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SUMMARY

Interleukin-17A (IL-17A) is a cytokine produced by T
helper 17 (Th17) cells and plays important roles in
the development of inflammatory diseases. Although
IL-17F is highly homologous to IL-17A and binds the
same receptor, the functional roles of this molecule
remain largely unknown. Here, we demonstrated
with Il17a�/�, Il17f�/�, and Il17a�/�Il17f�/� mice that
IL-17F played only marginal roles, if at all, in the
development of delayed-type and contact hypersen-
sitivities, autoimmune encephalomyelitis, collagen-
induced arthritis, and arthritis in Il1rn�/� mice. In
contrast, both IL-17F and IL-17A were involved in
host defense against mucoepithelial infection by
Staphylococcus aureus and Citrobacter rodentium.
IL-17A was produced mainly in T cells, whereas IL-
17F was produced in T cells, innate immune cells,
and epithelial cells. Although only IL-17A efficiently
induced cytokines in macrophages, both cytokines
activated epithelial innate immune responses. These
observations indicate that IL-17A and IL-17F have
overlapping yet distinct roles in host immune and
defense mechanisms.

INTRODUCTION

Naive CD4+ T cells are categorized into several helper T (Th) cell

subsets, including Th1 and Th2 cells, on the basis of their cyto-

kine production profiles and effector functions. Recently, Th17

cells that preferentially produce interleukin-17A (IL-17A), IL-

17F, IL-21, and IL-22 were identified in mice (McGeachy and

Cua, 2008; Ouyang et al., 2008). Th17 cell differentiation is

induced by TGF-b plus IL-6 (Bettelli et al., 2006; Mangan et al.,

2006; Veldhoen et al., 2006a) or IL-21 (Korn et al., 2007; Nurieva

et al., 2007; Zhou et al., 2007) and accelerated by the coordi-

nated activities of IL-1 and TNF (Veldhoen et al., 2006a). IL-23

is required for the growth, survival, and effector functions of
108 Immunity 30, 108–119, January 16, 2009 ª2009 Elsevier Inc.
Th17 cells and promotes IL-17A and IL-17F production by this

T cell subset (Veldhoen et al., 2006a; Zhou et al., 2007).

IL-17F and IL-17A are highly homologous members of the

IL-17 protein family and are encoded by genes that are located

nearby each other in both humans and mice (Kawaguchi et al.,

2004; Kolls and Linden, 2004; Weaver et al., 2007). It has been

reported that IL-17A and IL-17F may bind the same receptor

complexes consisting of IL-17RA and IL-17RC (Toy et al.,

2006; Zheng et al., 2008), suggesting that these cytokines

have similar biological functions. Consistent with this notion,

both IL-17A and IL-17F induce the production of antimicrobial

peptides (defensins), cytokines (IL-6, G-CSF, GM-CSF), and

chemokines (CXCL1, CXCL2, CXCL5), as well as enhance

granulopoiesis and neutrophil recruitment (Kawaguchi et al.,

2004; Kolls and Linden, 2004; Weaver et al., 2007). Overex-

pression of IL-17F or IL-17A in the lungs leads to increased

proinflammatory cytokine and chemokine expression, resulting

in inflammation associated with neutrophil infiltration (Hurst

et al., 2002; Oda et al., 2005; Park et al., 2005; Yang et al.,

2008).

Several lines of evidence have established that the IL-23–IL-

17A signaling axis rather than the IL-12–IFN-g signaling axis

is responsible for the development of autoimmune diseases

such as experimental autoimmune encephalomyelitis (EAE),

collagen-induced arthritis (CIA), and inflammatory bowel disease

(IBD), as well as allergic diseases such as contact hypersensi-

tivity (CHS) and delayed-type hypersensitivity (DTH) in mice

(McGeachy and Cua, 2008; Oboki et al., 2008). Recent studies

suggest that Th17 cells are also involved in the host defense

against infection, because antigen-presenting cells (APCs) stim-

ulated with such microbial products as lipopolysaccharide (LPS),

peptidoglycans, and zymosan produce a large amount of IL-23,

resulting in the development of Th17 cells (LeibundGut-Land-

mann et al., 2007; van Beelen et al., 2007; Veldhoen et al.,

2006b). Furthermore, Il17ra�/� mice and/or Il23a�/� mice are

more susceptible to Klebsiella pneumoniae in the lungs (Happel

et al., 2005) and Citrobacter rodentium in the intestines (Mangan

et al., 2006; Zheng et al., 2008). However, the relative contribu-

tions of IL-17A and IL-17F to autoimmune and allergic diseases

as well as host defense processes remain to be elucidated.
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In this study, we discriminated between the functions of IL-17F

and IL-17A in immune responses and host defense mechanisms

directed against bacterial infection. To accomplish this, we have

generated mice lacking IL-17F (Il17f�/�) or both IL-17A and IL-

17F (Il17a�/�Il17f�/�), which were used together with previously

generated Il17a�/� mice (Nakae et al., 2002), and shown that

IL-17A and IL-17F play distinct roles in the development of

T cell-mediated inflammation and immune responses against

bacterial infection.

RESULTS

IL-17F Contributes to the Development of Arthritis
in IL-1 Receptor Antagonist-Deficient Mice
To elucidate the functional differences between IL-17F and

IL-17A in the immune system, we generated Il17a�/�, Il17f�/�,

and Il17a�/�Il17f�/� mice (Figure S1, available online). These

mice were born healthy at the expected Mendelian ratio, were

fertile, and showed no gross phenotypic abnormalities, including

in their lymphoid cell populations (data not shown). Proliferative

responses and interferon-g (IFN-g) production were normal in

Figure 1. IL-17F Contributes to the Devel-

opment of Spontaneous Autoimmune

Arthritis in Il1rn�/� Mice

(A) Profiles of intracellular IL-17F, IL-17A, and

IFN-g expression in LN cells from wild-type

and arthritic Il1rn�/� mice stimulated with PMA

and ionomycin in vitro.

