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Abstract

We study some structural and topological properties of the frontiers of objects in a certain class
of discrete spaces, in the framework of simplicial complexes and partial orders. In a previous work,
we introduced the notion of frontier order, which allows to define the frontier of any object in an
n-dimensional space. The main goal of this paper is to exhibit the links which exist between frontier
orders and the notion of derived neighborhood as introduced in the framework of piecewise linear
topology. In particular, we prove that the derived subdivision of the frontier order of an objectX in a
“regular” n-dimensional space is equal to the frontier of the derived neighborhood ofX, and that this
frontier is a union of(n− 1)-dimensional surfaces, for any dimensionn.
© 2004 Elsevier B.V. All rights reserved.
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0. Introduction

In many applications stemming from digital image processing, geometrical modeling and
computer graphics, the notion of frontier of discrete objects plays a central role.

We are interested in certain topological and structural properties of frontiers. In the
continuous spaceRn, we remark that the boundaries of certain “well behaved” subsets
of Rn, such as convexn-polytopes, are topological(n− 1)-manifolds. In the framework of
piecewise linear topology, we may define ann-dimensional spaceas a simplicial complex
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which is a combinatorialn-manifold, and we callobjectany subcomplex of this space.
Then, it is possible to prove that the boundary of a derived neighborhood of any object is a
combinatorial(n− 1)-manifold[13].

Several purely discrete frameworks have been used in order to study topological prop-
erties of objects in discrete spaces (see e.g.,[17,14,7,21,19,4]) Here, we follow an ap-
proach based on the notions of (abstract) simplicial complex and partial order[1–3,20].
Instead of combinatorial manifolds, we consider the notion ofn-dimensional surfaces
(or n-surfaces for short) which has been introduced by Evako et al.[11,12,14]. The no-
tion of combinatorial manifold is complicated, in particular, the problem of recognizing
a combinatorial manifold is difficult. On the opposite, the recognition of ann-surface is
straightforward.

In previous works[8,9], we introduced the notion of frontier order, which allows to define
the frontier of any object in ann-dimensional space. The main goal of this paper is to exhibit
the links which exist between frontier orders and the notion of derived neighborhood. In
particular, we prove that the derived subdivision of the frontier order of any objectX is
equal to the frontier of the derived neighborhood ofX. Our second main result is a theorem
which may be stated informally as follows: the frontier of the derived neighborhood of any
object in ann-surface is a union of disjoint(n− 1)-surfaces, for anyn.

1. Partially ordered sets and simplicial complexes

1.1. Partially ordered sets

Let us first introduce the notations that we will use in this article. IfX is a set andS a
subset ofX, when no confusion may occur we denote byS the complement ofS in X. We
write S ⊂ X if S is a subset ofX andS �= X, we writeS ⊆ X if S ⊂ X or S = X. If � is
a binary relation onX, i.e., a subset of the cartesian productX × X, theinverse of� is the
binary relation{(x, y) ∈ X × X, (y, x) ∈ �}. For any binary relation�, �� is defined by
�� = �\{(x, x), x ∈ X}. For eachx of X, �(x) denotes the set{y ∈ X, (x, y) ∈ �} and for
any subsetSof X, �(S) denotes the set{y ∈ �(s), s ∈ S}.

An order [2,5,6,15], also calledpartially ordered setor poset, is a pair|X| = (X, �X)
whereX is a set and�X is a reflexive, antisymmetric and transitive binary relation onX.
For example, the simplicial complex depicted inFig. 1(1) may be interpreted as an order:
the elements of this order are the triangles, the edges and the vertices, and the relation�X
is the inclusion relation. Letx be an element ofX, the set�X(x) is called the�X-adherence
of x. We denote by�X the inverse of�X and by�X the union of�X and�X. The set�X(x)
is called the�X-neighborhood of x, or simply theneighborhood of xwhen no confusion
may arise. We say that two elementsx, y of X areneighbors, or comparable, if y ∈ �X(x).
If y ∈ �X(x) then we say thaty is under xand thatx is above y.

Let x0 andxn be two elements ofX, apath fromx0 to xn in |X| is a sequencex0, . . . , xn
of elements ofX such that for alli ∈ [1 . . . n], xi ∈ �X(xi−1). A connected component of
|X| is a subsetC of X such that for allx, y ∈ C, there exists a path fromx to y in C, and
which is maximal for this property.

