥ 3 and by symmetry we have that deg(w′′) ≥ 3. We now

define G1 = ⟨{x, v1, v2, w}⟩ and G2 = G − G1. Clearly, δ(G2) ≥ 2 and G2 is claw-free and connected. If G2 ∉ K then, by
Observation 7, we get a contradiction. Hence, G2 ∈ K .

If G2 ∈ K − {C3, B} then G2 has a 2-path of length greater than three which contradicts Lemma 12.
If G2 = C3 then n(G) = 7 and {x, w,w′

} is a TRDS of G and so γtr(G) ≤ 3 < 4.7
7 =

4n
7 , which is a contradiction.

If G2 = B then n(G) = 9. Clearly, G2 has a TRDS S of cardinality at most three. The set S ∪ {x, w} is a TRDS of G and so
γtr(G) ≤ 5 < 4.9

7 =
4n
7 , which is a contradiction.

Case 2. deg(x) ≥ 4.
Case 2.1. The vertex w is adjacent to a degree two vertex v ∈ V (G) − N[x].

Let v′
∈ N(v) − {w}. If deg(v′) ≥ 3 then G has a 2-path of length two, which is a contradiction. Hence, v′ has

degree two. To avoid a 2-path of length greater than or equal to two, or a 2-cycle on more than three vertices, we must
have that N(v′) = {v, w}. If w is adjacent to a vertex w′

∈ V (G) − N[x] − {v′, v}, then ⟨{w′, v, x, w}⟩ will induce a
claw which is a contradiction. Hence, N[w] = {v, v′

} ∪ (N[x] − {v1, v2}) and so N[w] − {v, v′
} = N[x] − {v1, v2}. Let

G1 = ⟨{x, v1, v2, w, v, v′
}⟩ and G2 = G − G1. Since ⟨N(x) − {v1, v2}⟩ is complete, we must have that G2 is connected.

Case 2.1.1. δ(G2) ≤ 1.
Let w′

∈ N(x) − {v1, v2, w}. We may assume, without loss of generality, that degG2(w
′) ≤ 1. Since ⟨N(x) − {v1, v2}⟩ is

complete,we have thatN[x]−{v1, v2, w
′
} ⊆ N(w′). In addition, by Claim2,we have that degG2(w

′) = 1 and so deg(w′) = 3.

Case 2.1.1.1. w′ has a neighbor z ∈ V (G) − N[x] − {v, v′
}.

Note that, since ⟨N(x)−{v1, v2}⟩ is complete andN[w]−{v, v′
} = N[x]−{v1, v2}, wehave thatN(w′) = {w, x, z},N(x) =

{v1, v2, w,w′
} and N(w) = {v, v′, w′, x}. We let G′

1 = ⟨N[x] ∪ {v, v′
}⟩ and G′

2 = G − G′

1. Clearly, G
′

2 is connected.
Case 2.1.1.1.1. δ(G′

2) ≥ 2.
If G′

2 ∉ K , then note that G′

2 has smaller size than G and so G′

2 has a TRDS S2 of cardinality at most 4(n−7)
7 . The set

S2 ∪ {x, w,w′
} is a TRDS of G and so γtr(G) ≤ |S2| + 3 ≤

4n
7 −

28
7 +

21
7 < 4n

7 , which is a contradiction. Hence, G′

2 ∈ K .
If G′

2 ∈ K then, without loss of generality, z = u1. If G′

2 ∈ K − {C3, B} then, since N(w′) = {w, x, z}, the first part of
Observation 8 produces a contradiction.

If G′

2 = C3 then n(G) = 10. The set {x, w,w′, u1} is a TRDS of G and so γtr(G) ≤ 4 < 4.10
7 =

4n
7 , which is a contradiction.

If G′

2 = B then n(G) = 12. The set {x, w,w′, u1, u2, u3} is a TRDS of G. Hence γtr(G) ≤ 6 < 4.12
7 =

4n
7 , which is a

contradiction.
Case 2.1.1.1.2. δ(G′

2) ≤ 1.
In this case we may assume that the vertex z has degree one in G′

2. Since deg(w′) = 3, we have that G has a 2-path of
length at least two, a contradiction.
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Case 2.1.1.2. w′ has no neighbor in V (G) − N[x] − {v, v′
}.

Since ⟨N(x) − {v1, v2}⟩ is a clique and deg(w′) = 3, we have that deg(x) = 5. Let w′′
∈ N(x) − {v1, v2, w,w′

}. If
deg(w′′) = 3 then N(w′′) = {x, w,w′

} and n(G) = 8. The set {v1, v2, x, w} is a TRDS of G and so γtr(G) ≤ 4 < 4.8
7 =

4n
7 ,

which is a contradiction. Therefore, deg(w′′) ≥ 4 and so w′′ is adjacent to at least one vertex in V (G) − N[x] − {v, v′
}.

Note that the path P ′
: w′, x, v1, v2 is such that w′ and v2 both have degree at least two and deg(v1) = 2. We form

G′′

1 = ⟨{x, w′, v1, v2}⟩ and G′′

2 = G − G′′

1 . Note that δ(G′′

2) ≥ 2 and so we obtain a contradiction by Lemma 14.
Case 2.1.2. δ(G2) ≥ 2.

If G2 ∉ K then it follows that G2 has a TRDS S2 of cardinality at most 4(n−6)
7 . The set S2 ∪ {x, w} is a TRDS of G. Hence,

γtr(G) ≤ |S2| + 2 ≤
4n
7 −

24
7 +

14
7 < 4n

7 . Thus, G2 ∈ K .
Suppose that G2 ∈ K −{C3, B}. By the first part of Observation 8, and the fact that N[w]− {v, v′

} = N[x]− {v1, v2}, we
have that w and x are both adjacent to say u1 and u2. Also note that if u3 has degree two, then Gwill have a 2-path of length
at least two, a contradiction. Hence, both x and w are adjacent to u3. Since ⟨N(x) − {v1, v2}⟩ is a clique, we have that u1 and
u3 are adjacent. This is a contradiction.

If G2 = C3 then w (and x) are both adjacent to say u1. The set {x, w, u1} is a TRDS of G. Hence, γtr(G) ≤ 3 < 4.9
7 =

4n
7

which is a contradiction.
If G2 = B then n(G) = 11 and the set {x, w, u1, u2, u3} is a TRDS of G. Hence γtr(G) ≤ 5 < 4.11

7 =
4n
7 , which is a

contradiction.
Case 2.2. No vertex in N(x) − {v1, v2} has a degree two neighbor in V (G) − N[x].

Let G1 = ⟨V (P) ∪ {w}⟩ and G2 = G − G1. Note that the path P ′
: w, x, v1, v2 is such that w and v2 both have degree

at least two and deg(v1) = 2. By Lemma 14 it follows that δ(G2) ≤ 1. Since no vertex in N(x) − {v1, v2} has a degree two
neighbor in V (G) − N[x], we have that any vertex of degree at most one in G2 must be adjacent to x. Furthermore, Claim 2
implies that δ(G2) = 1. Let w′ be a degree one vertex of G2. Note that deg(w′) = 3.
Case 2.2.1. N(x) − {w, w′, v1, v2} ≠ ∅.

Let w′′
∈ N(x) − {v1, v2, w,w′

}. Hence, N(w′) = {w, x, w′′
} and deg(x) = 5. Furthermore, N(x) = {v1, v2, w

′, w,w′′
}.

Case 2.2.1.1. deg(w) = 3.
Clearly, N(w) = {w′, x, w′′

}. If deg(w′′) = 3 then n(G) = 6 and the set {x, v1, v2} is a TRDS of G. Therefore,
γtr(G) ≤ 3 < 4.6

7 =
4n
7 which is a contradiction. Hence, deg(w′′) ≥ 4. We form the graph G′ by removing, from G, the

edges xw′′ and ww′′. The graph G′ is claw-free, connected and has minimum degree at least two. Also, G′
∉ K and so G′ has

a TRDS S of cardinality at most 4n
7 . Since S is also a TRDS of G we have that γtr(G) ≤ |S| ≤

4n
7 , which is a contradiction.

Case 2.2.1.2. deg(w) ≥ 4.
By symmetry, deg(w′′) ≥ 4. We re-label w′ as w and so δ(G2) ≥ 2, which is impossible by Lemma 14.

Case 2.2.2. N(x) − {w, w′, v1, v2} = ∅.
Hence, deg(x) = 4. If deg(w) ≥ 4 then we may re-label w′ as w and so δ(G2) ≥ 2, which is impossible by Lemma 14.

Hence, deg(w) = 3. We let G′

1 = ⟨N[x]⟩ and G′

2 = G − G′

1. The graph G′

2 is claw-free.
Case 2.2.2.1. δ(G′

2) ≤ 1.
The fact that no vertex in N(x) − {v1, v2} has a degree two neighbor in V (G) − N[x], implies that there is a vertex

v ∈ V (G) − N[x], adjacent to both w and w′, that has degree three. Hence, N(w) = {v, w′, x} and N(w′) = {v, w, x}. The
graph G′

= G−wv is claw-free, connected and hasminimum degree at least two. By Observation 11, we get a contradiction.
Case 2.2.2.2. δ(G′

2) ≥ 2.
If G′

2 ∉ K then G′

2 has a TRDS S2 of cardinality at most 4(n−5)
7 . If w (w′ respectively) has a neighbor in V (G′

2) − S2, then
{x, w′

} ∪ S2 ({x, w} ∪ S2 respectively) is a TRDS of G. If w (and w′) has a neighbor in S2 then {v1, v2} ∪ S2 is a TRDS of G.
Hence γtr(G) ≤ 2 + |S2| < 4n

7 −
20
7 +

14
7 < 4n

7 , which is a contradiction. We may assume that G′

2 has a component U that
is isomorphic to a graph in K . Without loss of generality, u1 is adjacent to say w. Furthermore, the fact that deg(w) = 3
implies that N(w) = {x, w′, u1}.