(B) Profiles of intracellular IL-17F, IL-17A, and

IFN-g expression in cells from the ankle joints of

wild-type and arthritic Il1rn�/� mice stimulated

with PMA and ionomycin.

(C) Expression of IL-17A and IL-17F mRNA in the

joints of arthritic Il1rn�/� mice.

(D) Arthritis incidence and severity scores in Il1rn�/�

mice. Left panels: open circles represent Il17f+/+,

open triangles represent Il17f+/�, and closed dia-

monds represent Il17f�/�mice on an Il1rn�/� back-

ground; right panels: open circles represent Il17a+/+

Il17f+/+, open triangles represent Il17a+/�Il17f+/�,

and closed diamonds represent Il17a�/�Il17f�/�

mice on an Il1rn�/� background (n = 15–22/

group). *, p < 0.05 and **, p < 0.01 versus Il17f+/+

or Il17a+/+Il17f+/+ mice determined with c2 tests.

(E) Intracellular IL-17A expression in LN cells from

wild-type, Il17a+/+Il17f+/+Il1rn�/�, Il17f�/�Il1rn�/�,

and Il17a�/�Il1rn�/� mice stimulated with PMA

and ionomycin.

Data are representative of two (C and E) or three

(A and B) independent experiments.

Il17a�/�Il17f�/� mice, IL-17A production

was normal in Il17f�/� mice, and neither

IL-17A nor IL-17F was required for

TGF-b plus IL-6-induced Th17 cell differ-

entiation (Figure S2).

IL-17A plays a crucial role in the spon-

taneous development of arthritis in IL-1

receptor antagonist-deficient (Il1rn�/�)

mice (Nakae et al., 2003b). There were

more IL-17F-producing cells, which also

produced IL-17A, among the arthritic Il1rn�/� lymph node (LN)

cells than among the wild-type LN cells, which was also true of

the IFN-g-producing cells (Horai et al., 2004) (Figure 1A). The

IL-17A+IL-17F+ cell number and IL-17A and IL-17F mRNA

expression were also augmented in LN cells from arthritic

Il1rn�/� mice (Figures 1B and 1C). The development of arthritis

was considerably, but only partially, suppressed in Il17f�/�

Il1rn�/� mice compared with littermate Il17f+/+Il1rn�/� and

Il17f+/�Il1rn�/� controls during the 30 week observation period

(Figure 1D). Compared with Il17f�/�Il1rn�/�mice, arthritis devel-

opment was markedly suppressed in Il17a�/�Il17f�/�Il1rn�/�mice

(Figure 1D). The IL-17A+ T cell populations in LNs from Il17a+/

+Il17f+/+Il1rn�/� and Il17f�/�Il1rn�/�mice were similar (Figure 1E).

Likewise, EAE, CIA, DTH, 2,4,6-trinitrochlorobenzene (TNCB)-

induced CHS, and neutrophilic airway inflammation induced by

OVA in DO11.10 mice, in which IL-17A plays an important role

(Komiyama et al., 2006; Nakae et al., 2002, 2003a, 2007), also

developed normally in the Il17f�/� mice (Figures S3–S7, and

Table S1). These results indicate that IL-17A plays a major role

in T cell-dependent autoimmune and allergic responses, but

IL-17F only marginally contributes to these responses, if at all.
Immunity 30, 108–119, January 16, 2009 ª2009 Elsevier Inc. 109
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Il17a�/�Il17f�/� Mice Show Increased Susceptibility
to Opportunistic Infection by S. aureus

We found that the submandibular LNs of Il17a�/�Il17f�/� mice,

but not of wild-type, Il17f�/�, or Il17a�/�mice, became enlarged

as the mice aged; this effect was observed in various genetic

backgrounds, including the C57BL/6J, BALB/cA, and 129/Ola

3 C57BL/6J strains (Figure 2A, and data not shown). At 8–10

weeks of age, IgM titers were similar between Il17a�/�Il17f�/�

and wild-type mice. Whereas total IgG, IgG1, IgG2a, and

IgG2b titers were increased 2–4 fold in the Il17a�/�Il17f�/�

mice compared with wild-type mice, IgG3 titers in the Il17a�/�

Il17f�/� mice were reduced (Figure 2B). Interestingly, the

Il17a�/�Il17f�/� mice developed mucocutaneous abscesses

around the nose and mouth (Figure 2C). Histological analyses re-

vealed fibrin-encased abscesses and marked leukocyte infiltra-

tion specifically in the mucocutaneous tissues of the Il17a�/�

Il17f�/� mice.

The LN enlargement, subcutaneous abscess formation, and

increased Ab production suggested that the Il17a�/�Il17f�/�

mice may have been responding to an infection. In support of

this idea, antibiotic treatment suppressed the enlargement of
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Figure 2. Increased Susceptibility of Il17a�/�

Il17f�/� Mice to Opportunistic S. aureus

Infection

(A) Weight and gross morphology of submandib-

ular LNs from BALB/cA mice at 12–16 weeks of

age (n = 3–8/group).

(B) Immunoglobulin titers in sera from mice at 8–10

weeks of age (n = 6–8/group). Similar results were

also observed on a C57BL/6J background.

(C) Histopathology of Il17a�/�Il17f�/� mucocuta-

neous tissues around the nose and mouth (H&E,

top, 403; bottom, 1203). Data are representative

of four mice for each group.

(D) Weight of submandibular LNs from Il17a�/�

Il17f�/� mice on a BALB/cA background with or

without oral antibiotic treatment between 4 and 8

weeks of age (n = 10/group).