Let x be an element of the order|X|, therank of x in|X| is the number�(x, |X|) such that
�(x, |X|)= 0 if ��

X(x)=∅ and�(x, |X|)= Max{�(y, |X|)+ 1, y ∈ ��
X(x)} otherwise. The
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Fig. 1. Fundamental notions for simplicial complexes: (1) a simplicial complexX, in which s is a 2-simplex,
t a 1-simplex andu a 0-simplex, (2) depictŝs, t̂ and û, which are equal to�X(s), �X(t) and �X(u), re-
spectively, (3) depictsstar(s,X), star(t, X) and star(u,X), which are equal to�X(s), �X(t) and �X(u),
respectively, (4) depictŝstar(s,X), ŝtar(t, X) and ŝtar(u,X), which are equal to�X(�X(s)), �X(�X(t)) and
�X(�X(u)), respectively, (5) depictssandlink(s,X) (which is empty),t andlink(t, X) (two isolated 0-simplexes)
andu andlink(u,X), (6) depicts�X(s), �X(t) and�X(u), (7) depicts a 1-complexYand two 0-complexesX and
Z, (8) depicts the 2-complexX ◦ Y and the 1-complexX ◦ Z, (9) depicts the 3-complex(X ◦ Y ) ◦ Z, which is
equal(X ◦ Z) ◦ Y .
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rank of|X| is the number�(|X|) such that�(|X|)= Max{�(x, |X|), x ∈ X}. Any element
of an order is called apointor ann-element, n being the rank of this point.

An order|X| is countableif X is countable, it islocally finite if, for eachx ∈ X, �X(x)
is a finite set. ACF-order is a countable locally finite order. In the following, we consider
only CF-orders.

Let |X| = (X, �X) and|Y | = (Y, �Y ) be two orders,|X| and|Y | areorder isomorphicif
there exists a bijectionf : X → Y such that, for allx1, x2 ∈ X, x1 ∈ �X(x2) ⇔ f (x1) ∈
�Y (f (x2)).

If |X| = (X, �X) is an order andS is a subset ofX, thesub-order of|X| relative to Sis
the order(S, �S), with �S = �X ∩ (S × S). When no confusion may arise, we also denote
by |S| the order(S, �S).

1.2. Simplicial complexes

Let� be a finite set, any non-empty subset of� is called asimplex.A simplexsconstituted
of (n + 1) elements of� is called ann-simplex. Any non-empty subset of a simplexs is
called aface of s. A proper face of sis a face ofswhich is not equal tos. Let X be a family
of simplexes of�, we say thatX is asimplicial complexif it is closed by inclusion, which
means that, ifs belongs toX, then any face ofs also belongs toX. Let X be a non-empty
simplicial complex, we say thatX is a (simplicial) n-complexif all the simplexes ofX are
m-simplexes withm�n, and if at least one simplex ofX is ann-simplex. The subset of
� which is the union of all the simplexes ofX is called thesupport of X. The simplicial
complexes we just defined are often known asabstract simplicial complexes, as opposed to
other notions of complexes based upon an underlying Euclidean space.

To any simplicial complexX, we can associate a canonical order|X| = (X, �X) where
�X is the inclusion relation:t ∈ �X(s) means thatt ⊆ s. In this paper, we will often refer
to the canonical order associated to a simplicial complex, especially when it allows simpler
formulations or proofs. LetX be a simplicial complex and lets ∈ X. We observe that�X(s)
does not depend onX since any simplicial complex is closed by inclusion. Thus, we will
often write� instead of�X when discussing about simplicial complexes. We say that the
simplicial complexX is connectedif the order|X| is connected. We can easily see that for
anyn-simplexs of X, for anyn�0, we have�(s, |X|)= n.

The notions of boundary, open star, closed star, join and link are fundamental in the
framework of simplicial complexes. We give below their definitions and their interpretations
in terms of order. We show some illustrations inFig. 1.

• Let s be a simplex, theclosure of s, denoted bŷs, is the simplicial complex consisting
of s and all its faces. In other words,ŝ = �(s).
By extension, ifS is a set of simplexes, theclosure of Sdenoted bŷS is the union of the
closures of its simplexes. In other words,Ŝ = �(S).

• Let sbe a simplex, theboundary of sis constituted by all the proper faces ofs, it is equal
to ��(s).

• Let s be a simplex of a simplicial complexX; the (open) star of s in Xis defined as
star(s,X)= {t ∈ X, s ⊆ t}. Thusstar(s,X) is equal to�X(s). Theclosed star of s in
X is defined as the closure of the star ofs in X. In terms of order, we havêstar(s,X)=
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�X(�X(s)). Notice that the closed star is always a simplicial complex while the open
star is not.

• Two simplexes arejoinableif their intersection is empty. Ifsandt are joinable simplexes,
thesimplicial join of s and tis defined ass ◦ t = s ∪ t . Two simplicial complexesX and
Y are said to bejoinable if every simplex ofX is joinable with every simplex ofY; thus
X andY are joinable if and only if the intersection of their supports is empty. IfX andY
are joinable, the (simplicial) join of X and Yis defined asX ◦ Y =X∪ Y ∪ {s ◦ t, s ∈ X,
t ∈ Y }. It can easily be seen that the join of two simplicial complexes is always a
simplicial complex, and that the join operation is associative and commutative.

• Let s be a simplex of a simplicial complexX; the link of s in Xis defined as the set of
all simplexest in X such that the join oft ands belongs toX, that is,link(s,X)= {t ∈
X, s ◦ t ∈ X}. It can be easily seen that the link of a simplex in a simplicial complex is
always a (sometimes empty) simplicial complex. In terms of order relation, the link of
s in X is order isomorphic to��

X(s), as proved in[10].