If U ∈ K − {C3}, then the first part of Observation 8 implies that w is adjacent to u2. Hence, deg(w) ≥ 4 which is a
contradiction.

Suppose that U = C3. If V (G′

2) − V (U) = ∅, then n(G) = 8. The set {x, w,w′, u1} is a TRDS of G and so γtr(G) ≤

4 < 4.8
7 =

4n
7 , which is a contradiction. If V (G′

2) − V (U) ≠ ∅ then w′ is adjacent to a vertex v ∈ V (G′

2) − V (U). We let
G′′

1 = ⟨V (U) ∪ {w}⟩ and G′′

2 = G − G′′

1 . The graph G′′

2 is claw-free, has degree at least two and G′′

2 ∉ K . By Observation 7, we
get a contradiction.

Wemay assume that U = B. The second part of Observation 8 implies thatw is adjacent to say u1. If V (G′

2)−V (U) = ∅

then n(G) = 10. The set {x, w′, u3, u2} is a TRDS of G and so γtr(G) ≤ 4 < 4.10
7 =

4n
7 , which is a contradiction. If

V (G′

2) − V (U) ≠ ∅ then w′ is adjacent to a vertex v ∈ V (G′

2) − V (U). We let G′′

1 = ⟨V (U) ∪ {w}⟩ and G′′

2 = G − G′′

1 .
The graph G′′

2 is claw-free, has degree at least two and G′′

2 ∉ K . This contradicts the second part of Observation 10. �

Proof of Lemma 17. Consider the 2-path P : x, v1, y and suppose, to the contrary, that H(P) ≠ ∅. Let w ∈ H(P). Define
G1 = ⟨V (P) ∪ {w}⟩ and G2 = G − G1. Since the path P ′

: w, y, v1, x is such that x and w have degree at least two and
deg(v1) = 2, we may apply Lemma 14 and deduce that δ(G2) ≤ 1. Let v be a vertex such that degG2(v) ≤ 1.



E.J. Joubert / Discrete Applied Mathematics 159 (2011) 2078–2097 2089

Case 1: degG2(v) = 0.
Since deg(v) ≥ 2, we must have that v is adjacent to at least two vertices in the set {x, y, w}. It follows, without loss

of generality, that v is adjacent to x. Since ⟨N[x] − {v1, y}⟩ is complete, we must have that {w, x} ⊆ N(v) ⊆ {x, y, w} and
{v, w, v1} ⊆ N(x) ⊆ {v, w, v1, y}. We form the graph G′ by removing, from G, the edge xw. Clearly, G′ is connected and
δ(G′) ≥ 2. If G′ is claw-free then, by Observation 11, we are done. So we may assume that G′ has a claw.

Let ⟨{w4, w3, w2, w1}⟩ be a claw of G′. We may also assume that w2 = x and w3 = w. Clearly, w1 ∈ {v, y}. If w1 = v
then w4 = y. But then w4 is adjacent to w3, which is a contradiction. Hence, w1 = y. If w4 ∈ {v1, v} then w4 is adjacent to
w2 which is impossible. Hence, w4 ∈ V (G) − V (P) − {v, w}. Since ⟨N[y] − {v1, x}⟩ is complete, we must have that w4 is
adjacent to w3 which is a contradiction.

We may assume that no vertex of G2 has degree 0.
Case 2: degG2(v) = 1.
Case 2.1. The vertex v is adjacent to x.

Since ⟨N[x] − {v1, y}⟩ is a clique, we have that v is adjacent to w. Furthermore, v has exactly one neighbor z in
V (G) − V (P) − {w, v}. Hence, {x, w, z} ⊆ N(v) ⊆ {x, y, w, z} and deg(w) ≥ 3.

If deg(w) = 3 then N(w) = {x, y, v} and, since ⟨N[x] − {v1, y}⟩ and ⟨N[y] − {v1, x}⟩ are complete, we have that
{v, w, v1} ⊆ N(x) ⊆ {v, w, y, v1} and {v1, w} ⊂ N(y) ⊆ {v, w, x, v1}. The fact that deg(y) ≥ 3, implies that either vy
or xy exists. We form the graph G′ by removing, from G, the edges vy (if it exists) and xy (if it exists). If G′ has a claw then,
since ⟨V (P) ∪ {v, w}⟩G′ and ⟨V (G) − V (P) − {w}⟩G′ are claw-free in G′, the center of this claw must be v. But then G has
a claw which is a contradiction. Hence, G′ is claw-free. Furthermore, δ(G′) ≥ 2 and G′

∉ K . The graph G′ has a TRDS S of
cardinality at most 4n

7 . Hence, γtr(G) ≤ |S| ≤
4n
7 which is a contradiction. We may therefore assume that deg(w) ≥ 4.

Let G′

1 = ⟨{x, y, v1, v}⟩ and G′

2 = G − G′

1. From Lemma 14 it follows that δ(G′

2) ≤ 1. Let v′ be a vertex of G′

2 that has
degree at most one. If degG′

2
(v′) = 0 then, since deg(w) ≥ 4, we have that v′

≠ w and v′ is adjacent to two vertices in
the set {x, y, v}. Since both ⟨N[x] − {v1, y}⟩ and ⟨N[y] − {v1, x}⟩ are complete, we have that v′ is adjacent to w. But then
degG′

2
(v′) ≥ 1, a contradiction. It follows that degG′

2
(v′) = 1.

We claim that v′
∈ {z, w}. Suppose, to the contrary, that v′

∉ {z, w}. Note that v′ is adjacent to either x or y. If v′ is
adjacent to x then, since ⟨N[x] − {v1, y}⟩ is complete and {x, w, z} ⊆ N(v) ⊆ {x, y, w, z}, we have that v′

∈ {w, z} which is
a contradiction. Hence, v′ is adjacent to y and not to x. The fact that ⟨N[y] − {v1, x}⟩ is complete implies that N(v′) = {y, w}

and so degG2(v
′) = 0, which is a contradiction. Hence, v′

∈ {z, w}.
Case 2.1.1. The vertex z is adjacent to x.

If N(x) ∩ (V (G) − V (P) − {w, v, z}) has a vertex u, then, since ⟨N[x] − {v1, y}⟩ is complete, we will have that u ∈ N(v).
Hence, degG2(v) ≥ 2 which is a contradiction. It immediately follows that {v1, w, v, z} ⊆ N(x) ⊆ {v1, w, v, z, y}. Since
⟨N[x] − {v1, y}⟩ is complete, we have that w is adjacent to z.
Case 2.1.1.1. v′

= z.
Note that {w, v, x} ⊆ N(z) ⊆ {w, v, x, y}. If degG′

2
(w) = 1 thenN(w) = {x, y, z, v} and ifN(y)∩(V (G)−V (P)−{w, v, z})

has a vertex y′ then, since ⟨N[y] − {v1, x}⟩ is complete, we will have that y′
∈ N(w) which is a contradiction. Hence,

N(y) ⊆ {x, w, v, z, v1} and so n(G) = 6. The set {x, v1, y} is a TRDS of G and so γtr(G) ≤ 3 < 4.6
7 =

4n
7 , a contradiction. It

follows that degG′
2
(w) ≥ 2 and so w has a neighbor in V (G)−V (P)−{v, z, w}. We let G′′

1 = ⟨{x, v1, z, v}⟩ and G′′

2 = G−G′′

1 .
Note that G′′

2 is connected.
If δ(G′′

2) = 1 then the fact that w has a neighbor in V (G) − V (P) − {v, z, w}, implies that degG′′
2
(y) = 1 and so

{w, v1} ⊂ N(y) ⊆ {w, v, z, v1, x}. We form the graph G′ by first removing, from G, the edges between w and the
vertices v, z and x and then removing the possible edges between y and the vertices v, z and x. If G′ has a claw then, since
⟨V (P)∪{z, v, w}⟩G′ and ⟨V (G)−V (P)−{z, v}⟩G′ are claw-free in G′, the center of this clawmust bew. But then G has a claw,
which is a contradiction. The graph G′ is therefore claw-free and δ(G′) ≥ 2. Furthermore, G′

∉ K and so G′ has a TRDS S of
cardinality at most 4n

7 . It follows that γtr(G) ≤ |S| ≤
4n
7 , which is a contradiction.

Hence, δ(G′′

2) ≥ 2. If G′′

2 ∉ K then, by Observation 7, we are done. Hence, G′′

2 ∈ K .
If G′′

2 ∈ K − {C3, B} then suppose, without loss of generality, that u1 = y and u2 = w. The fact that ⟨N[y] − {v1, x}⟩ is
complete will imply that u2 is adjacent to ui, a contradiction.

If G′′

2 = C3 then n(G) = 7. The set {x, v1, y} is a TRDS of G. Hence, γtr(G) ≤ 3 < 4.7
7 =

4n
7 which is a contradiction.

If G′′

2 = B then n(G) = 9. The set {x, v1, u1, u2, u3} is a TRDS of G. Hence, γtr(G) ≤ 5 < 4.9
7 =

4n
7 which is a contradiction.

Case 2.1.1.2. v′
= w.