(E) Representative plates showing bacterial colo-

nies recovered from mucocutaneous tissues of

BALB/cA mice at 12–16 weeks of age.

(F) CFU of S. aureus in homogenates from mucocu-

taneous tissues in mice at 12–16 weeks of age.

Data are pooled from three independent experi-

ments.

(G) Survival rate in mice after intravenous (i.v.)

injection of 1 3 107 CFU of S. aureus (n = 11/group).

Data are representative of two independent exper-

iments.

(H) S. aureus CFUs in kidney homogenates

collected 3 days after i.v. injection of 1 3 107

CFU of S. aureus (n = 4/group). Data are represen-

tative of two independent experiments.

* p < 0.05, ** p < 0.05, and *** p < 0.05 versus wild-

type. Data represent means ± SEM in (B), (D), (F),

and (H).

submandibular LNs in Il17a�/�Il17f�/�

mice (Figure 2D). Then, we tried to recover

infected microorganisms from the muco-

cutaneous tissues around the nose and

mouth of the Il17a�/�Il17f�/� mice; the
opportunistic bacterium Staphylococcus aureus was recovered

from the affected tissues of these mice. When mucocutaneous

tissue homogenates from these mice were cultured, more

bacteria was observed in Il17a�/�Il17f�/� mouse homogenate

compared with samples from wild-type, Il17f�/�, and Il17a�/�

mice (Figures 2E and 2F), suggesting that both IL-17A and IL-

17F are critically important to protect the mice against mucocu-

taneous S. aureus infections. To investigate whether IL-17A and

IL-17F play a role in systemic S. aureus infection, we challenged

mice with S. aureus by intravenous injection. However, no differ-

ence was observed in the survival and the number of bacteria

recovered from the kidney 72 hr later between wild-type and

Il17a�/�Il17f�/�mice (Figures 2G and 2H). These results suggest

that both IL-17A and IL-17F play critical roles in protecting

against local, but not systemic, infection against S. aureus.

Both IL-17F and IL-17A Are Required for Host Defense
against C. rodentium Infections
Because the Il17a�/�Il17f�/� mice were susceptible to opportu-

nistic infections by S. aureus, we examined the susceptibilities of

Il17f�/�, Il17a�/�, and Il17a�/�Il17f�/� mice to experimental
110 Immunity 30, 108–119, January 16, 2009 ª2009 Elsevier Inc.
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C. rodentium infection. After oral infection with C. rodentium, the

number of bacteria in the colons of wild-type 129/Ola 3

C57BL/6J mice increased until 14 days after infection, and

decreased thereafter (Figure 3A). A substantially greater number

of bacteria was detected in the colons of Il17f�/�, Il17a�/�, and

Il17a�/�Il17f�/� mice compared with wild-type mice at each

time point after infection, although the bacterial burden in the

mutant mice declined by day 21 and all of the genotypes re-

turned to the wild-type level by day 28 after infection. Notably,

bacterial numbers in the colon were similar among Il17f�/�,

Il17a�/�, and Il17a�/�Il17f�/� mice. Marked expansion of the

bacterial population was also observed in the distal colon of

Il17f�/�, Il17a�/�, and Il17a�/�Il17f�/� mice compared with that

of wild-type mice 14 days after infection (Figure 3B). Further-

more, whereas remarkable hypertrophy of the colon and spleen

was observed in Il17f�/� and Il17a�/�Il17f�/� mice, only mild

hypertrophy was detected in Il17a�/� mice (Figures 3C and

3D). Consistent with these observations, more severe inflamma-

tory changes were observed in the colons of Il17f�/� and Il17a�/�

Il17f�/� mice compared to Il17a�/� mice 14 days after infection,

suggesting that IL-17F plays a larger role than IL-17A in the

immune response against this bacterium (Figures 3E and 3F).

These observations clearly show that both IL-17A and IL-17F

play important roles to protect hosts against C. rodentium

infections.

IL-17F and IL-17A Are Required for the Expression
of b-Defensin in the Colon
Then, we analyzed the antibacterial mechanisms induced by IL-

17A and IL-17F. The serum amounts of C. rodentium-specific

IgG, which is important for bacterial clearance (Mundy et al.,

2005), were increased in all of the mutant mice (Figure S8), sug-

gesting that the humoral immune response against C. rodentium

was not responsible for delayed bacterial clearance in the Il17f�/�,

Il17a�/�, and Il17a�/�Il17f�/� mice.

Both IL-17A and IL-17F regulate innate immunity by inducing

neutrophil recruitment and antimicrobial peptide production

(Ouyang et al., 2008). Compared to wild-type mice, however,

mRNA expression of neutrophil chemoattractants, such as

CXCL1 and CXCL2, and proinflammatory mediators, such as

IFN-g, IL-1b, IL-6, TNF, and iNOS, were similarly increased in

the colons of Il17f�/�, Il17a�/�, and Il17a�/�Il17f�/� mice 14

days after C. rodentium infection (Figure 4A). However, the

expression of antimicrobial peptides, such as b-defensin 1, 3,

and 4 (but not b-defensin 2, lipocalin 2, S100A8, S100A9,

Reg3b, and Reg3g), was markedly impaired in the colons of

Il17f�/�, Il17a�/�, and Il17a�/�Il17f�/� mice on day 14 after

C. rodentium infection (Figure 4B). These results suggest that

both IL-17F and IL-17A are critical to induce the expression of

b-defensins, which are important for the host defense against

C. rodentium.

IL-17F and IL-17A Are Produced by Different Cells
in the Colon
IL-17A mRNA is more highly expressed in the small intestine than

in the colon (Ivanov et al., 2006). In contrast, IL-17F mRNA

expression in the colon was higher than that in the small intestine

(Figure 5A). During C. rodentium infection, the expression of both

IL-17A and IL-17F mRNA was induced in the colon of wild-type
mice, although a larger increase was observed for IL-17A mRNA

expression (day 14: IL-17A, 29-fold; IL-17F, 14-fold) (Figure 5B).

