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Abstract 

This paper studies singular graphs by considering minimal singular induced subgraphs of 
small order. These correspond to a number k of linearly dependent rows of the adjacency matrix 
determining what is termed as a core of the singular graph. For k at most 5, the distinct cores 
and corresponding minimal configurations (61 in number) are identified. This provides a method 
of constructing singular graphs from others of smaller order. Furthermore, it is shown that when 
a graph has a minimal configuration as an induced subgraph, then it is singular. 

O. Introduction 

If a graph G has n vertices, then the order n is denoted by o(G).  The null graph K,, 
is denoted by Nn and the complete graph by Kn. The circuit and path on n vertices 

are denoted by C, and Pn, respectively. The disjoint union of  two graphs H and K is 

denoted by H~-K. 
The adjacency matrix A(G) orA of  a graph G having vertex set ~'~(G) = {vl, v2 . . . . .  vn} 

is an n × n symmetric matrix [aij] such that aij = 1 if  vi and vj are adjacent and 0, 

otherwise. A is also represented by (R1,R2 . . . . .  R~) T, where Ri is the ith row vector 

of  A corresponding to vertex vi. The rank of  a graph G is the rank of  its adjacency 

matrix A. 

All the graphs we consider are simple, i.e. without multiple edges or loops and the 

vertex set is labelled. A graph is said to be singular if  its adjacency matrix A is a 

singular matrix; then at least one of  the eigenvalues of  A is zero. There corresponds a 

non-zero vector v0 such that Avo = 0, The nullspace of  A consists of  the set o f  vectors 

v0 together with the zero vector. 

Since the adjacency matrix A is symmetric, the algebraic multiplicity is the same as 

its geometric multiplicity for each eigenvalue ).. This common value for ). = 0 is the 

nullio' of  G, and is therefore the number of  zero eigenvalues of  matrix A. 
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Definition. The nullity of a singular graph G, denoted by q(G), is the dimension of 

the nullspace of A, i.e., the multiplicity of the zero eigenvalue of A. 

It follows that the rank of G, denoted by rank (G), is o(G) - q(G).  

This paper considers the problem of identifying singular graphs, which has been 

posed by Collatz and Sinogowitz [1] and was later discussed by various authors in- 

cluding Cvetkovid and Gutman [3] and others [2, 13, 14]. The results of  a systematic 
search for graphs, of  nullity one, the adjacency matrix of which has a linearly de- 

pendent set of  t row vectors, where 2 ~< t ~< 5, are presented. For a singular graph G, 

each linearly dependent set of row vectors of  A corresponds to an eigenvector called 
a kernel eigenvector 1 that determines a subgraph called a core 1. A particular core 

may be 'grown' into distinct non-isomorphic graphs of nullity one called minimal 

configurations I . It is shown that for 2 ~< t 4 3  the minimal configurations are P3 and Ps. 
Those for t = 4 and t = 5 are drawn in Fig. 4 and Figs. 12(a) and (b), respectively. 

A minimal configuration can be extended I into larger graphs such that the eigenvector 

has the same non-zero components. A singular graph, the adjacency matrix of  which 
has a set of  t linearly dependent row vectors, for 2 ~< t ~< 5, has at least one of the 

minimal configurations identified in this paper, as a subgraph. 

In the last section singular graphs are constructed from smaller graphs, using two 
distinct methods. The first makes use of  formulae relating characteristic polynomials of  

the adjacency matrix of graphs. The second uses the notions developed in the first two 

sections and it is shown that singular graphs can be obtained if the core is preserved. 
As the adjacency matrix of  a minimal configuration has a one-dimensional nullspace, 

the structure of  the graph is not masked by overlapping cores. Using the lists of 
cores, kernel eigenvectors and minimal configurations, for 2 ~< t ~< 5, given in this paper, 

properties common to singular graphs become apparent. The role played by the core of 
a singular graph of nullity one, as elaborated in this paper, leads to the development 

of  related ideas which emphasise its importance, as follows. In [8], the vector space of 

cores of a singular graph induced by the nullspace of its adjacency matrix is defined 
and used to determine bounds on the rank of the graph. As graphs with cores for t -- 6 

contribute to those of rank 6 they are described in [8]. Graphs of rank 6 also include 
'nut graphs', which are minimal configurations whose core has nullity one and which 
are discussed in [6,11]. In [9] it is shown that the coefficient of  2 in the characteristic 
polynomial of  a graph G of nullity one is closely related to the corresponding kernel 

eigenvector which in turn depends on the vertices of  the core. 