Clearly, N(w) = {x, v, z, y}. The fact that ⟨N[y]− {v1, x}⟩ is complete must imply that {w, v1} ⊂ N(y) ⊆ {x, v1, z, v, w}.
We form the graph G′ by first removing, from G, the possible edges between y and the vertices v, z and x and then removing
the edges xw and wz. If G′ has a claw then, since ⟨V (P) ∪ {z, v, w}⟩G′ and ⟨V (G) − V (P) − {v, w}⟩G′ are claw-free in G′,
the center of this claw must be z. But then G will contain a claw, a contradiction. Hence, the graph G′ is claw-free and
δ(G′) ≥ 2. Furthermore, G′

∉ K and so G′ has a TRDS S of cardinality at most 4n
7 . It follows that γtr(G) ≤ |S| ≤

4n
7 , which is

a contradiction.
Case 2.1.2. The vertex z is not adjacent to x.

Since ⟨N[x] − {v1, y}⟩ is complete and {x, w, z} ⊆ N(v) ⊆ {x, y, w, z}, we have that {v1, v, w} ⊆ N(x) ⊆ {v1, v, y, w}.
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Claim 1. z is adjacent to w.

Proof. We form the graph G′ by removing, from G, the edges vw, xw and vy (if it exists). Since deg(w) ≥ 4, we have that
δ(G′) ≥ 2. Suppose first that G′ is claw-free. If G′

∉ K then we have that G′ has a TRDS S of cardinality at most 4n
7 . It follows

that γtr(G) ≤ |S| ≤
4n
7 , a contradiction. We may therefore assume that G′

∈ K − {C3}.
If G′

= B then it is easy to verify that joining at least one pair of non-adjacent vertices of B will result in a graph that
has a TRDS of cardinality at most 4n

7 . Hence, G has a TRDS of cardinality at most 4n
7 which is a contradiction.

If G′
∈ K − {C3, B} then G has a Hamiltonian cycle. Recall that G contains a triangle. If at least one edge is added to a

graph in K − {C3, B} such that the resulting graph contains a triangle, then it is easy to verify that this resulting graph has
a TRDS of cardinality at most 4n

7 . Hence, G has a TRDS of cardinality at most 4n
7 which is a contradiction.

We may assume that G′ is not claw-free. Let ⟨{w4, w3, w2, w1}⟩ be a claw in G′. Suppose first, without loss of generality,
that w2 = x and w3 = w. Since {v1, v, w} ⊆ N(x) ⊆ {v1, v, y, w} and {x, w, z} ⊆ N(v) ⊆ {x, y, w, z}, we have
that w1 = y and so y and x are adjacent. If w4 = v1 then w4 and w2 are adjacent, which is a contradiction. Hence,
w4 ∈ V (G)−V (P)−{w, v}. Since ⟨N[y]−{v1, x}⟩ is complete,wemust have thatw4 is adjacent tow3 which is a contradiction.
We may assume that w2 = v and that w3 ∈ {y, w}.

If w3 = w then the fact that {x, w, z} ⊆ N(v) ⊆ {x, y, w, z}, implies that w1 = z and so z is adjacent to w.
Hence, w2 = v and w3 = y. Clearly, w1 ∈ {x, z}. Suppose first that w1 = x. Then x is adjacent to y. The fact that
{v1, v, w} ⊆ N(x) ⊆ {v1, v, y, w}, implies that w4 = v1. But then w4 is adjacent to w3, a contradiction. Hence, w1 = z
and so z must be adjacent to y. Since ⟨N[y] − {v1, x}⟩ is complete, we have that z is adjacent to w. �

Case 2.1.2.1. v′
= z.

Clearly, deg(z) = 2 or deg(z) = 3 and N(z) = {v, w, y}. If w has a neighbor w′ in V (G) − V (P) − {w, v, z},
then ⟨{z, x, w′, w}⟩ will induce a claw which is a contradiction. Hence N(w) = {v, z, x, y} and since ⟨N[y] − {v1, x}⟩ is
complete, we have that {v1, w} ⊂ N(y) ⊆ {v, z, v1, x, w}. Hence, n(G) = 6 and the set {x, w} is a TRDS of G. Hence,
γtr(G) ≤ 2 < 4.6

7 =
4n
7 which is a contradiction.

Case 2.1.2.2. v′
= w.

Clearly, N(w) = {x, y, v, z}. Let G′
= G − xw. It follows that δ(G′) ≥ 2 and if G′ is claw-free then, by Observation 11, we

are done. Hence, G′ is not claw-free. Let ⟨{w4, w3, w2, w1}⟩ be a claw in G′. We may assume, without loss of generality, that
x = w2 and w = w3. Since z is not adjacent to x and {v1, v, w} ⊆ N(x) ⊆ {v1, v, y, w}, we have that w1 ∈ {y, v}.

Suppose that w1 = v. If w4 = y then w4 is adjacent to w3, a contradiction. Hence, w4 = z. But then w4 is adjacent
to w3, a contradiction. Hence, w1 = y and y is adjacent to x. If w4 = v1 then w2 is adjacent to w4, a contradiction. Hence,
w4 ∈ V (G)−V (P)−{w}. Since ⟨N[y]−{v1, x}⟩ is complete, wemust have thatw4 is adjacent tow3 which is a contradiction.
Case 2.2 The vertex v is not adjacent to x.

We may assume, by symmetry, that any vertex of G2 that has degree at most one, is adjacent to neither x nor y. Hence, v
is not adjacent to y. Clearly, deg(v) = 2. Let z ∈ N(v)−{w}. Since G has no 2-paths of length greater than two we have that
deg(z) ≥ 3, or deg(z) = 2 and N(z) = {w, v}. If N(x) ∩ (V (G) − V (P)) − {w} = N(y) ∩ (V (G) − V (P)) − {w} = ∅ then it
follows that N(x) = {v1, y, w} and N(y) = {v1, x, w}. The graph G′

= G− wy is claw-free and δ(G′) ≥ 2. By Observation 11
we are done. Hence, N(x) ∩ (V (G) − V (P)) − {w} ≠ ∅ or N(y) ∩ (V (G) − V (P)) − {w} ≠ ∅.
Claim 2. If u is adjacent to either x or y and u ∉ {z, w}, then u ∈ H(P).

Proof. Suppose, without loss of generality, that u is adjacent to x and u ∉ {z, w}. Since ⟨N[x]−{v1, y}⟩ is complete, we have
that u is adjacent to w. If z = y (z = x respectively) then v is adjacent to y (x respectively), a contradiction. The fact that
⟨{v, y, u, w}⟩ does not induce a claw, implies that u is also adjacent to y. Hence, u ∈ H(P) and our claim is verified. �

Case 2.2.1. z is adjacent to either x or y.
Without loss of generality, suppose that z is adjacent to x. Since ⟨N[x]−{v1, y}⟩ is complete, we have that z is adjacent to

w. Note that if z (w respectively) has a neighbor u in V (G)−N[x]−N[y]−{v}, then ⟨{x, v, u, z}⟩ (⟨{x, v, u, w}⟩ respectively)
induces a claw which is a contradiction. Hence, N(z) ∩ (V (G) − N[x] − N[y]) = N(w) ∩ (V (G) − N[x] − N[y]) = {v}. Let
G′

1 = ⟨{v, z, x, v1}⟩ and G′

2 = G − G′

1. Since deg(v1) = deg(v) = 2 we have, by Lemma 13, that δ(G′

2) ≤ 1.
Let v′ be a vertex of G′

2 that has degree at most one. We claim that v′
∈ {y, w}. Suppose, to the contrary, that v′

∉ {y, w}.
If v′ is adjacent to x then, since ⟨N(x)−{v1, y}⟩ is complete, we have that v′ is adjacent tow and z. Since v′

∉ {z, w}we have,
by Claim 2, that v′ is adjacent to y. Hence, degG′

2
(v′) ≥ 2 which is a contradiction. We may assume that v′ is not adjacent to

x. Hence, v′ is adjacent to z. Since N(z) ∩ (V (G) − N[x] − N[y]) = {v}, we can conclude that v′
∈ N(y). Claim 2 implies that

v′ must be adjacent to xwhich is impossible. We can conclude that v′
∈ {y, w}.

If v′
= y then {v1, w} ⊂ N(y) ⊆ {v1, x, z, w}. If x is adjacent to a vertex u ∈ V (G) − V (P) − {z, w, v}, then since

u ∉ {z, w} we have, by Claim 2, that u is adjacent to y and so this contradicts the fact that N(y) ⊆ {v1, x, z, w}. Hence,
{v1, z, w} ⊆ N(x) ⊆ {v1, y, z, w} and {w, v, x} ⊆ N(z) ⊆ {y, x, v, w}. Note that z is adjacent to x and degG2(z) = 1. This
contradicts our earlier assumption.

If v′
= w then N(w) = {x, y, v, z}. Since ⟨N[x] − {v1, y}⟩ and ⟨N[y] − {v1, x}⟩ are complete, we must have that

{v1, w} ⊂ N(y) ⊆ {v1, x, z, w} and {v1, w, z} ⊆ N(x) ⊆ {v1, y, z, w}. We have, once more, that z is adjacent to x and
degG2(z) = 1, contradicting our earlier assumption.
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Case 2.2.2. z is adjacent to neither x nor y.
By Claim2, y (x respectively) is adjacent to every vertex ofN(x) (N(y) respectively). Hence,N(x)∩(V (G)−V (P)) = N(y)∩

(V (G)−V (P)). Furthermore, since ⟨N(x)−{v1, y}⟩ and ⟨N(y)−{v1, x}⟩ are complete, we have that ⟨N(x)∪N(y)−{v1, x, y}⟩
is complete. Since N(x) ∩ (V (G) − V (P)) − {w} ≠ ∅ or N(y) ∩ (V (G) − V (P)) − {w} ≠ ∅ we let, without loss of
generality, u be a vertex in N(x) ∩ (V (G) − V (P) − {w}). The vertex u is adjacent to w and y. Note that if w is adjacent
to a vertex w′ in V (G) − N[x] − N[y] − {v, z}, then ⟨{x, w′, v, w}⟩ induces a claw which is a contradiction. Hence,
N(w)∩ (V (G)−N[x]−N[y]) ⊆ {z, v}. If x and y are not adjacent then ⟨{x, y, v, w}⟩ induces a clawwhich is a contradiction.
Hence, ⟨N(w) − {z, v}⟩ is complete.
Case 2.2.2.1. deg(z) = 2.