Under these conditions, IL-17A mRNA expression was not influ-

enced by IL-17F deficiency and vice versa. Although only a few

IL-17A- and IL-17F-producing cells were found among the

colonic lymphocytes of uninfected wild-type mice (Figure 5C),

the population of IL-17F-producing cells, which also produced

IL-17A, increased in infected wild-type mice (Figure 5D). In

contrast to the coordinate production of IL-17A and IL-17F by

LN cells after the development of DTH, EAE, or arthritis

(Figure 1A and Figure S5), however, the percentage of IL-

17A+IL-17F� cells in the colonic lymphocytes was much larger

than that of IL-17A�IL-17F+ cells (Figure 5D). Both IL-17A+ and

IL-17F+ cells were not observed in the Il17a�/�Il17f�/� colonic

lymphocyte population, whereas the number of IFN-g+ cells

markedly increased during C. rodentium infection (Figure 5D).

Because the induction kinetics was different for the two mole-

cules and IL-17F producer cells were scarcely found in colonic

lymphocytes, IL-17A and IL-17F may be produced by different

cells in the colon. The mRNA expression of these molecules

was examined in the colons of recombination activating gene-

2-deficient (Rag2�/�) mice, in which both T and B cells are

absent. The expression of IL-17A mRNA in the mesenteric LNs

(MLNs) was markedly higher than that in colons on day 7 after

C. rodentium infection in wild-type mice (Figure 5E). The amount

of IL-17A mRNA, however, was markedly decreased (approxi-

mately 20% of wild-type) in Rag2�/� mice (Figures 5E and 5F),

suggesting that Th17 cells may be the major producer of IL-

17A in the MLN. In contrast, the amount of IL-17F expression

was only decreased by approximately 50% in the MLNs of these

mice (Figures 5E and 5F). IL-17A mRNA expression was also

markedly decreased in the colons of Rag2�/� mice, whereas

the IL-17F mRNA expression was similar between wild-type

and Rag2�/� mice (Figures 5E and 5F). In addition, IL-17F, but

not IL-17A, production in the whole-colon-culture supernatants

from Rag2�/� mice was increased by the treatment with IL-23,

whereas both IL-17A and IL-17F production were induced in

those from wild-type mice, indicating that IL-17F is also

produced by non-T and non-B cells (Figure 5G). We next exam-

ined which cells produce IL-17F in response to IL-23. Interest-

ingly, IL-23 stimulation led to enhanced IL-17F production in

splenocytes or MLNs from Rag2�/� or C.B-17 SCID mice

compared to those from wild-type mice, whereas only a

small amount of IL-17A was produced in these cells (Figures

5H and 5I, and Figure S9). Among innate immune cells,

CD11c�Gr1�B220�F4/F80�Gr1� cells were likely to mainly

produce IL-17F upon IL-23 stimulation (Figure S9).

Because IL-17F is expressed in lung epithelial cells (ECs)

(Suzuki et al., 2007), we also examined whether IL-17F was ex-

pressed in colonic ECs. IL-17F mRNA, but not IL-17A mRNA,

was detected in CD45� FACS-sorted colonic ECs from infected

wild-type mice; this contrasted to CD45+ intraepithelial immune

cells and ConA-stimulated splenocytes, in which both IL-17A

and IL-17F were detected (Figure 5J). Moreover, IL-17F, but

not IL-17A, mRNA was expressed in mouse colonic EC lines

(Figure 5K). These results indicate that, in addition to infiltrating

lymphocytes, IL-17F is produced by non-T, non-B innate

immune cells and colonic ECs in response to infection with

C. rodentium.
Immunity 30, 108–119, January 16, 2009 ª2009 Elsevier Inc. 111
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Figure 3. IL-17F and IL-17A Are Required for the Protection against C. rodentium Infection

Wild-type, Il17f�/�, Il17a�/�, and Il17a�/�Il17f�/�mice were orally infected with 2 3 108 CFU of C. rodentium, and the colons and spleens were harvested at the

indicated time points after infection.

(A) C. rodentium CFUs in colon homogenates (n = 10–16/group). Data show pooled results from two or three independent experiments.

(B) Visualization of C. rodentium in the distal colon 14 days after oral infection (top, 403; bottom, 1203). Data are representative of four to six mice for each group.

(C and D) Colon weight (C) and spleen weight (D) after oral infection as shown in (A). Data show pooled results from two or three independent experiments

(n = 10–16/group).

(E and F) Histopathology (E) and crypt length (F) in the distal colon 14 days after oral infection (H&E, 403). Data are pooled from two or three independent exper-

iments (uninfected, n = 3/group; day 14, n = 20–23/group). In (F), white bars represent uninfected mice, and black bars represent day 14 mice.

* p < 0.05, ** p < 0.01, and *** p < 0.001 versus wild-type mice. Data represent means ± SEM in (A) and (C)–(F).
112 Immunity 30, 108–119, January 16, 2009 ª2009 Elsevier Inc.
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A B

Figure 4. IL-17F and IL-17A Are Required for the Induction of b-Defensin Expression during C. rodentium Infection
(A) The expression of inflammatory mediators in the colon 14 days after infection with C. rodentium was determined with semiquantitative RT-PCR.

(B) The expression of antimicrobial peptide in the colon 14 days after infection with C. rodentium was determined with real-time RT-PCR. Data represent the

means ± SEM. The RNA sample was pooled from six to eight mice for each group.