2. Discrete surfaces

2.1. Definition of n-surfaces in the framework of orders

The main results of this article are based on a notion ofn-dimensional discrete sur-
face proposed by Evako, Kopperman and Mukhin[11,12,14]. Suchn-dimensional surfaces
have been proved to verify discrete analogs of the Jordan–Brouwer theorem inZ2 [16]
andZ3 [18] equipped with the Khalimsky topology[15].

Let |X| = (X, �X) be a non-empty CF-order.

• The order|X| is a 0-surfaceif X is composed of exactly two pointsx andy such that
y /∈ �X(x) andx /∈ �X(y).

• The order|X| is ann-surface, n>0, if |X| is connected and if, for eachx in X, the order
|��
X(x)| is an(n− 1)-surface.

For technical reasons, we will say that|X| is a(−1)-surfaceif X = ∅.

2.2. Definition of n-surfaces in the framework of simplicial complexes

We say that a simplicial complexC is ann-surface, for anyn ∈ N, if the order(C,⊆) is
ann-surface. The following property shows that, in the framework of simplicial complexes,
n-surfaces may be characterized by a simpler condition based on the link operator.

Property 1. A non-empty simplicial complex C is an n-surface, n>0, if and only if C is
connected and, for each0-simplex s in C, link(s, C) is an(n− 1)-surface.

The proof of this property is based on the two following properties, which we also use
later in this article:

Property 2. Let |X|= (X, �X) be an order. Then, |X| is an n-surface if and only if, for any
x in X, |��

X(x)| is a(k−1)-surface and|��
X(x)| is an(n−k−1)-surface, withk=�(x, |X|).
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Property 3. Let S be an n-simplex, then��(S) is an(n− 1)-surface.

Properties 1, 2 and 3 are proved in[10].

2.3. Theorems related to n-surfaces and simplicial complexes

The following theorem is an important tool for demonstrating properties related to
n-surfaces in the framework of simplicial complexes. Results similar to Theorem 4 have
been obtained by Evako et al.[12] in a framework based on graphs, and by ourselves in the
framework of orders[10].

Theorem 4. Let the simplicial complexesC1 andC2 be, respectively, an n-surface and an
m-surface(n,m�0).Then the simplicial complexC =C1 ◦C2 is an(n+m+ 1)-surface.

Proof. Let us first consider the case whereC1 andC2 are both 0-surfaces, then any point
of C has a link composed of two isolated points, thusC is a 1-surface (the connectedness is
obvious).

Assume now that the property is true for everyn andm such thatn + m�d, d�0, and
let us prove it for(n+ 1) andm (which, by symmetry, will also prove it forn and(m+ 1),
and, by induction, for anyn,m�0):

• Let x be a 0-simplex ofC, according to the definition of the join operator,x is either a
0-simplex ofC1 or a 0-simplex ofC2.

• If x is a simplex ofC1, then link(x, C) = link(x, C1) ◦ C2 (see Lemma 14 in the
Appendix). Sincelink(x, C1) is an n-surface (by Property 1,C1 being an(n + 1)-
surface) andC2 is anm-surface (by hypothesis),link(x, C) is an(n+m+ 1)-surface
(by induction hypothesis).

• If x is a simplex ofC2, thenlink(x, C)=link(x, C2)◦C1 (still according to Lemma 14).
Thus, eitherC2 is a 0-surface, in which caselink(x, C)=C1 is an(n+1)=(n+m+1)-
surface, orlink(x, C2) is an(m−1) surface, in which caselink(x, C) is an(n+m+1)-
surface (by induction hypothesis).

• Moreover, the connectedness ofC is guaranteed by the definition of the simplicial join,
thus, by Property 1,C is an (n + m + 2)-surface: the property is true for(n + 1)
andm. �

3. Subcomplex, border and frontier

Let X be a simplicial complex, and letYbe a subset ofX. If Y is a simplicial complex then
it is called asubcomplex of X.

LetXbe a simplicial complex with support�, and letYbe a subcomplex ofX, with support
�′ ⊆ �. We say thatY is afull subcomplex of Xif every simplex ofX which is a subset of�′
also belongs toY. The notions of subcomplex and full subcomplex are illustrated inFig. 2.

One can easily verify the following property, which states that there is a unique full
subcomplex associated to each subset of the support of a simplicial complex.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Subcomplex, full subcomplex, simplicial complement and border: (a) a simplicial complexX, (b) a subcom-
plexY1 of X (black dots, bold edges and dark triangles), which is not a full subcomplex ofX, (c) a full subcomplex
Y2 of X (black dots, bold edges and dark triangles), (d) the simplicial complementỸ1 of Y1 (white dots, dotted
edges and light triangles), (e) the simplicial complementỸ2 of Y2 (white dots, dotted edges and light triangles),

which is equal toỸ1 sinceY1 andY2 have the same support. Notice that˜̃
Y2 =Y2 (see Proposition 6), (f) the border

�(Y2) (black dots, bold edges).

Property 5. Let X be a simplicial complex of support�. Let �′ be a subset of�. The
subcomplex Y of X defined byY = {y ∈ X, y ⊆ �′} is the unique full subcomplex of X with
support�′.