Since G has no 2-paths of length greater than two, we have that N(z) = {w, v}. Due to the fact that ⟨N(x) ∪ N(y) −

{v1, x, y}⟩ is complete andN(w)∩(V (G)−N[x]−N[y]) ⊆ {z, v}, we can deduce thatN(w) = N[x]∪N[y]∪{z, v}−{v1, w}.
LetG′

1 = ⟨V (P)∪{w, z, v}⟩ and note thatG′

1 induces a necklacewhere the vertices of the attachment are the vertices of V (P).
Let G′

2 = G− G′

1. If δ(G
′

2) ≤ 1 then there will be a vertex v′, of G′

2, of degree at most one. Furthermore, since deg(v′) ≥ 2 we
will have that v′ is adjacent to at least one vertex in {x, y}. Hence, degG2(v

′) ≤ 1 and this contradicts our earlier assumption.
Hence, δ(G′

2) ≥ 2.
We first claim that G′

2 is connected. Suppose, to the contrary, that G′

2 has two componentsU andU′. Since G is connected
and N(w) = N[x] ∪ N[y] ∪ {z, v} − {v1, w}, we have that U (U′ respectively) has a vertex u′ (u′′ respectively) in
⟨N(x) ∪ N(y) − {v1, w, x, y}⟩. Since ⟨N(x) ∪ N(y) − {v1, x, y}⟩ is complete we have that ⟨N(x) ∪ N(y) − {v1, w, x, y}⟩ is
complete and so u′ is adjacent to u′′ which is a contradiction. Hence, G′

2 is connected.
If G′

2 ∉ K then, by Observation 6, we are done. Hence, G′

2 ∈ K .
If G′

2 = C3, then n(G) = 9. Without loss of generality, u1 is adjacent to x or w and so we have that the set {x, w, u1} is a
TRDS of G and so γtr(G) ≤ 3 < 4.9

7 =
4n
7 , which is a contradiction.

IfG′

2 = B then n(G) = 11. The set {x, w, u1, u2, u3} is a TRDS ofG and so γtr(G) ≤ 5 < 4.11
7 =

4n
7 , which is a contradiction.

Hence, G′

2 ∈ K − {C3, B}. Note that, without loss of generality, u1 is adjacent to some vertex in {x, y, w}. Since
N(w) = N[x] ∪ N[y] ∪ {z, v} − {w, v1} and N(x) ∩ (V (G) − V (P)) = N(y) ∩ (V (G) − V (P)), we have that x, y and w
are adjacent to say u1. Hence, we can say that any vertex of G′

2 that is adjacent to a vertex in {x, y, w} is adjacent to x, y and
w. Hence, Observation 8 implies, without loss of generality, that u2 is adjacent to x, y and w. Furthermore, if v′′

∈ {x, y, w}

is adjacent to a vertex uj, for 3 ≤ j ≤ i− 1, then uj ∈ N(x) and since ⟨N[x] − {v1, y}⟩ is complete, we have that uj and u1 are
adjacent which is a contradiction. Similarly, if v′′ is adjacent to ui then ui ∈ N(x) and so u2 and ui will be adjacent which is a
contradiction. Hence, P ′

: u2, . . . , ui, u1 is a 2-path with length greater than three which, by Lemma 12, is a contradiction.
Case 2.2.2.2. The vertex deg(z) ≥ 3.

Let G′

1 = ⟨{v, w, x, v1}⟩ and G′

2 = G− G′

1. If δ(G
′

2) ≥ 2 then, by Lemma 13, we are done. We may assume that δ(G′

2) ≤ 1.
Let v′ be the vertex of G′

2 that has degree at most one. We claim that v′
∈ {y, z}. Suppose, to the contrary, that v′

∉ {y, z}.
Since ⟨N[x] − {v1, y}⟩ is complete and N(w) ∩ (V (G) − N[x] − N[y]) ⊆ {z, v}, we have that N(v′) = {w, x, y}. But then
degG2(v

′) = 0, a contradiction. Hence, v′
∈ {y, z}.

Suppose that v′
= y. Clearly, N(y) = {v1, u, w, x}. Since N(x) ∩ (V (G) − V (P)) = N(y) ∩ (V (G) − V (P)), we can deduce

that N(x) = {v1, u, w, y}. Since N(w) ∩ (V (G) − N[x] − N[y]) ⊆ {z, v}, we have that {u, x, y, v} ⊆ N(w) ⊆ {u, x, y, v, z}.
We form G′ by removing, from G, the edges wy and uy. The graph G′ is such that δ(G′) ≥ 2 and G′

∉ K . If G′ is claw-free
then G′ has a TRDS S of cardinality at most 4n

7 . It follows that γtr(G) ≤ |S| ≤
4n
7 , a contradiction. Hence, G′ has a claw

⟨{w4, w3, w2, w1}⟩. Clearly, w2 = y and w3 ∈ {w, u}.
If w3 = u then since N(y) = {v1, u, w, x}, we have that w1 = x. Since N(x) = {v1, u, w, y} we have that w4 ∈ {v1, w}. If

w4 = v1 then w4 is adjacent to w2, a contradiction. If w4 = w then w4 is adjacent to w3, a contradiction.
Hence, w3 = w. Since N(y) = {v1, u, w, x} and N(x) = {v1, u, w, y}, we have that w1 = x and w4 ∈ {v1, u}. If w4 = v1

then w4 is adjacent to w2, a contradiction. If w4 = u then w4 is adjacent to w3, a contradiction.
Hence v′

= z, deg(z) = 3 and z is adjacent to v and w. The fact that N(w) ∩ (V (G) −N[x] −N[y]) ⊆ {z, v}, implies that
N(w) = N[x] ∪ N[y] ∪ {z, v} − {w, v1}.
Case 2.2.2.2.1. z is adjacent to a vertex in N(x) ∪ N(y) − {w, v1, x, y}.

Without loss of generality, z is adjacent to say u. Hence, N(z) = {w, u, v}. Let G′
= G − uz. Clearly, G′ is connected and

δ(G′) ≥ 2. If G′ is claw-free then, by Observation 11, we are done. Hence, G′ has a claw ⟨{w4, w3, w2, w1}⟩. Furthermore,
w2 = u and w3 = z. Since N(z) = {w, u, v}, we must have that w1 = w. Furthermore, w4 ∈ N[x] ∪ N[y] ∪ {v} − {w, v1}.
If w4 = v, then w4 and w3 will be adjacent which is a contradiction. Hence, w4 ∈ N[x] ∪ N[y] − {w, v1}. The fact that
⟨N(w) − {z, v}⟩ is complete, implies that w4 is adjacent to w2 which is a contradiction.
Case 2.2.2.2.2. z is not adjacent to any vertex in N(x) ∪ N(y) − {v1, w, x, y}.

Wemay assume that z has a neighbor z ′ in V (G)−N[x]−N[y]−{v, z}. Hence,N(z) = {w, v, z ′
}. Let G′

= G−wz. Clearly,
G′ is connected and δ(G′) ≥ 2. IfG′ is claw-free then, byObservation 11,we are done. Hence,G′ has a claw ⟨{w4, w3, w2, w1}⟩.
Furthermore, w2 = w and w3 = z. Clearly, w1 = z ′. But since N(w) = N[x] ∪ N[y] ∪ {z, v} − {w, v1}, we have that w1
cannot be adjacent to w2 which is impossible. �

Proof of Lemma 18. Suppose, to the contrary, thatGhas a 2-path P : x, v1, y.Wemay assume, by Lemma17, thatH(P) = ∅.
If x is adjacent to y then, since H(P) = ∅, we have that the graph G′

= G − xy is claw-free. Furthermore, G′ is connected
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and δ(G′) ≥ 2 and so, by Observation 11, we are done. Thus, x is not adjacent to y. We may assume, henceforth, that for any
2-path of length two, the end vertices are not adjacent and the only vertex that is adjacent to both end vertices is the degree
two vertex on the path. The proof of Lemma 18 will follow from a series of claims.
Claim 1. The only degree two vertex adjacent to x (y respectively) is v1.

Proof. Suppose, without loss of generality, that u is a degree two vertex in N(x)−{v1}. Since deg(x) ≥ 3, there is a vertex v
in N(x) − {v1, u}. Furthermore, the fact that ⟨N(x) − {v1}⟩ is complete must imply that N(u) = {v, x} and N(x) = {v, u, v1}.
If deg(v) ≥ 3 then the path P ′

: x, u, v is a 2-path of length two such that x is adjacent to v. This contradicts our earlier
assumption. Hence, deg(v) = 2. Define G1 = ⟨{u, v, x, v1}⟩ and G2 = G − G1. Observe that δ(G2) ≥ 2. This contradicts
Lemma 14. �

Let u be an arbitrary vertex in N(x) − {v1}. Define G1 = ⟨{y, u, x, v1}⟩ and G2 = G − G1. We have the following:
Claim 2. If no neighbor of y has degree one in G2, then at least one of the following holds:

1. There is a vertex in N(x) − {v1, u} that has degree one in G2.
2. There are two adjacent degree two vertices in V (G) − N[x] − N[y], both being adjacent to u.