All data are representative of three independent experiments.
IL-17RC Is Highly Expressed in Colonic Epithelial Cells
Two receptor molecules, IL-17RA and IL-17RC, reportedly bind

IL-17A and IL-17F (Toy et al., 2006; Zheng et al., 2008). Because

the binding affinities of IL-17A and IL-17F for these receptors are

different (Hymowitz et al., 2001; Kuestner et al., 2007; Wright

et al., 2008), we examined the tissue distribution of these mole-

cules. As reported previously (Kuestner et al., 2007), IL-17RA

mRNA was highly expressed in such lymphoid tissues as the

thymus, spleen, and LNs (Figure 6A). On the other hand, IL-

17RC mRNA was expressed at high amounts in such nonhema-

topoietic tissues as the colon, small intestine, and lung

(Figure 6A). Consistent with these observations, T and macro-

phage cell lines expressed higher amounts of IL-17RA mRNA

than a colonic EC line, whereas the colonic EC line expressed

higher amounts of IL-17RC mRNA than the T cell line

(Figure 6B). We also found that IL-17RA or Act1 mRNA was

constitutively expressed in Thy1.2+ cells, B220+ cells, CD11c+

cells, CD11b+ cells, peritoneal macrophages, and colonic

epithelial cells (CMT93), whereas IL-17RC mRNA was detected

only peritoneal macrophages and colonic ECs (Figure 6C).

Thus, the tissues distributions of these receptors are strikingly

different, and colonic ECs preferentially express IL-17RC.

We next examined whether IL-17F can transduce signals to

T cells, peritoneal macrophages, or colonic epithelial cells. We

found that IL-17A could induce IL-6 by peritoneal macrophages,

CCL2 by CD4+ T cells, or lipocalin 2 and b-defensin 3 by colonic

epithelial cells (CMT93) in a dose-dependent manner (Figures

6D–6F), and 50 ng/ml of IL-17A was sufficient to induce several

cytokines and chemokines by these cells (Figures 6D–6I and

Figure S10). The cytokine-inducing activity of IL-17A was not

the effect of contaminated LPS, because we found that IL-6

production was observed in IL-17A-treated peritoneal macro-

phages from both C3H/HeN (LPS-sensitive) and C3H/HeJ

(LPS-insensitive) mice (Figure 6D). However, whereas IL-6,

CCL3, and G-CSF production were induced in peritoneal macro-

phages by the treatment with IL-17F (50 ng/ml), this cytokine

could not increase other inflammatory mediators, which was
induced by IL-17A (Figures 6D and 6H and Figure S10). In

contrast, similar to IL-17A, treatment of IL-17F in colonic epithe-

lial cells induced most of inflammatory mediators examined,

although the activity of IL-17F was slightly lower compared to

that of IL-17A (Figures 6F and 6G and Figure S10). IL-17A, but

not IL-17F, also induced several cytokine and chemokine

production in CD4+ T cells. We could not observe any synergy

between IL-17A and IL-17F (Figures 6F, 6G, and 6I and

Figure S10). Thus, these observations suggest that IL-17A and

IL-17F can differentially induce the expression of cytokines

and antimicrobial peptides in a cell-type-specific manner.

DISCUSSION

In this report, we have demonstrated that IL-17A is critical for the

development of DTH, CHS, EAE, CIA, and arthritis in Il1rn�/�

mice, whereas IL-17F is not only dispensable for the induction

of these responses, but also does not have any substantial addi-

tive, synergistic, or compensatory effects to those of IL-17A in

these disorders. These observations suggest that IL-17F has

only low activity compared to IL-17A in these immune

responses, although IL-17A and IL-17F are produced simulta-

neously by Th17 cells and bind the same receptors. In this re-

gard, we found that cytokine-inducing activity of IL-17F from

macrophages or T cells was much lower than IL-17A. Because

IL-17A enhances immune responses by activating T cell priming

(Nakae et al., 2002, 2003b), and induces inflammation by

inducing cytokines from various types of cells including macro-

phages (Da Silva et al., 2008; Jovanovic et al., 1998) and

dendritic cells (Antonysamy et al., 1999; Coury et al., 2008),

this low cytokine-inducing activity of IL-17F on immune cells

may be responsible for the inefficiency of this cytokine in allergic

and autoimmune responses.

We showed that Il17a�/�Il17f�/�mice were sensitive to oppor-

tunistic infection with S. aureus, indicating that IL-17A and IL-17F

are important for host defense against this bacterium. Consistent

with this observation, increased susceptibility to S. aureus was
Immunity 30, 108–119, January 16, 2009 ª2009 Elsevier Inc. 113
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Figure 5. IL-17F and IL-17A Are Produced by Different Cells

(A) Colon, small intestine, and peripheral LNs from wild-type mice were analyzed for IL-17A and IL-17F mRNA expression with real-time RT-PCR. Expression in

LN cells was defined as 1.

(B) The expression of IL-17A and IL-17F in the colons of mice 7 and 14 days after infection with C. rodentium was determined with real-time RT-PCR. The RNA

sample was a pool of samples from four to six mice for each group. The expression in uninfected wild-type mice was defined as 1.

(C and D) Profiles of intracellular IL-17F, IL-17A, and IFN-g expression in colonic PMA- and ionomycin-stimulated lymphocytes from uninfected mice (C) or mice

14 days after infection with C. rodentium (D).

(E and F) The colons and MLNs of C57BL/6J wild-type and Rag2�/� mice 7 days after infection with C. rodentium were analyzed for IL-17A and IL-17F mRNA

expression with real-time RT-PCRs (E) (n = 5–6/group). The expression in wild-type colon was defined as 1. The expression of these cytokines in the colon and

MLNs of Rag2�/� mice was determined as a percentage of the expression in wild-type mice (F).