1. The core of a singular graph 

Definition. Two vertices are said to be of  the same type 

have the same neighbours. 

if they are not adjacent and 

l Formal definitions of these terms will appear later. 
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Thus, two vertices vi, vj of  the same type have the same row vectors R i = R j  de- 

scribing them. It is noted that the occurrence of  s equal rows contributes ( s -  1) to 

the nullity. 

Definition. A kernel eigenvector vo of  a singular graph with adjacency matrix A, is 

an eigenvector in the nullspace of  A. 

A singular graph with I/ > 1 has more than one (linearly independent) kernel eigen- 

vector. Thus, for the graph F3 (see Fig. l)  2 of  order 9 and rank 6, the eigenvectors 
( 1 , - 1 , 1 , - 1 , 0 , 0 , 0 , 0 , 0 )  T, ( 0 , 0 , 0 , 0 , 0 , - 1 , 1 , 1 , - 1 )  T, ( 0 , 0 , 0 , 0 , 1 , 0 , - 1 , - 1 , 0 )  T, form a 

basis for the nullspace. 

Definition. Let G be a singular graph having adjacency matrix A = (R],R2 . . . . .  Rn) T 

and a kernel eigenvector vo = (~1, ~2 . . . . .  at, 0 . . . .  , O) T, ~i ~ O, Vi, 1 < t ~< n. Then a 

kernel relation ~' of  G (with respect to Vo) is the linear relation 

~lR1 + ~2R2 + " ' "  ~-:t~Rt = 0. (1) 

The numbers ~i(i E 1,2 . . . . .  t) are assumed to be non-zero integers with g.c.d, equal 

to 1. 

If  A has two row vectors R1,R2 which are linearly dependent then the corresponding 

vertices are of  the same type. The smallest such graph which is connected is P3. 

Theorem 1. Let  G be a graph with adjacency matrix A having three linearly depen- 

dent row vectors (no two o f  which are linearly dependent). The three row vectors 

satisfy a unique relation R i + Rj = R k. 

This is proved by a routine case-by-case analysis which shows that there is a unique 

relation between the three linearly dependent row vectors of  A. The smallest such graph 
which is connected is Ps. 

2 For justification of this notation, refer to Fig. 4. 
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Definition. Let v0 be a kernel eigenvector of a singular graph G, of order n >~ 3. A 

subgraph of G induced by the vertices corresponding to the non-zero components of  

v0 is said to be a core Xt(= Z) (w.r.t v0), where t is the number of vertices of the 
core called the core size. 

Lemma. A core ){ o f  a singular 9raph G (with respect to a kernel eigenvector Vo 

o f  G) is a vertex-induced sub#raph o f  G which is i tsel f  singular and has a vector in 

its nullspace each o f  whose components is non-zero. 

Proof. Let v0 be a kernel eigenvector of G with t non-zero components. Let G be 

relabelled such that the first t vertices correspond to the non-zero components of v0. 
If  v0 = (~1,~2 . . . . .  ~t,0 . . . . .  0)T,~i # 0, Vi, 1 < t<~n and A is the adjacency matrix of 

G, then l ( =  Zt) = {vl,v2 . . . . .  vt}. The principal t x t submatrix of A is the adjacency 
,!  matrix of the subgraph X and has a kernel eigenvector v 0 = (~1,~2 . . . . .  ~t) T. Hence 

is singular. Also each component :~i of v~ is not zero. [] 

Definition. For a graph of nullity one the number of  non-zero components of the kernel 
eigenvector is called the core number of the singular graph. 

Thus in a graph G of nullity one the core number is the core size of the unique 

core in G. For a graph with r/ > 1, a core 7~ is determined by the eigenvector being 

considered. 
It is noted that Zt may well be disconnected. It can be shown that the core number 

of  P7, the path of order 7, is 4, v0 = ( 1 , - 1 , 1 , - 1 , 0 , 0 , 0 )  T and that the core is N4, 
whose vertices are the alternate vertices of the path starting from a terminal vertex. 