Proof. Suppose that no neighbor of y has degree one in G2. By Lemma 14, we must have that δ(G2) ≤ 1. Let v be a vertex
of G2 that has degree at most one. If v ∈ N(x) − {v1, u} then by Claim 1, and since H(P) = ∅, we have that degG2(v) = 1.
Hence, we are done.

It follows that v ∈ V (G)−N[x]−N[y] and deg(v) = 2. Let z ∈ N(v)−{u}. If deg(z) = 2, then, since G has no 2-paths of
length greater than two, we have that z is adjacent to u and so we are done. Hence, deg(z) ≥ 3. Let G′

1 = ⟨{u, v, x, v1}⟩ and
G′

2 = G−G′

1. By Lemma 13 we have that δ(G′

2) ≤ 1. Let v′ be a vertex of G′

2 that has degree at most one. Since ⟨N(y) − {v1}⟩

is complete and deg(y) ≥ 3, we have that v′
∈ N(x) − {v1, u} or v′

∈ V (G) − N[x] − N[y] − {v}.
Case 1. v′

∈ N(x) − {v1, u}.
If v′

≠ z then the fact that v′ is not adjacent to y must imply that degG2(v
′) ≤ 1. If degG2(v

′) = 0 then deg(v′) = 2,
which, by Claim 1, is a contradiction. Hence, degG2(v

′) = 1 and sowe are done. Hence, v′
= z. Note that the path P ′

: u, v, v′

is a 2-path of length two such that x ∈ H(P ′). This contradicts Lemma 17.
Case 2. v′

∈ V (G) − N[x] − N[y] − {v}.
If v′ is adjacent to v but not to u, then deg(v′) = 2 and v′

= z and so we contradict the fact that deg(z) ≥ 3. Hence,
v′ is adjacent to u. If v′ is not adjacent to v then ⟨{x, v, v′, u}⟩ is a claw. Hence, v′ is adjacent to v and so v′

= z. The path
P ′

: u, v, z is a 2-path of length two such that u and z are adjacent. This contradicts our earlier assumption.
This completes the proof of our claim. �

Case 1. deg(x) ≥ 4.
Let u be an arbitrary vertex of N(x) − {v1}. Let v, w ∈ N(x) − {v1, u}. Consider, once again, the graph G2. By Lemma 14

we have that δ(G2) ≤ 1.
Claim 3. If G2 has no degree one vertex in N(y) − {v1}, then G2 has no degree one vertex in N(x) − {v1, u}.

Proof. Suppose that G2 has no degree one vertex in N(y) − {v1}. Suppose, to the contrary, that say v has degree one in G2.
Since ⟨N(x) − {v1}⟩ is complete, we have that N(v) = {w, x, u} and N(x) = {u, v, w, v1}. Define G′

1 = ⟨{v, y, x, v1}⟩ and
G′

2 = G − G′

1. By Lemma 14 we have that δ(G′

2) ≤ 1. Since v is not adjacent to any vertex in V (G) − N[x] − {y} we have, by
Claim 1, that no neighbor of y has degree at most one in G′

2. Furthermore, Claim 2 implies, without loss of generality, that
degG′

2
(w) = 1 and so N(w) = {v, u, x}. Define the graph G′

= G − xu. The graph G′ has minimum degree at least two and
is connected. If G′ is claw-free then, by Observation 11, we are done.

Hence, G′ has a claw ⟨{w4, w3, w2, w1}⟩. Clearly, w2 = x and w3 = u. Furthermore, since N(x) = {u, v, w, v1} we have
that w1 ∈ {v, w}. If w1 = v (w1 = w respectively) then since N(w) = {v, u, x} (N(v) = {w, x, u} respectively) we have
that w4 = w (w4 = v respectively). In both cases w4 is adjacent to w3, a contradiction. �

Let u′ and v′ be two vertices of N(y) − {v1}. Let z be an arbitrary vertex in {u, v, w} and let z ′
∈ {u, v, w} − {z}.

Case 1.1. deg(y) = 3 and neither u′ nor v′ is adjacent to a vertex in V (G) − N[x] − N[y].
Let G′

1 = ⟨{u′, v′, y, v1}⟩ and G′

2 = G−G′

1. The graph G′

2 has minimum degree at least two, is claw-free and is connected.
Furthermore, G′

2 ∉ K . By Observation 7 we are done.
Case 1.2. deg(y) ≥ 4 or deg(y) = 3 and at least one vertex in {u′, v′

} is adjacent to a vertex in V (G) − N[x] − N[y].
Suppose first that deg(y) = 3. If the graph G − ⟨{z, y, x, v1}⟩ has no degree one vertex in N(y) − {v1} for every

z ∈ {u, v, w}, then neither G − ⟨{u, y, x, v1}⟩ nor G − ⟨{v, y, x, v1}⟩ has a degree one vertex in N(y) − {v1}. If the graph
G−⟨{z, y, x, v1}⟩ has a degree one vertex inN(y)−{v1} then,without loss of generality, u′ has degree one inG−⟨{z, y, x, v1}⟩

and so N(u′) = {z, y, v′
}. This implies that u′ has no neighbor in V (G) − N[x] − N[y]. Hence, v′ must have a neighbor in

V (G)−N[x]−N[y] and {y, u′
} ⊂ N(v′). It follows that for all z ′

∈ {u, v, w}− {z}, we have that the graph G−⟨{z ′, y, x, v1}⟩

has no degree one vertex inN(y)−{v1}. Hencewemay assume, without loss of generality, that neither G−⟨{u, y, x, v1}⟩ nor
G−⟨{v, y, x, v1}⟩ has a degree one vertex in N(y)−{v1}. If deg(y) ≥ 4 then neither G−⟨{u, y, x, v1}⟩ nor G−⟨{v, y, x, v1}⟩

has a degree one vertex in N(y) − {v1}.
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By Claims 2 and 3, we have that u is adjacent to two adjacent degree two vertices u′′ and u′′′ in V (G) − N[x] − N[y].
If u is adjacent to some vertex w′ in V (G) − N[x] − {y}, then ⟨{w′, x, u′′, u}⟩ is a claw which is a contradiction. Hence,
N(u) = {u′′, u′′′

} ∪ N[x] − {v1, u}. By the same argument, v is adjacent to two adjacent degree two vertices v′′ and v′′′ in
V (G) − N[x] − N[y] − {u′′, u′′′

}. Furthermore, N(v) = {v′′, v′′′
} ∪ N[x] − {v, v1}.

Let G′

1 = ⟨{u, v, u′′, u′′′, v′′, v′′′
}⟩ and G′

2 = G − G′

1. If δ(G′

2) ≥ 2 then note that G′

2 ∉ K . Hence, G′

2 has a TRDS S of
cardinality at most 4(n−6)

7 . The set S ∪ {u, v} is a TRDS of G and so γtr(G) ≤ |S| + 2 ≤
4n
7 −

24
7 +

14
7 ≤

4n
7 , a contradiction.

Thus, δ(G′

2) ≤ 1. Clearly, degG′
2
(w) ≤ 1 and so N(w) = {v, x, u}. Note that w has degree one in G − ⟨{u, y, x, v1}⟩ and, by

Claim 1, we have that no neighbor of y has degree one in G − ⟨{u, y, x, v1}⟩. This contradicts Claim 3.
Case 2. deg(x) = 3.

By symmetry it follows that deg(y) = 3. Let u, v ∈ N(x) − {v1} and u′, v′
∈ N(y) − {v1}. Furthermore, N(x) = {u, v, v1}

and N(y) = {u′, v′, v1}.
Claim 4. Every vertex in N(x) ∪ N(y) − {v1} has at least one neighbor in V (G) − N[x] − N[y].

Proof. Suppose, to the contrary, that say u is adjacent to no vertex in V (G) − N[x] − N[y]. By Claim 1 and the fact that
⟨N(x)−{v1}⟩ is complete, we have that {x, v} ⊂ N(u) ⊆ {v, x, v′, u′

}. Suppose that u is adjacent to say z, where z ∈ {u′, v′
}.

If z is adjacent to some vertex w in V (G) − N[x] − N[y], then ⟨{u, y, w, z}⟩ is a claw which is a contradiction. Hence, z is
adjacent to no vertex in V (G) − N[x] − N[y].
Case 1. u is adjacent to u′ and v′.

It immediately follows that neither u′ nor v′ is adjacent to any vertex in V (G)−N[x]−N[y]. Let G′

1 = ⟨{u′, v′, y, v1}⟩ and
G′

2 = G−G′

1. The graph G′

2 hasminimumdegree at least two, is claw-free and is connected. If G′

2 ∉ K then, by Observation 7,
we are done. It follows that G′

2 ∈ K . Since x lies on a triangle, we have that G′

2 ∈ {C3, B}.
If G′

2 = C3 then n(G) = 7 and the set {x, y, v1} is a TRDS of G and so γtr(G) ≤ 3 < 4.7
7 =

4n
7 , which is a contradiction.

If G′

2 = B then n(G) = 9 and the set {u1, u2, u3, y, v1} is a TRDS of G and so γtr(G) ≤ 5 < 4.9
7 =

4n
7 , which is a

contradiction.
Case 2. u is adjacent to say u′ and not to v′.