(G) Whole colons of uninfected wild-type, Rag2�/�, and Il17a�/�Il17f�/�mice were cultured for 24 hr in the presence or absence of 20 ng/ml IL-23. The concen-

trations of IL-17A or IL-17F in supernatant were determined by ELISAs and were normalized to total protein content for each sample (n = 5–8/group). Similar

results were also observed in C.B-17 SCID mice.

(H and I) Splenocytes (5 3 105 cells) (H) or MLNs (1.5 3 105 cells) (I) of wild-type and Rag2�/� mice were cultured in 24- or 48-well plates, respectively, in the

presence or absence of 5 mg/ml LPS and 20 ng/ml IL-23 for 72 hr, and IL-17A and IL-17F amounts in culture supernatants were determined with ELISA.

(J) Colonic epithelial (CD45� and high FSC and SSC; gates R1 and R3) cells and intraepithelial immune cells (CD45+; gate R2) were isolated from the colons of

uninfected wild-type mice with flow cytometry, and the expression of IL-17F and IL-17A was examined with RT-PCR.
114 Immunity 30, 108–119, January 16, 2009 ª2009 Elsevier Inc.
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reported in Il17ra�/� mice (Schwarzenberger and Kolls, 2002)

and subjects with mutations in STAT3, in whom Th17 cell differ-

entiation and function is impaired (Milner et al., 2008). Because

Il17f�/� and Il17a�/� mice showed normal sensitivities to

S. aureus, IL-17A and IL-17F complement each other in this

setting. Furthermore, we showed that IL-17A and IL-17F are

A B C

G H ID

E

F

Figure 6. IL-17RA and IL-17RC Show Different Tissue Distributions

(A and B) The expression of IL-17RA and IL-17RC in tissues from 129/Ola 3 C57BL/6J wild-type mice (A), and different cell lines (B) were determined with real-

time RT-PCR.

(C) The expression of IL-17RA, IL-17RC, and Act1 in different cell populations obtained by MACS sorting was determined with RT-PCR.

(D) Peritoneal macrophages were stimulated for 24 hr with 5–250 ng/ml IL-17A or IL-17F, or 10–100 ng/ml LPS, and IL-6 amounts in the culture supernatants were

determined with ELISAs.

(E) CD4+ T cells from C57BL/6J mice obtained by MACS sorting were stimulated for 48 hr with 5–250 ng/ml IL-17A or IL-17F, and CCL2 in the culture supernatants

was determined with Bio-Plex suspension array system (Bio-Rad).

(F) The expression of lipocalin 2 and b-defensin 3 in colonic epithelial cell line (CMT93) stimulated for 6 hr with 5–250 ng/ml IL-17A or IL-17F individually, or with

combination of 50–250 ng/ml IL-17A and IL-17F, was determined with real-time RT-PCR.

(G–I) Colonic epithelial cell line (CMT93) (G), peritoneal macrophages from C3H/HeJ mice (H), or CD4+ T cells from C57BL/6J mice (I) were stimulated for 24 hr (G

and H) or 48 hr (I) with 50 ng/ml IL-17A or IL-17F individually, or with a combination of 50 ng/ml IL-17A and IL-17F. IL-1b, IL-9, GM-CSF, CCL3, or CXCL1 in the

culture supernatants were determined with the Bio-Plex suspension array system (Bio-Rad). ND denotes not detected. * p < 0.05, ** p < 0.01, and *** p < 0.001

versus medium alone.

All data represent means ± SEM and are representative of three independent experiments.
(K) The expression of IL-17A and IL-17F in mouse colonic epithelial cell line (CMT93 or Colon 26) was examined with RT-PCR.

Data are representative of two (A, B, and K) or three (C–J) independent experiments. Data represent means ± SEM in (E)–(I).
Immunity 30, 108–119, January 16, 2009 ª2009 Elsevier Inc. 115
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also involved in responses against C. rodentium. The bacterial

burdens in the colon after infection with C. rodentium showed

similar increases in Il17f�/�, Il17a�/�, and Il17a�/�Il17f�/� mice,

indicating that deficiency of just one of the IL-17 proteins results

in full susceptibility to C. rodentium infection. Notably, spleno-

megaly and colon hypertrophy, which are associated with severe

colonic inflammation, were more pronounced in Il17f�/� mice

than in Il17a�/� mice, suggesting that IL-17F is more important

than IL-17A in protecting colonic epithelial cells from the patho-

genic effects of this bacterium. The observation that both IL-17A

and IL-17F are required for the protection against C. rodentium

makes clear contrast to the case of S. aureus, infection in which

either IL-17A or IL-17F is enough for the protection, suggesting

that the defense mechanisms against S. aureus and C. roden-

tium infection are different.

We found that b-defensin production was impaired in the in-

fected colons of Il17a�/� and Il17f�/� mice, suggesting both IL-

17A and IL-17F are required for the induction of these molecules

in vivo, although either IL-17A or IL-17F alone can promote b-de-

fensin production from ECs (Kao et al., 2004; Liang et al., 2006).

Because b-defensins play an important role in immune

responses against these pathogens (LeBlanc et al., 2008; Sim-

mons et al., 2002), it seems likely that the defect in b-defensin

production contributes to the increased susceptibility of Il17a�/�

and Il17f�/� mice to C. rodentium. Although these in vivo data

may suggest possible synergistic action between IL-17A and

IL-17F in the defense against C. rodentium, we could not

observe any synergism between these molecules in vitro with

a colon epithelial cell line as the target, suggesting that the

response of this cell line may be different from colon defensin

producer cells in vivo. We also could not observe any synergism

between IL-17A and IL-17F in vivo in the protection against

S. aureus. IL-17A and IL-17F are not required for adaptive

immune responses against C. rodentium, because C. roden-

tium-specific Ab production in Il17f�/�, Il17a�/�, and Il17a�/�

Il17f�/� mice was normal.