Let X be a simplicial complex with support�, and letY be a subcomplex ofX, with
support�′ ⊆ �. Thesimplicial complement of Y in X, denoted by compl(Y,X) or simply
by Ỹ when no confusion may occur, is the simplicial complex composed of all the sim-
plexes ofX which are subsets of�\�′, that is,Ỹ = compl(Y,X) = {s ∈ X, s ⊆ �\�′}.
We can easily see that the previous expression indeed defines a simplicial complex, the
support of which is�\�′. The simplicial complement ofY can also be expressed as
Ỹ = {s ∈ X, Y does not contain any face ofs}. The notion of simplicial complement is
illustrated inFig. 2d,e.

We can deduce from Property 5 that the simplicial complement of any subcomplex ofX

is a full subcomplex ofX. Furthermore, sincẽ̃Y = {s ∈ X, s ⊆ �′}, the following property
also follows easily from Property 5 (see alsoFig. 2d,e).

Property 6. Let X be a simplicial complex, and let Y be a subcomplex of X. We havẽỸ =Y
if and only if Y is a full subcomplex of X.

Let X be a simplicial complex, and letY be a subcomplex ofX. Theborder of Y in Xis
the set of elements ofY which are neighbors of some element ofX\Y , in other words, the
set�(Y,X) = {y ∈ Y, �X(y) ∩ (X\Y ) �= ∅}. It may be easily seen that�(Y,X) = {y ∈
Y,�X(y) ∩ (X\Y ) �= ∅} = Y\{y ∈ Y,�X(y) ⊆ Y }.
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When no confusion may occur, we omit the reference toX and we write�(Y ) = �(Y,X).
It can easily be seen that the border of any subcomplex ofX is a simplicial complex.
In Fig. 2f, we see the border of the subcomplex ofFig. 2c.

We can see that any subcomplexY of a complexX gives birth to five remarkable sets of
simplexes:Y, �(Y ), Ỹ , �(Ỹ ) which are subcomplexes ofX, and the reminderX\(Y ∪ Ỹ )
(in Fig. 2d,e, this reminder is depicted by medium gray triangles and thin edges). We
denote by�(Y,X), or simply by�(Y ) when no confusion may occur, the setX\(Y ∪ Ỹ ).
Obviously,�(Y ) is not a simplicial complex, thus it is not a subcomplex ofX. The order
|�(Y )|= (�(Y ),⊆) is named thefrontier order relative to Y in X. By abuse of terminology,
we also callfrontier orderthe set�(Y ). It should be noted that the notion of frontier order
may be extended to any CF-order, and that this definition is equivalent, up to an order
isomorphism, to the definition proposed in[9].

We can easily deduce from Property 6 that, ifY is a full subcomplex ofX, then the frontier
order�(Y ) is “symmetrical” betweenY andỸ , that is,�(Y )= �(Ỹ ).

LetY be a subcomplex of the simplicial complexX, thesimplicial neighborhood of Y in
X is defined as the union of the closed stars of the simplexes ofY in X, that is,N(Y,X) =⋃
s∈Y ŝtar(s,X). When no confusion may occur, we writeN(Y ) = N(Y,X). In terms of

order relation,N(Y,X)= �X(�X(Y )). The notion of simplicial neighborhood is illustrated
in Fig. 3a,b.

(a) (b) (c)

(d)

Fig. 3. Simplicial neighborhood and its border: (a) a simplicial complexX (all the triangles, edges and vertices)
and a full subcomplexYof X (one bold edge and two black vertices), (b) in dark grey and bold black,N(Y ), (c) in
bold black,�(N(Y )). We can see that�(N(Y )) = �X(�X(Y ))\�X(Y ), (d) a complexX composed of the proper
faces of a 3-simplex (tetrahedron), and a subcomplexYof S(in dark grey and bold black). We can see that�(N(Y ))
is empty, while�X(�X(Y ))\�X(Y ) is composed of one 0-simplex (in white).



X. Daragon et al. / Discrete Applied Mathematics 147 (2005) 227–243 235

4. Subdivision, derived neighborhoods and derived frontiers

In the previous section, we defined the border�(Y ) of a subcomplexYof a complexX. We
saw that�(Y ) is always a simplicial complex, but this border is not symmetrical between
Y and Ỹ , more precisely,�(Y ) �= �(Ỹ ). On the other hand, we introduced the frontier
order ofY, which is symmetrical but which is not a simplicial complex. The subdivision
operation will allow us to define the derived frontier, which is both a simplicial complex
and symmetrical betweenY andỸ .

The notion of derived subdivision, that we present now, is especially interesting for us
since it can be applied not only to simplicial complexes, but more generally to any partially
ordered set.

Let |X| be an order, achain of|X| is a fully ordered non-empty subset ofX, i.e., a non-
empty subsetYof X such that any two elements ofYare comparable. Ann-chainis a chain
composed ofn+ 1 elements.

The derived subdivision of|X| is the set, denoted byX1, constituted by all the chains
of |X|. The notion of derived subdivision is illustrated inFig. 4. Notice that for any order
(X, �X), the derived subdivisionX1 is always a simplicial complex, the support of which
is X. We also callX1 thechain complex of X. Let X be a simplicial complex, thederived
subdivision of Xis the derived subdivisionX1 of the order(X,⊆).