Clearly, N(u) = {u′, x, v} and by symmetry, we have, by the previous case, that N(u′) = {u, y, v′
}. Let G′

= G − uu′. The
graph G′ has minimum degree at least two and is connected. If G′ is claw-free then, by Observation 11, we are done. Hence,
G′ has a claw ⟨{w4, w3, w2, w1}⟩. Clearly, w2 = u and w3 = u′. Hence, w1 ∈ {x, y, v, v′

}. But then w1 cannot be adjacent to
both w2 and w3, a contradiction. �

Claim 5. Every vertex in N(x) ∪ N(y) − {v1} has exactly one neighbor in V (G) − N[x] − N[y].

Proof. By Claim 4we have that every vertex in N(x)∪N(y)−{v1} has at least one neighbor in V (G)−N[x]−N[y]. Suppose
that u has at least two neighbors in V (G) − N[x] − N[y]. Define G′

1 = ⟨{v, x, y, v1}⟩ and G′

2 = G − G′

1. Note that the graph
G′

2 has no degree one vertex in N(y) − {v1}. As u has at least two neighbors in V (G) − N[x] − N[y], we have that u does
not have degree one in G′

2 and so, by Claim 2, we have that v is adjacent to two adjacent degree two vertices v′′ and v′′′ in
V (G) − N[x] − N[y]. Since v has two neighbors in V (G) − N[x] − N[y], we have, by the same argument, that u is adjacent
to two degree two vertices u′′ and u′′′ in V (G) − N[x] − N[y]. Furthermore, if u (v respectively) is adjacent to a vertex w in
V (G) − N[x] − {y, v′′, v′′′, u′′, u′′′

} then ⟨{u′′, w, x, u}⟩ (⟨{v′′, w, x, v}⟩ respectively) induces a claw, a contradiction. Hence,
N(u) = {u′′, u′′′, v, x} and N(v) = {v′′, v′′′, u, x}.

We define G′′

1 = ⟨{v′′, v′′′, u′′, u′′′, u, v, x, v1}⟩ and G′′

2 = G − G′′

1 . The graph G′′

2 is connected, claw-free and has minimum
degree at least two. Furthermore, G′′

2 ∉ K . Hence, G′′

2 has a TRDS S of cardinality at most 4(n−8)
7 . The set {v1, x, v, u} ∪ S is a

TRDS G and so γtr(G) ≤ |S| + 4 ≤
4n
7 −

32
7 +

28
7 ≤

4n
7 , which is a contradiction. �

Claim 6. Exactly one of the following holds:

1. There are two distinct degree two verticesw andw′ in V (G)−N[x]−N[y], such thatw is adjacent to u andw′ is adjacent
to v. Furthermore, w and w′ have no common neighbors.

2. There is exactly one degree two vertex w in V (G) − N[x] − N[y], such that w is adjacent to exactly one vertex in {u, v}.

Proof. Define G′

1 = ⟨{v1, u, v, x}⟩ and G′

2 = G − G′

1.
Case 1. δ(G′

2) = 0.
Suppose that w is an isolated vertex in G′

2. Then w has degree two and N(w) = {u, v}. The path P ′
: u, w, v is a 2-path of

length two such that x is adjacent to both u and v. This contradicts Lemma 17.
Case 2. δ(G′

2) = 1.
If a vertex of G′

2 has degree one, then it must have degree at most three in G. Suppose that w is a degree one vertex
of G′

2. Clearly, w ∈ V (G) − N[x] − N[y]. Assume first that w has degree three in G. Hence, w is adjacent to a vertex
w′

∈ V (G) − N[x] − {y, w}. Thus, N(w) = {w′, u, v}. Define G′
= G − xv. The graph G′ has minimum degree at least

two and is connected. If G′ is claw-free then, by Observation 11, we are done. Hence, G′ has a claw ⟨{w4, w3, w2, w1}⟩where
w2 = x and w3 = v. Since N(x) = {v1, u, v} we have that w1 = u. If w4 = w then w3 and w4 are adjacent which is
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a contradiction. By Claim 5 we have that w4 ∈ N(y) − {v1} and so the graph G− ⟨{v, y, x, v1}⟩ has minimum degree at least
two. This contradicts Lemma 14. We may conclude that deg(w) = 2 and that w is adjacent to exactly one vertex in the set
{u, v}, say u. If no degree two vertex in V (G) − N[x] − N[y] − {w} is adjacent to v then we are done. We may assume that
there is a degree two vertex w′ in V (G) − N[x] − N[y] − {w}, such that w′ is adjacent to v.

By Claim 5, u (v respectively) is not adjacent to w′ (w respectively). Let t ∈ N(w) − {u} (t ′ ∈ N(w′) − {v} respectively).
The fact that G has no 2-paths of length greater than two implies that deg(t) ≥ 3 and deg(t ′) ≥ 3. If t = t ′ then since
N(w) = {u, t} and N(w′) = {v, t ′} we have that G must contain a claw, which is a contradiction. Hence, w and w′ have no
common neighbors.
Case 3. δ(G′

2) ≥ 2.
If G′

2 has no components in K then, by Observation 7, we are done. Hence, G′

2 has a component U in K . Clearly,
N[U] ⊆ V (U) ∪ {v, u, v1}. In addition, also note that if N[y] ∩ V (U) ≠ ∅ and y ∉ V (U) then there will be a vertex of V (U)
that is adjacent to y and this will contradict the fact that N[U] ⊆ V (U) ∪ {v, u, v1}. Clearly, y ∈ V (U) if N[y] ∩ V (U) ≠ ∅.

Suppose that U ∈ K − {B, C3}. If N[y] ∩ V (U) ≠ ∅ then, without loss of generality, we have that say u1 = y. By
Observation 8 we have that deg(v1) ≥ 3 which is a contradiction. Hence, V (U) ⊆ V (G) − N[x] − N[y]. Furthermore,
u1 is adjacent to say u. By Observation 8, u is adjacent to two consecutive vertices of U. This contradicts Claim 5. Hence,
U ∈ {B, C3}.

Suppose first that U = C3. If N[y] ∩ V (U) ≠ ∅ then, without loss of generality, we have that u1 = y. Hence, u2 is say
u′ and u3 is v′. But then neither u′ nor v′ is adjacent to a vertex in V (G) − N[x] − N[y], contradicting Claim 4. It follows
that V (U) ⊆ V (G) − N[x] − N[y]. Clearly, u1 is adjacent to say u. If u is adjacent to a vertex w ∈ N(y), then ⟨{w, x, u1, u}⟩
is a claw which is a contradiction. By Claim 5 we have that N(u) = {v, u1, x}. If v is adjacent to no vertex of V (U) then v
has a neighbor in V (G) − V (U) − N[x] − N[y]. The graph G − ⟨V (U) ∪ {u}⟩ has minimum degree at least two and has no
components in K . By Observation 7, we are done. Hence, v has exactly one neighbor in V (U). By using the same argument
that was used for u we can deduce that N(v) = {x, u, z}, where z ∈ V (U). If v is adjacent to say u2, then P ′

: u1, u3, u2 is a
2-path where u1u2 ∈ E(G) and this contradicts our earlier assumption. Hence, v is adjacent to u1 and so N(v) = {x, u, u1}.
Let G′

= G−xv. The graph G′ hasminimum degree at least two, is connected and claw-free. By Observation 11, we are done.
We may assume that U = B. Suppose first that V (U) ⊆ V (G) − N[x] − N[y]. By Observation 8, u is adjacent to say u1.

If deg(u2) = 2 then the path P ′
: u1, u2, u3 is a 2-path of length two such that the end vertices are adjacent, a contradiction.

Hence, deg(u2) ≥ 3. Furthermore, if u is adjacent to u2 then Claim 5 will be contradicted. Hence, v is adjacent to u2. If u is
adjacent to a vertex w ∈ N(y) then ⟨{w, x, u1, u}⟩ is a claw which is a contradiction. Hence, N(u) = {u1, v, x}. By the same
argument N(v) = {u2, u, x}. Let G′

= G − vu2. The graph G′ has minimum degree at least two, is connected and claw-free.
By Observation 11, we are done. Hence, N[y] ∩ V (U) ≠ ∅.

If u3 = y then the second part of Observation 8 implies that v1 is adjacent to say u1 which is a contradiction, as
deg(v1) = 2. Hence, without loss of generality, we have that u1 = y. Hence, u2 = v′ and u3 = u′. But then u3 has two
neighbors, u4 and u5, in V (G) − N[x] − N[y] and this contradicts Claim 5. �

Claim 7. The set V (G) − N[x] − N[y] cannot have two distinct degree two vertices w and w′, such that w is adjacent u and
w′ adjacent to v.

Proof. Suppose, to the contrary, that w and w′ are two distinct degree two vertices in V (G) − N[x] − N[y], such that w is
adjacent to u and w′ is adjacent to v. Let G′

1 = ⟨{x, v1, u, v, w, w′
}⟩ and G′

2 = G − G′

1. By the first part of Claim 6 we have
that δ(G′

2) ≥ 2.
Suppose first that G′

2 has no component in K . Then G′

2 has a TRDS S of cardinality at most 4(n−6)
7 . Constructing a TRDS of

G of cardinality |S| + 3 will suffice since then γtr(G) ≤ |S| + 3 ≤
4n
7 −

24
7 +

21
7 ≤

4n
7 , which is a contradiction. Consider,

arbitrarily, vertices v1 and w from the set {v1, w,w′
}. If v1 and w have a neighbor in S then {w′, v} ∪ S is a TRDS of G. If v1

and w both have a neighbor in V (G′

2) − S and w′ is adjacent to a vertex in S, then {u, x} ∪ S is a TRDS of G. Hence, every
vertex from the set {v1, w,w′

} has a neighbor in V (G′

2) − S. The set {u, v, x} ∪ S is a TRDS of G. Hence, G′

2 has a component
U in K . If U ∈ K − {B, C3}, then, without loss of generality, u1 is adjacent to say w and, by the first part of Observation 8,
we get that deg(w) ≥ 3 which is a contradiction. Hence, U ∈ {B, C3}. Note that N[U] ⊆ V (U) ∪ {v, u, v1, w,w′

} and if
N[y] ∩ V (U) ≠ ∅ then y ∈ V (U).