We found that IL-17A and IL-17F producer cells in the colon

are different; IL-17F is primarily produced by colonic ECs and

innate immune cells, whereas the major part of IL-17A is

produced by Rag2-dependent cells that are likely to be Th17

cells. Furthermore, our data show that IL-17A production is

markedly induced after bacterial infection, whereas the induction

of IL-17F was not so prominent in infected colons. These obser-

vations suggest that colonic EC- and/or innate immune cell-

derived IL-17F induce antimicrobial peptides in the ECs,

providing protection against initial bacterial invasion and

dissemination. This differential action of IL-17A and IL-17F and

also the apparent synergy between these two molecules in

inducing defensins may explain why these two cytokines are

not complementary in the colonic C. rodentium infection.

It was reported that Il17ra�/� mice show ulcerative syndrome

around mucous membranes of the mouth and eyes as a result of

colonization of staphylococcus species (Schwarzenberger and

Kolls, 2002). These phenotypes closely resemble those

observed in Il17a�/�Il17f�/� mice, suggesting that IL-17RA is

involved in both IL-17A and IL-17F signaling. However, we found

that IL-17RC is highly expressed in colonic epithelial cells,

whereas IL-17RA is preferentially expressed in immune cells

such as macrophages and T cells. Because the binding affinity
116 Immunity 30, 108–119, January 16, 2009 ª2009 Elsevier Inc.
of IL-17F to IL-17RA is much lower than that of IL-17A (Hymowitz

et al., 2001; Wright et al., 2008), and only IL-17F binds to IL-17RC

in the mouse (Kuestner et al., 2007), it seemed likely that IL-17A

and IL-17F differentially use these receptors. In support of this

notion, we showed that the effects of IL-17A and IL-17F are

different among colonic epithelial cells, macrophages, and

T cells; both IL-17A and IL-17F can induce neutrophil chemoat-

tractants and b-defensins in colonic epithelial cells, whereas only

IL-17A can efficiently induce cytokines in macrophages and

T cells. These observations suggest involvement of other forms

of receptors than IL-17RA–IL-17RC heterodimer complex in

the colon. Indeed, IL-17RA and IL-17RC may also form homo-

dimers (Kramer et al., 2006), and IL-17RA interacts with IL-

17RB for IL-25 signaling (Rickel et al., 2008). Thus, in addition

to the difference of producer cells, cell-type-specific IL-17

receptor distribution and the different binding affinities of IL-

17A and IL-17F for these receptors may explain why IL-17A is

important in both allergic and host defense responses and IL-

17F only contributes innate immune responses in epithelial cells.

A recent study of Il22�/� and Il17rc�/� mice, which do not

respond to IL-17A or IL-17F, demonstrated that IL-22, but not

IL-17A and IL-17F, expressed in response to IL-23 is essential

for the early host response against C. rodentium (Zheng et al.,

2008). IL-22 is produced by innate immune cells, such as

dendritic cells, during the C. rodentium infection and induces

the expression of Reg-family antimicrobial proteins in colonic

ECs (Zheng et al., 2008). These observations with Il17rc�/�

mice apparently contradict our results that both IL-17A and

IL-17F are involved in the host defense against C. rodentium,

although our data are compatible with the involvement of IL-

22. Further studies to elucidate the relationship between ligand

and receptor in the IL-17 system and relative contributions of

the bacterial and mouse strains are needed to address these

issues. Furthermore, it remains to be investigated whether other

IL-17A- and IL-17F-producing cells than ECs and Th17 cells,

such as gd T cells (Ivanov et al., 2006; Yang et al., 2008), granu-

locytes (Hue et al., 2006), monocytes (Hue et al., 2006), or mast

cells (Kawaguchi et al., 2004), are also involved in host defense

against C. rodentium.

In conclusion, we have demonstrated the different contribu-

tions of IL-17F and IL-17A in allergic responses and protection

against bacterial infection. Our findings provide insights into

the molecular mechanisms of IL-17A- and IL-17F-mediated

responses and should be useful to the development of new ther-

apeutics for allergic diseases and bacterial infections.

EXPERIMENTAL PROCEDURES

Mice

Il17f�/� and Il17a�/�Il17f�/� mice were generated as shown in Figure S1.

Il17a�/� (Nakae et al., 2002), Il17f�/�, and Il17a�/�Il17f�/� mice on a 129/

Ola 3 C57BL/6J background, or mice backcrossed to C57BL/6J (Nihon

SLC) or BALB/cA mice (CLEA Japan) for eight or four generations, respec-

tively, were used as described. The sexes and ages (2–3 months old) of the

mice were matched in all experimental groups. Il17f�/�Il1rn�/� and Il17a�/�

Il17f�/�Il1rn�/� mice were produced by crossing Il17f�/� and Il17a�/�Il17f�/�

mice with Il1rn�/� mice, which were backcrossed for eight generations to

BALB/cA mice (Horai et al., 2004). Rag2�/� mice were obtained from the

Central Institute for Experimental Animals. C3H/HeJ and C3H/HeN or

C.B.-17 SCID mice were purchased from Nihon SLC or CLEA Japan, respec-

tively. All mice were kept under specific pathogen-free conditions in an
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environmentally controlled clean room at the Center for Experimental Medicine

(The Institute of Medical Science, University of Tokyo). The experiments were

conducted according to the institutional ethical guidelines for animal experi-

ments and the safety guidelines for gene manipulation experiments.

Cell Isolation

Thy1.2+, CD4+, B220+, CD11c+, and CD11b+ cells were isolated from spleens

with an autoMACS (Miltenyi Biotec) after being stained with microbead-

conjugated anti-mouse Thy1.2, CD4, B220, CD11c, and CD11b mAbs (Milte-

nyi Biotec), respectively, according to the manufacturer’s instructions. For

isolation of thioglycollate-elicited peritoneal macrophages, mice were injected

intraperitoneally with 2 ml of 4% thioglycollate (Nissui), and peritoneal cells

were collected by washing with PBS 4 days after injection.