It can be easily verified that for any two orders|Y |, |Z| we have[Y ∩ Z]1 = Y 1 ∩ Z1,
but in general[Y ∪ Z]1 �= Y 1 ∪ Z1 and[Y\Z]1 �= Y 1\Z1. Furthermore, ifY andZ are
simplicial complexes, then we have[Y ∩ Z]1 = Y 1 ∩ Z1 and[Y ∪ Z]1 = Y 1 ∪ Z1, but in
generalY\Z is not a simplicial complex.

LetXbe a simplicial complex, and letYbe a subcomplex ofX. Thederived neighborhood
of Y in X is defined as the simplicial neighborhood ofY 1 in X1, that is:N(Y 1, X1) =⋃
y1∈Y 1 ŝtar(y1, X1) = �X1(�X1(Y 1)) (seeFig. 5). When no confusion may occur, we

simply writeN(Y 1)=N(Y 1, X1).
Observe that�X1(Y 1) is composed of the chains ofX which contain at least one simplex

of Y, that is,

�X1(Y
1)= {c ∈ X1, ∃y ∈ c, y ∈ Y }. (1)

The following lemma gives us an expression ofN(Y 1) which will be useful in the sequel.

{{a,b,c}}

{{b}}

{{b},{a,b}}

{{a,b}}

{b}

{a,b}

{a}

{a,b,c}

{ c}

derived subdivision
{{b},{a,b},{a,b,c}}

Fig. 4. Graphical illustration of the notion of derived subdivision. Left: the initial complexX composed of the
closure of the simplex{a, b, c}. Right: the subdivisionX1 constituted by the chains ofX.
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Y ⊂  X ˜ partition of X1

(a) (b) (c)

N (Y1) N (Y1)˜  [∆ (Y)]1

(d) (e) (f)

Y, ∆ (Y),Y

Fig. 5. Example based upon a full subcomplex: (a) a simplicial complexX and a full subcomplexY of X, (b)
partition ofX betweenY (light gray, white edges), its simplicial complementỸ (dark gray, black lines) and the
set�(Y ) (average gray, dashed lines), which is not a simplicial complex, (c) the derived subdivisionX1 of X. In
light gray and white:Y1, in dark gray and black (with solid edges):Ỹ1, (d) the derived neighborhoodN(Y1),
(e) the derived neighborhoodN(Ỹ1), (f) the derived frontier ofY, sinceY is a full subcomplex ofX we have:
[�(Y )]1 = �(N(Y1))=N(Y1) ∩N(Ỹ1)= �X1(�X1(Y

1))\�X1(Y
1).

Lemma 7. Let X be a simplicial complex, let Y be a subcomplex of X and let�′ be the
support of Y. Then, we haveN(Y 1)= {c ∈ X1,∀x ∈ c, x ∩ �′ �= ∅}.

Proof. Observe thatN(Y 1) = �X1(�X1(Y 1)) = {c ∈ X1, ∃c′ ∈ �X1(Y 1), c ⊆ c′} =
{c ∈ X1, ∃c′ ∈ X1, ∃y ∈ Y, y ∈ c′, c ⊆ c′} (from (1)).
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If c′ is a chain ofX1 which containsyand includesc, then we see easily thatc∪{y} is also
a chain ofX1 which containsy and includesc, thusN(Y 1) = {c ∈ X1, ∃y ∈ Y, c ∪ {y} ∈
X1}= {c ∈ X1,∀x ∈ c, x ∩�′ �= ∅} (anyx of c either is included iny or includesy, in both
casesx ∩ �′ �= ∅). �

Let us now focus on the border of the neighborhood of a full subcomplex. We can see
in Fig. 3a,b,c a simple case, where�(N(Y )) can be expressed as�X(�X(Y ))\�X(Y ). It
can easily be proved that for any full subcomplexY of a simplicial complex, we have
�(N(Y )) ⊆ �X(�X(Y ))\�X(Y ). The converse is false in general, see a counter-example in
Fig. 3d. The following lemma shows that the equality holds for the border of the derived
neighborhood.

Lemma 8. Let X be a simplicial complex and let Y be a full subcomplex of X. We have
�(N(Y 1))= �X1(�X1(Y 1))\�X1(Y 1).

Proof. From the very definitions of the border and the simplicial neighborhood, we see that
�(N(Y 1))= �X1(�X1(Y 1))\A, whereA= {c ∈ �X1(�X1(Y 1)),�X1(c) ⊆ �X1(�X1(Y 1))}.

We have to prove thatA = �X1(Y 1). Let c ∈ �X1(Y 1), thus�X1(c) ⊆ �X1(Y 1) and
obviously�X1(c) ⊆ �X1(�X1(Y 1)), thus�X1(Y 1) ⊆ A.