Suppose thatU = C3. Suppose first that V (U) ⊆ V (G)−N[x]−N[y]−{w, w′
}. Without loss of generality, u1 is adjacent

to sayw. If deg(u2) = deg(u3) = 2, thenwemay form G′′

1 = ⟨V (U)∪{w}⟩ and G′′

2 = G−G′′

1 . The graph G′′

2 has degree at least
two, is connected and G′′

2 ∉ K . By Observation 7 we are done. Hence, u2 is adjacent to say w′. It follows that deg(u3) = 2.
The path P ′

: u1, u3, u2 is a 2-path with adjacent end vertices which is a contradiction. Hence, N[y] ∩ V (U) ≠ ∅. Suppose
that u1 = y. Hence, u2 = v′ and u3 = u′. By Claim 4, v′ (u′ respectively) must be adjacent to w (w′ respectively). Hence,
n(G) = 9. The set {x, u, v, w, v′

} is a TRDS of G and so γtr(G) ≤ 5 < 4.9
7 =

4n
7 , which is a contradiction.

Hence, U = B. Suppose first that N[y] ∩ V (U) ≠ ∅. Hence, without loss of generality, u1 = y. Furthermore, u2 = u′

and u3 = v′. But then u3 will be adjacent to two vertices, u5 and u4, in V (G) − N[x] − N[y]. This contradicts Claim 5. Hence,
V (U) ⊆ V (G) − N[x] − N[y] − {w, w′

}. Note that if either w or w′, say w, is adjacent to u3 then, by the second part of
Observation 8, we get that deg(w) ≥ 3 which is a contradiction. Hence, u1 is adjacent to say w. If deg(u2) = 2 then G has a
2-path of length two with adjacent end vertices, a contradiction. Hence, without loss of generality, w′ is adjacent to u2. Let
G′′

1 = ⟨V (U) ∪ {w, w′
}⟩ and G′′

2 = G − G′′

1 . The graph G′′

2 has degree at least two, is connected and G′′

2 ∉ K . Hence, G′′

2 has a
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TRDS S of cardinality at most 4(n−7)
7 . If, without loss of generality, u ∈ S then {u3, u2, w

′
} ∪ S is a TRDS of G. If u, v ∉ S then

{u3, u2, u1} ∪ S is a TRDS of G. Hence, γtr(G) ≤ |S| + 3 ≤
4n
7 −

28
7 +

21
7 ≤

4n
7 which is a contradiction. �

By Claims 6 and 7 and by symmetry, we may assume that say u (u′ respectively) is adjacent to a degree two vertex w
(w′ respectively) in V (G) − N[x] − N[y]. Note that if w and w′ are adjacent, then Gwill have a 2-path of length three which
is a contradiction. Furthermore, v (v′ respectively) has exactly one neighbor in V (G) − N[x] − N[y] and this neighbor has
degree at least three. If v is adjacent to v′ then the graph G − ⟨{v1, x, u, w}⟩ will have minimum degree at least two. This
will contradict Lemma 13. Hence, v′ is not adjacent to v. Let G′

1 = ⟨N[y] ∪ N[x]⟩. We form the graph G′

2 = G − G′

1.
We first claim that no components of G′

2 are in K . Suppose, to the contrary, that U is a component of G′

2 that is in K .
Note that either v or v′, say v, is adjacent to a vertex of U. If U ∈ K − {B, C3} then, by the first part of Observation 8, v is
adjacent to two vertices of U. This contradicts Claim 5. Hence, U ∈ {B, C3}. Let G′′

1 = ⟨{v} ∪ V (U)⟩ and G′′

2 = G − G′′

1 . Note
that δ(G′′

2) ≥ 2 and G′′

2 has no components in K . If U = C3 (U = B respectively) then we contradict Observation 7 (second
part of Observation 10 respectively). Hence, G′

2 has no components in K .
We also claim that w and w′ are the only possible vertices of degree at most one in G′

2. Suppose that there is a vertex w′′

in V (G′

2) − {w, w′
} that has degree at most one. Note that deg(w′′) = 3 and w′′ must be adjacent to both v′ and v. Since v

and v′ are not adjacent and by Claim 5, we have that G has a claw which is a contradiction.
Case 1. w = w′.

Let G′′

1 = ⟨N[y] ∪ N[x] ∪ {w}⟩ and G′′

2 = G − G′′

1 . Clearly, the fact that G′

2 has no components in K implies that G′′

2 has no
components in K . Since w and w′ are the only possible vertices of degree at most one in G′

2, we have that δ(G′′

2) ≥ 2. Hence,
G′′

2 has a TRDS S of cardinality atmost 4(n−8)
7 . The set {u, v, v′, y}∪S is a TRDS ofG. Hence, γtr(G) ≤ |S|+4 ≤

4n
7 −

32
7 +

28
7 ≤

4n
7

which is a contradiction.
Case 2. w ≠ w′.

Form G′′

2 , from G′

2, by joining w and w′. Note that the component of G′′

2 that contains the edge ww′ has a 2-path of length
three. Hence, this component cannot be in K . Furthermore, the fact that G′

2 has no components in K implies that G′′

2 has
no components in K . In addition, δ(G′′

2) ≥ 2. Hence, G′′

2 has a TRDS S of cardinality at most 4(n−7)
7 . If w, w′

∈ S (w, w′
∉ S

respectively) then {v′, y, u′, u} ∪ S ({v′, y, v1, x} ∪ S respectively) is a TRDS of G. If, without loss of generality, w′
∈ S and

w ∉ S then {x, u, v, u′
} ∪ S is a TRDS of G. Hence, γtr(G) ≤ |S| + 4 ≤

4n
7 which is a contradiction. �

Proof of Lemma 19. Suppose, to the contrary, that δ(G) ≥ 3. Let u be a vertex of G of minimum degree. Let G1 = ⟨N[u]⟩
and G2 = G − G1.

Claim 1. ⟨N(u)⟩ contains no isolated vertices and G has no bridges.

Proof. Let x be an isolate in ⟨N(u)⟩. Let G′
= G− xu. The graph G′ has minimum degree at least two and has no components

isomorphic to C3. If G′ has a claw then the center of this claw must be in N(u) − {x}. This contradicts the fact that x is an
isolate in ⟨N(u)⟩. By Observation 11, we are done. If G has a bridge, then we may form G′ by removing, from G, this bridge.
The graph G′ is claw-free, δ(G′) ≥ 2 and G′ has no components in K . By Observation 11, we are done. �

Claim 2. We may assume that G2 has no components in K .

Proof. Suppose, to the contrary, thatG2 has a componentU inK . Note that each degree two vertex ofU has δ−2 neighbors
in N(u).

Suppose first that U ∈ K − {B, C3}. Assume first that either U ∈ K − {B, C3, C5} or U = C5 and, without loss of
generality, u5 has at least two neighbors in N(u). Let G′

1 = ⟨{u1, u2, u3, u4}⟩ and G′

2 = G − G′

1. The graph G′

2 has minimum
degree at least two, is connected, and G′

2 ∉ K . By Observation 7, we are done. Hence, U = C5 and every vertex of U has
exactly one neighbor in N(u). Furthermore, δ = 3. Let x, y, z ∈ N(u). Suppose, without loss of generality, that u1 is adjacent
to say x. By Observation 8, x is adjacent to say u2. If u3 is adjacent to x then ⟨{u, u3, u1, x}⟩ is a claw which is a contradiction.
Hence, suppose that u3 is adjacent to y. By Observation 8, y is adjacent to say u4. If u5 is adjacent to x (y respectively) then
⟨{u, u5, u2, x}⟩ (⟨{u, u5, u3, y}⟩ respectively) is a claw which is a contradiction. By the pigeonhole principle, u5 is adjacent to
z and so z is adjacent to either u1 or u4 which is a contradiction. Hence,U ∈ {B, C3}. Let x be a vertex ofN(u) that is adjacent
to say u1.

Suppose that U = B. Let G′

1 = ⟨V (U)⟩ and G′

2 = G − G′

1. The graph G′

2 is connected and has minimum degree at least
two. Note that if G′

2 ∈ K then G′

2 = B. Hence, if G′

2 ∈ K (G′

2 ∉ K respectively) then G′

2 has a TRDS S of cardinality at most
4(n−5)

7 +
1
7 . If, without loss of generality, u1 has a neighbor in V (G′

2) − S then {u2, u3} ∪ S is a TRDS of G. If u1 and u2 have a
neighbor in S then {u4, u5} ∪ S is a TRDS of G. Hence, γtr(G) ≤ |S| + 2 ≤

4(n−5)
7 +

1
7 +

14
7 ≤

4n
7 which is a contradiction.