Cell Culture

The mouse T cell line (BW5147), B cell line (X5563), macrophage cell line

(RAW264), and colonic epithelial cell line (CMT93 or Colon26) were cultured

with RPMI 1640 (Sigma) containing 10% FBS. The mouse dendritic cell line

(DC2.4) was cultured with RPMI 1640 containing 10% FBS, HEPES, and

nonessential amino acids (GIBCO). For the measurement of cytokines, chemo-

kines, and antimicrobial peptide amounts, CMT93 cells, peritoneal macro-

phages, or CD4+ T cells were treated with 5–250 ng/ml recombinant mouse

IL-17A or IL-17F (R&D systems) for 6–48 hr.

Measurement of Cytokines, Chemokines, and Antigen-Specific Igs

Concentrations of IFN-g, IL-6 (OptEIA kit, BD PharMingen), IL-17A, and IL-17F

(DuoSet ELISA kit, R&D systems) in culture supernatants were determined with

ELISAs according to the manufacturer’s instructions. IL-1a, IL-1b, IL-9, IL-10,

IL-12/23 p40, IL-12 p70, IL-13, G-CSF, GM-CSF, IFN-g, CXCL1, CCL2, CCL3,

CCL4, and CCL5 amounts in culture supernatants were measured by the Bio-

Plex system (Bio-Rad) following the manufacturer’s instructions. C. roden-

tium-specific Ig amounts in sera were measured as described previously

(Bry and Brenner, 2004).

Flow Cytometry

Cells were stimulated with 50 ng/ml PMA (Sigma), 500 ng/ml ionomycin

(Sigma), and 1 mM monensin (Sigma) for 5 hr. Intracellular cytokine staining

was performed as described previously (Komiyama et al., 2006). Cells were

treated with anti-mouse CD16 and CD32 mAbs (2.4G2) in staining buffer

(HBSS containing 2% FCS and 0.1% sodium azide) to block FcR binding

and then stained with APC-anti-CD4 mAbs (Gk1.5; BioLegend). After washing,

the cells were fixed with 4% paraformaldehyde. After washing with permeabi-

lization buffer (0.1% saponin [Sigma] in staining buffer), cells were incubated

with PE-anti-mouse IFN-g mAbs (XMG1.2; BD PharMingen), PE-anti-mouse

IL-17A mAbs (TC11-18H10; BD PharMingen), or goat anti-mouse IL-17F poly-

clonal Abs (AF2057 or BAF2057; R&D systems). For secondary staining, we

used Alexa Fluor 488-anti-goat IgG (A-11055; Invitrogen), PE-anti-goat IgG

(Santa Cruz), or FITC-streptavidin (BD PharMingen). The cells were analyzed

on a FACSCalibur system (Becton Dickinson) and data were analyzed with

FlowJo software (Tree Star).

Real-Time RT-PCR

Total RNA was extracted with Sepasol reagent (Nacalai Tesque) according to

the manufacturer’s instructions. RNA was denatured in the presence of an

oligo dT primer and then reverse transcribed with the High Capacity cDNA

Reverse Transcription Kit (Applied Biosystems). Quantitative real-time RT-

PCRs were performed with a SYBR Green qPCR kit (Invitrogen) and an iCycler

system (Bio-Rad) with the sets of primers described in Table S2.

Clinical Assessment of Arthritis

Arthritis development in Il1rn�/�mice was monitored by macroscopic evalua-

tion as described previously (Horai et al., 2004). Arthritis development in each

paw was graded by macroscopic evaluation as follows: 0, no change; 1, mild

swelling; 2, obvious joint swelling; and 3, severe joint swelling and ankylotic

changes.
S. aureus Infection

Bacteria S. aureus 834 was prepared as described (Nakane et al., 1995).

Bacteria were cultured on tryptic soy agar (Difco) for 12 hr at 37�C, inoculated

into tryptic soy broth (Difco), and incubated for another 12 hr. The organisms

were collected by centrifugation and resuspended in PBS. The concentration

of resuspended cells was adjusted spectrophotometrically at 550 nm. Mice

were infected intravenously with 200 ml of a solution containing 1 3 107 CFU

of viable S. aureus cells in PBS. For determination of the bacterial burden in

the infected tissues, kidneys were homogenized, and diluted in 10-fold steps

in sterile PBS. Bacterial CFU was determined by plating each dilution on tryptic

soy agar after culture for 12 hr at 37�C.

C. rodentium Infection

C. rodentium infections were performed as described previously (Nagai et al.,

2005). In brief, 129/Ola 3 C57BL/6J mice were inoculated with 200 ml of

a bacterial suspension (2 3 108 CFU/head) via an oral gavage. For the colony

formation assays, colons were harvested and homogenized, and serially

diluted homogenates were plated on MacConkey agar (Difco). For histological

analysis, colons were fixed with 4% paraformaldehyde in PBS at 4�C overnight

and frozen in tissue-freezing medium (Leica Jung). Frozen sections were

prepared and stained with anti-C. rodentium sera as described previously

(Nagai et al., 2005).

Statistics

Unless otherwise specified, all results are shown as mean and the standard

error of the mean (SEM). Unpaired Student’s t tests, Mann-Whitney’s U tests,

or c2 tests were used to statistically analyze the results. Differences were

considered significant at p < 0.05.

SUPPLEMENTAL DATA

Supplemental Data include ten figures, two tables, and Supplemental Experi-

mental Procedures and can be found with this article online at http://www.

immunity.com/supplemental/S1074-7613(08)00554-2.
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