Conversely, letc ∈ A, and suppose thatc does not belong to�X1(Y 1). Letx be the lowest
element ofc. Let�′ be the support ofY. From Lemma 7 we know thatx∩�′ �= ∅. Moreover,
sincec /∈�X1(Y 1), we can see (from (1)) thatx ∈ X\Y . Thus,x is not a 0-simplex ofX and
some 0-simplexy0 ∈ Y must exist such thaty0 ⊂ x. However, if every 0-simplexx0 of X
such thatx0 ⊂ x were to belong toY, sinceY is a full subcomplex we would havex ∈ Y .
Thus, some 0-simplexx0 ∈ X\Y exists such thatx0 ⊂ x. Then,{x0} ∪ c belongs to�X1(c)

(it obviously containsc, and sincex is the lowest element ofc, it is indeed a chain) but not
to �X1(�X1(Y 1)) (according to Lemma 7, sincex0 ∩ �′ = ∅), a contradiction. �

Notice that the latter property does not hold ifY is not a full subcomplex. A counter-
example is given inFig. 6.

From the previous lemma, we derive a property which highlights the symmetry of the
border ofN(Y 1) betweenY andỸ (seeFig. 5d,e,f).

Property 9. Let X be a simplicial complex and let Y be a full subcomplex of X. We have
�(N(Y 1))=N(Y 1) ∩N(Ỹ 1).

Proof. Let � be the support ofX, let �′ be the support ofY, and let�′′ = �\�′. From
Lemma 8, we have�(N(Y 1)) = �X1(�X1(Y 1))\�X1(Y 1), thus �(N(Y 1)) = N(Y 1) ∩
[X1\�X1(Y 1)]. We see that:X1\�X1(Y 1) = {c ∈ X1,∀x ∈ c, x��′} (from (1)), thus
X1\�X1(Y 1)={c ∈ X1,∀x ∈ c, x∩�′′ �= ∅}=N(Ỹ 1) (by Lemma 7); and thus�(N(Y 1))=
N(Y 1) ∩N(Ỹ 1). �

Let X be a simplicial complex, and letYbe a full subcomplex ofX. Recall that the frontier
order ofY in X has been defined as�(Y ) = X\(Y ∪ Ỹ ). Thederived frontier of Y in Xis
defined as the derived subdivision of the frontier order ofY in X, that is:[�(Y )]1.
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Z ⊂ X

Z ⊂ X partition of X1 �(N(Z1)

(a) (b) (c)

αX1(βX1(Z1)) \ βX1(Z1)
˜̃

�(N([Z]1))
˜̃

(d) (e) (f)

Fig. 6. The case of a non-full subcomplex: (a) the simplicial complexX, and a subcomplexZ of X which is not full,
(b) the derived subdivisionX1 of X. In light gray and white:Z1, in dark gray and black (with solid edges):Z̃1,
(c) the border�(N(Z1)), (d)�X1(�X1(Z

1))\�X1(Z
1), which differs from�(N(Z1)), (e) the simplicial complex

X and the full subcomplex̃̃Z of X, which is the unique full subcomplex ofX having the same support asZ, (f) the

border�(N([ ˜̃
Z]1)), which is equal to�X1(�X1([ ˜̃

Z]1))\�X1([ ˜̃
Z]1) since ˜̃

Z is a full subcomplex ofX. We notice

also that�(N([ ˜̃
Z]1))= �(N(Z1)).
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The following result shows a strong link between the notion of derived neighborhood
and the notions of frontier order and derived frontier.

Theorem 10. Let X be a simplicial complex and letY be a full subcomplex of X.The border of
the derived neighbohood ofY is equal to the derived frontier ofY, that is:�(N(Y 1))=[�(Y )]1.

Proof. Let � be the support ofX, let �′ be the support ofY, and let�′′ = �\�′. Using
Proposition 9 and Lemma 7 we see that�(N(Y 1)) = N(Y 1) ∩ N(Ỹ 1) = {c ∈ X1,∀x ∈ c,
x ∩ �′ �= ∅} ∩ {c ∈ X1,∀x ∈ c, x ∩ �′′ �= ∅} = {c ∈ X1,∀x ∈ c, x ∩ �′ �= ∅ and
x ∩ �′′ �= ∅} = {c ∈ X1,∀x ∈ c, x /∈Y andx /∈ Ỹ } = [X\(Y ∪ Ỹ )]1 = [�(Y )]1. �

5. Derived neighborhoods andn-surfaces

In this section we present the second main result of this paper, which states that the border
of the derived neighborhood of any full subcomplex of ann-surface is composed of disjoint
(n− 1)-surfaces.

The following property, which reveals a strong link between the structure of an order and
the structure of its chain complex, will be used to obtain this result.

Property 11. Let |X| be an order. If|X| is an n-surface then the simplicial complexX1 is
an n-surface.