Hence, U = C3. Note that if x is adjacent to a vertex w ∈ V (G2) − V (U), then ⟨{u, w, u1, x}⟩ is a claw. Hence,
N(x) ∩ V (G2) ⊆ V (U). Let G′

1 = ⟨{u1, u2, u3, x}⟩ and G′

2 = G − G′

1. The graph G′

2 is connected. Assume first that δ(G′

2) ≥ 2.
By Observation 7, G′

2 ∈ K . Let u′

1, . . . , u
′

i be the vertices of the Hamiltonian path of G′

2. If G
′

2 ∈ K − {B, C3} then, without
loss of generality, let u = u′

1. Furthermore, u′

i, u
′

2 ∈ N(u)−{x} and V (G′

2)−{u′

i, u
′

1, u
′

2} ⊂ V (G2). But then, by the pigeonhole
principle and the fact that δ ≥ 3, we have that every vertex of V (G′

2) − {u′

i, u
′

1, u
′

2} is adjacent to x. This contradicts the fact
that N(x) ∩ V (G2) ⊆ V (U). Hence, G′

2 ∈ {B, C3}.
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If G′

2 = B then n(G) = 9 and the set {u′

1, u
′

2, u
′

3, x, u1} is a TRDS of G. Hence, γtr(G) ≤ 5 < 4.9
7 =

4n
7 which is a

contradiction.
If G′

2 = C3 then n(G) = 7 and the set {u, x, u1} is a TRDS of G. Hence, γtr(G) ≤ 3 < 4.7
7 =

4n
7 which is a contradiction.

Hence, δ(G′

2) ≤ 1 and so there is a vertex y ∈ N(u) − {x} such that N(y) ⊆ V (U) ∪ {x, u}. By Claim 1, y is not isolated in
⟨N(u)⟩ and so y is adjacent to x. Furthermore, the pigeonhole principle implies that y has a neighbor in V (U). If we re-label
x as y in G′

2, we have, by using the argument of the previous paragraph, that x has degree one in G′

2. Hence, we may assume
that N(x) ⊆ V (U) ∪ {y, u}. If δ = 3 then ⟨N(u)⟩ has an isolate, contradicting Claim 1. Hence, δ ≥ 4. By the pigeonhole
principle, x and y have a common neighbor in V (U), say u1. Let G′′

1 = ⟨{u1, u2, u3, x, y}⟩ and G′′

2 = G − G′′

1 . Since δ ≥ 4 and
by Claim 1, we have that G′′

2 has a triangle. Furthermore, G′′

2 is connected and δ(G′′

2) ≥ 2. Suppose first that G′′

2 ∉ K . Hence,
G′′

2 has a TRDS S of cardinality at most 4(n−5)
7 . If u ∉ S or (u ∈ S respectively) then {y, u1} ∪ S ({u2, u3} ∪ S respectively) is a

TRDS of G. Hence, γtr(G) ≤ |S| + 2 ≤
4n
7 −

20
7 +

14
7 ≤

4n
7 which is a contradiction. Hence, G′′

2 ∈ {B, C3}.
Let u′

1, . . . , u
′

i be the vertices of the Hamiltonian path of G′′

2 . If G
′′

2 = C3 then set u = u′

1. If G
′′

2 = B then let u ∈ {u′

1, u
′

3}. If
G′′

2 = B (G′′

2 = C3 respectively) then n(G) = 10 (n(G) = 8 respectively) and so {u′

1, u
′

2, u
′

3, u2, u3} ({u′

1, x, u1, y} respectively)
is a TRDS of G. Hence, γtr(G) ≤

n
2 < 4n

7 which is a contradiction. �
Suppose that δ(G2) ≥ 2 or V (G2) = ∅. By Claim 2wemay assume that G2 has no components in K . It follows that G2 has

a TRDS S of cardinality atmost 4(n−δ−1)
7 . Let x be an arbitrary vertex ofN(u). If {x, u}∪S is a TRDS of G, then γtr(G) ≤ |S|+2 ≤

4n
7 −

4(δ+1)
7 +

14
7 ≤

4n
7 which is a contradiction. Hence, there is a vertex y ∈ N(u)−{x} such that {u, x} ⊂ N(y) ⊆ S ∪ {u, x}.

By switching the roles of y and xwe have, by the same argument, that {u, y} ⊂ N(x) ⊆ S∪{u, y}. Since x is arbitrary, we have
that every vertex ofN(u)has a neighbor in S. Hence, {x}∪S is a TRDS ofG and soγtr(G) < |S|+2 ≤

4n
7 −

4(δ+1)
7 +

14
7 ≤

4n
7 which

is a contradiction. Hence, δ(G2) ≤ 1. If δ(G2) = 0 then there is a vertex x ∈ V (G2) such that N(x) = N(u). Furthermore,
if y ∈ N(u) is adjacent to a vertex w ∈ V (G2) − {x} then ⟨{w, x, u, y}⟩ induces a claw. Thus, V (G2) − {x} = ∅. Hence,
n(G) = δ + 2 and the set {u, y} is a TRDS of G. Thus, γtr(G) = 2 < 4(δ+2)

7 =
4n
7 which is a contradiction. Thus, δ(G2) = 1.

Let degG2(x) = 1 and let y ∈ N(u), where x is adjacent to every vertex of N(u) − {y}. Note that x is adjacent to exactly
one vertex in V (G2) − {x}, say x′. Furthermore, we claim if z ′ is an arbitrary vertex in N(u) − {y}, then z ′ is adjacent to no
vertex in V (G2) − {x, x′

}. Suppose, to the contrary, that there is a vertex w ∈ V (G2) − {x, x′
} that is adjacent to z ′. The graph

⟨{x, u, w, z ′
}⟩ is a claw. Hence, N[z ′

] ⊆ {x′, x} ∪ N[u] for every z ′
∈ N(u) − {y}.

Let G′

1 = ⟨N[u] ∪ {x}⟩ and G′

2 = G − G′

1. By Claim 1 we have that y is adjacent to a vertex in N(u) − {y}, say z.
Suppose first that δ(G′

2) ≥ 2. If G′

2 has no components in K then G′

2 has a TRDS S of cardinality at most 4(n−δ−2)
7 . The set

{z, x}∪S is a TRDS of G and so γtr(G) ≤ |S|+2 ≤
4n
7 −

4(δ+2)
7 +

14
7 ≤

4n
7 which is a contradiction. Hence, G′

2 has a component
U in K . Now if x is adjacent to no vertex of V (U) then U will be a component of G2, contradicting Claim 2. We have, by the
second part of Observation 8, that x′

= u1. It follows that the remaining degree two vertices of U must be adjacent to y.
If U = B (U ∈ K − {B, C3} respectively) then ⟨{u, u4, u2, y}⟩ induces a claw. Hence, U = C3 and if y is adjacent to a

vertex w ∈ V (G′

2) − V (U) then ⟨{u, u2, w, y}⟩ induces a claw. Hence, n(G) = δ + 5. The set {z, x, y} is a TRDS of G. Hence,
γtr(G) ≤ 3 < 4(δ+5)

7 =
4n
7 which is a contradiction.

Hence, δ(G′

2) ≤ 1. Let w be a vertex of G′

2 that has degree at most one. If w is not adjacent to x then w ≠ x′ and, by the
pigeonhole principle,w is adjacent to a vertex in N(u)−{y}. This contradicts the fact that no vertex in N(u)−{y} is adjacent
to a vertex in V (G2) − {x, x′

}. Hence, x′
= w.

Case 1. degG′
2
(x′) = 0.

Hence, N(x′) ⊆ N(u) ∪ {x}. Let z ′ be a neighbor of x′ in N(u) − {y}. The only vertex in ⟨N[u] ∪ {x}⟩ that can be
adjacent to a vertex of V (G2) − {x, x′

} is y. Let G′′

1 = ⟨N[u] ∪ {x, x′
}⟩ and G′′

2 = G − G′′

1 . Note that δ(G′′

2) ≥ 2 or
V (G′′

2) = ∅. If G′′

2 has a component U in K , then U will also be a component of G2. This contradicts Claim 2. Hence, G′′

2
has no components in K . It follows that G′′

2 has a TRDS S of cardinality at most 4(n−δ−3)
7 . The set {u, y, z ′

} ∪ S is a TRDS of G.
Thus, γtr(G) ≤ |S| + 3 ≤

4n
7 −

4(δ+3)
7 +

21
7 ≤

4n
7 which is a contradiction.

Case 2. degG′
2
(x′) = 1.

Note that x′ has exactly one neighbor in V (G′

2) − {x′
}, say x′′. Furthermore, N(x′) ⊆ {x, x′′

} ∪ N(u). Suppose first that y
is not adjacent to x′. Then N(x′) ⊆ {x, x′′

} ∪ N(u) − {y}. Let G′
= G − x′x′′. Clearly, δ(G′) ≥ 2 and G′ has no components

isomorphic to C3. If G′ has a claw, then the center of this claw must be in N(u) ∪ {x} − {y}. But no vertex in N(u) ∪ {x} − {y}
is adjacent to a vertex of V (G2) − {x, x′

}. Hence, G′ is claw-free and so, by Observation 11, we are done. Hence, y is adjacent
to x′.

If y is not adjacent to x′′ then if y is adjacent to a vertexw′
∈ V (G2)−{x, x′, x′′

} then ⟨{u, x′, w′, y}⟩ induces a claw. Hence,
N[y] ⊆ N[u] ∪ {x′, x}. It follows that x′x′′ is a bridge. Hence, y is adjacent to x′′. Let G′′

1 = ⟨N[u] ∪ {x}− {y}⟩ and G′′

2 = G−G′′

1 .
The graph G′′

2 is connected, δ(G
′′

2) ≥ 2 and G′′

2 has no component in K . Hence, G′′

2 has a TRDS S of cardinality at most 4(n−δ−1)
7 .

The set {x, z} ∪ S is a TRDS of G. Hence, γtr(G) ≤ |S| + 2 ≤
4n
7 −

4(δ+1)
7 +

14
7 ≤

4n
7 which is a contradiction. �
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