Proof. Let |X| be a 0-surface, thenX is of the form {a, b}, thusX1 = {{a}, {b}} is a
0-surface. Let us now suppose that the property is true for allk such that 0�k <n, and let
us prove it forn. SinceX1 is a connected simplicial complex (the connectedness ofX1 is
a direct consequence of the connectedness ofX), it is sufficient (by Property 1) to prove
that thelink of any 0-simplexs = {x} of X1 is an(n− 1)-surface. By the definition of the
link, we havelink(s,X1) = {c ∈ X1, c ◦ s ∈ X1}. Sincec ◦ s is a chain, any elementy
of c is comparable tox. Note also that, ify is underx, then anyz abovex is also abovey.
So any chain oflink(s,X1) can be expressed either as a chain of elements strictly under
x, a chain of elements strictly abovex, or as the join (union) of a chain of elements strictly
underx and a chain of elements strictly abovex (and any such chain obviously belongs to
link(s,X1)); thus:link(s,X1)= [��

X(x)]1 ◦ [��
X(x)]1. By Property 2, we know that��

X(x)

is a(k − 1)-surface and that��
X(x) is an(n− k − 1)-surface, withk = �(x, |X|). Then, by

induction hypothesis,[��
X(x)]1 is a(k− 1)-surface and[��

X(x)]1 is an(n− k− 1)-surface,
and by Theorem 4,link(s,X1) is an(n− 1)-surface. �

Before proving our main result, let us first consider the case where the complexX is the
boundary of ann-simplex.

Property 12. Let S be an n-simplex withn>1, let X be the boundary of S, and let Y be a
full subcomplex of X. Then, �(N(Y 1, X1)) is an(n− 2)-surface.

Proof. Let � be the support ofX, let�′ be the support ofY, and let�′′ =�\�′. Let us first
consider the case whereS is a 2-simplex{a, b, c}. We can assume that�′ = {a} (the case
�′ = {b, c} is similar) and then�(N(Y 1, X1))= {{{a, b}}, {{a, c}}}, which is a 0-surface.
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Let us now suppose that the property is true for anyi-simplex, with 2� i < n, and let us
prove it for ann-simplex.

• We first need to prove that the link of any 0-simplex in�(N(Y 1, X1)) is an(n − 3)-
surface. Lets = {x} be such a 0-simplex. Remind that, according to Theorem 10:

�(N(Y 1, X1))= {c ∈ X1,∀z ∈ c, z ∩ �′ �= ∅ andz ∩ �′′ �= ∅}. (2)

Thusx is ak-simplex ofXsuch that�′∩x �= ∅ and�′′∩x �= ∅ (and obviously, 0<k<n).
By definition:
link(s, �(N(Y 1, X1)))= {c ∈ �(N(Y 1, X1)), c ◦ s ∈ �(N(Y 1, X1))}.

In other terms,link(s, �(N(Y 1, X1))) is composed by all the elementsc of X1 such
that for all z ∈ c, we havez ∈ ��

X(x), �′ ∩ z �= ∅ and�′′ ∩ z �= ∅. It should be noted
that any elementw of X abovex verifies both�′ ∩ w �= ∅ and�′′ ∩ w �= ∅. So, since
[��
X(x)]1 ⊆ �(N(Y 1, X1)), any element oflink(s, �(N(Y 1, X1))) can be expressed either

as an element of[��
X(x)]1, an element of�(N(Y 1, X1)) ∩ [��(x)]1, or as the simplicial

join of an element of[��
X(x)]1 and an element of�(N(Y 1, X1)) ∩ [��(x)]1. Thus,

link(s, �(N(Y 1, X1)))= [��
X(x)]1 ◦ (�(N(Y 1, X1)) ∩ [��(x)]1). (3)

Then (from (2)):

�(N(Y 1, X1)) ∩ [��(x)]1 = {c ∈ X1,∀z ∈ c, z ∩ �′ �= ∅, z ∩ �′′ �= ∅} ∩ [��(x)]1
= {c ∈ [��(x)]1,∀z ∈ c, z ∩ �′ �= ∅, z ∩ �′′ �= ∅}
= �(N([Y ∩ ��(x)]1, [��(x)]1)). (4)

SinceX is an (n − 1)-surface (Property 3), we deduce from Properties 2 and 11 that
��
X(x) and [��

X(x)]1 are (n − k − 2)-surfaces. It can be easily verified thatY ∩ ��(x)
is a full subcomplex of��(x), furthermore��(x) is the boundary of ak-simplex with
k <n. Thus, by induction hypothesis at rankk <n, �(N([Y ∩ ��(x)]1, [��(x)]1)) is a
(k − 2)-surface. Consequently, by (3), (4) and Theorem 4, we deduce that the link of any
0-simplex of�(N(Y 1, X1)) is an(n− 3)-surface.

• We must now prove that�(N(Y 1, X1)) is connected. Letsi and sj be two elements
of �(N(Y 1, X1)), let xi be a simplex ofsi and letxj be a simplex ofsj . Then, there
exist four elements of� (not necessarily distinct)a, b, c andd such thata ∈ xi ∩
�′, b ∈ xi ∩ �′′, c ∈ xj ∩ �′ andd ∈ xj ∩ �′′. Then, it can be verified that{si , {xi},
{{a, b}, xi}, {{a, b}}, {{a, b}, {a, b, c}}, {{a, b, c}}, {{b, c}, {a, b, c}}, {{b, c}},{{b, c},
{b, c, d}}, {{b, c, d}}, {{c, d}, {b, c, d}}, {{c, d}}, {{c, d}, xj }, {xj }, sj } is a path from
si to sj in �(N(Y 1, X1)).
Since �(N(Y 1, X1)) is connected and the link of each of its 0-simplexes is an
(n− 3)-surface,�(N(Y 1, X1)) is an(n− 2)-surface (by Property 1).�

We can now prove the main result of this section.
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Theorem 13. Let X be a simplicial complex which is an n-surface, with n>0, and let Y
be a full subcomplex of X. Then, each connected component of�(N(Y 1, X1)) is an
(n− 1)-surface.

Proof. Let � be the support ofX, let �′ be the support ofY, and let �′′ = �\�′.
Let sbe a 0-simplex of�(N(Y 1, X1)), s = {x} wherex is ak-simplex ofX, with 0<k�n.
The link of s in �(N(Y 1, X1)) is constituted by all the elementsc of X1 such that for all
z ∈ c, we havez ∈ ��

X(x), �′ ∩ z �= ∅ and�′′ ∩ z �= ∅ (see the proof of Property 12).
Each of those chainsc can be expressed either as an element of[��

X(x)]1, an element of
�(N([Y ∩ ��(x)]1, [��(x)]1)), or as the join of an element of[��

X(x)]1 and an element of
�(N([Y ∩ ��(x)]1, [��(x)]1))(see again the proof of Property 12).

• SinceX is ann-surface,��
X(x) is an(n− k − 1)-surface, and so is[��

X(x)]1.
• By Proposition 12,�(N([Y ∩ ��(x)]1, [��(x)]1)) is a(k − 2)-surface.
• Thus, link(s, �(N(Y 1, X1))) = [��

X(x)]1 ◦ �(N([Y ∩ ��(x)]1, [��(x)]1)) is an
(n− 2)-surface by Theorem 4.

Consequently, each connected component of�(N(Y 1, X1)) is an(n− 1)-surface. �

6. Conclusion

The results presented in this paper clarify the links between the notion of frontier order that
we introduced in anterior articles and the notion of derived neighborhood as introduced in
the framework of piecewise linear topology. Furthermore, they also constitute new results
about derived neighborhoods, since the notion ofn-surface had not been studied in this
framework until now. In a forthcoming articles[10], we deepen the discussion about different
frameworks for discrete surfaces, in particular combinatorial manifolds,n-surfaces and
pseudo-manifolds, and prove a theorem which establishes inclusion relations between these
three classes of discreten-dimensional surfaces (for anyn).

Appendix

Lemma 14. LetC1 andC2 be simplicial complexes. Let x be an element ofC1◦C2. If x ∈ C1
(resp.x ∈ C2), thenlink(x, C1◦C2) is equal tolink(x, C1)◦C2 (resp.C1◦ link(x, C2)). If
x=x1◦x2, withx1 ∈ C1 andx2 ∈ C2, thenlink(x, C1◦C2)= link(x1, C1)◦ link(x2, C2).

Proof. From the definitions of the link and the join, we have:

link(x, C1 ◦ C2)= {t ∈ C1 ◦ C2, x ◦ t ∈ C1 ◦ C2}
= {t ∈ C1, x ◦ t ∈ C1 ◦ C2} ∪ {t ∈ C2, x ◦ t ∈ C1 ◦ C2}

∪ {t = t1 ◦ t2, t1 ∈ C1, t2 ∈ C2, x ◦ t1 ◦ t2 ∈ C1 ◦ C2}
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Then, ifx ∈ C1, we obtain:

link(x, C1 ◦ C2)= {t ∈ C1, x ◦ t ∈ C1} ∪ {t ∈ C2}
∪ {t = t1 ◦ t2, t1 ∈ C1, t2 ∈ C2, x ◦ t1 ∈ C1}

= link(x, C1) ∪ C2 ∪ {t = t1 ◦ t2, t1 ∈ link(x, C1), t2 ∈ C2}
= link(x, C1) ◦ C2.

Similarly, with x ∈ C2 we would obtainlink(x, C1 ◦ C2) = C1 ◦ link(x, C2). Now, if
x = x1 ◦ x2, with x1 ∈ C1 andx2 ∈ C2, we have:

link(x, C1 ◦ C2)= {t ∈ C1, x1 ◦ t ∈ C1} ∪ {t ∈ C2, x2 ◦ t ∈ C2}
∪ {t = t1 ◦ t2, t1 ∈ C1, t2 ∈ C2, (x1 ◦ x2) ◦ (t1 ◦ t2) ∈ C1 ◦ C2}

= {t ∈ C1, x1 ◦ t ∈ C1} ∪ {t ∈ C2, x2 ◦ t ∈ C2}
∪ {t = t1 ◦ t2, t1 ∈ C1, (x1 ◦ t1) ∈ C1, t2 ∈ C2, (x2 ◦ t2) ∈ C2}

= link(x1, C1) ∪ link(x2, C2)

∪ {t = t1 ◦ t2, t1 ∈ link(x1, C1), t2 ∈ link(x2, C2)}
= link(x1, C1) ◦ link(x2, C2). �
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