The Hfickel molecular orbital theory (HMO) gives an approximation of the 
7z-molecular orbitals of a molecule by expressing them as a linear combination of the 

atomic p~z-orbitals [2, 14]. When Schr6dinger's equation, which determines the molec- 

ular orbital energies, is simplified, the resulting equation is the characteristic equation 
Det()d - A )  = 0, where A is the adjacency matrix of  the graph whose structure is the 

same as that of the molecule (when hydrogen-suppressed, as in the case of hydrocar- 

bons, which is the case most commonly quoted in chemistry literature) [12]. The zero of 
the energy scale is that for no interaction between the separate atomic orbitals within 
the molecule. Thus, 2 : 0 determines the non-bonding molecular orbitals (NBMO) 

described by the corresponding linearly independent kernel eigenvectors of A [14]. The 

solutions also shed light on the electron density distribution in a molecule [2]. 
The graph IC6,which is C6 with one pendant edge (shown later in Fig. 4) represents 

the structure of the benzyl ion (C6Hs-CH2) when hydrogen-suppressed. The graph 
has core number 4 and one kernel eigenvector (2, 1 , - 1 , - 1 , 0 , 0 , 0 )  1" that describes its 
NBMO. In this case, the vertices of the core represent atoms that have large charge 
densities. Thus, reactions tend to involve the electron orbitals of  these atoms. 

A molecule having the shape of F3 mentioned above and bonds represented by the 
edges of the graph would have 3 NBMOs described by the 3 linearly independent 
eigenvectors in the nullspace of A(F3). 
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Fig. 2. 

W: 

Fig. 3. 

A graph may satisfy a number of different relations corresponding to different 

(labelled) cores. Thus, the graph /7 satisfies R1 - R2 + R3 - R4 = 0 which corre- 

sponds to core C4. It also satisfies R5 + R6 = R7 + R8 which corresponds to another 

core N4 and R 9 = R5 q-R6 which corresponds to yet another core N3. This graph is not 
planar and hence, HMO theory is not applicable [4]. (The numbers, in large type, in 
Fig. 2 and later in Fig. 4, denote the nullity of the graph depicted.) 

Definition. The Periphery ~@ of a singular graph G (with respect to a kernel eigenvec- 
tot v0 of G) is the vertex set ~//'(G) - f ' ( g ) ,  where X is the core corresponding to v0. 

Let Gi be a connected graph of order n with one zero eigenvalue. If  its core Z has 

nullity 1 and G1 = )~, then ~ = ~b and the kernel eigenvector has t (= n) non-zero 
components, given by (1). Such a graph, called a nut graph, is W of order 7 (given 
in Fig. 3) [5]. If  X has nullity q(Z) > 1, then in G1, ~ ¢ ~b. To form Gl, from the 

same core Z, different sets of edges joining the vertices of the periphery .'~ to two or 
more vertices of  the core may be found. 

2. Minimal configurations 

Definition. A connected graph Y is an Extens ion  

subgraph of Y such that 
1. o(G) < o(Y) ,  

of a graph G if G is an induced 
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2. ( ~ ( T )  - ~ ( G ) )  is null. 

J -  is also said to be extended from G. 

Definition. A singular graph F of  order n ~> 3, having a core Zt and periphery ~ :=  

~ ( F ) - ~ ( Z t )  is a minimal configuration, of  core number t, i f  the following conditions 

are satisfied: 

(i)  q ( F ) =  1, 

(i i)  ~ -- ~b or ~ induces a null graph, 

(ii i)  and in the case when ~ ~ ~b, the deletion o f  v E ~ increases the nullity of  F. 

As the one-dimensional nullspace o f  A ( F )  determines both the core Xt = (vl, v2 . . . .  , vt) 

and the kernel relation ~'t : ~1R1 + ~2R2 + . . .  + ~tRt = 0, where ~i are non-zero inte- 

gers, it is convenient to refer to the minimal configuration F as (F, S t ,  Zt). 

Theorem 2. A minimal configuration (/ ' , '~t, Zt) is an extension o f  the core, gt, so 

that it is connected. The valency o f  a vertex in the periphery is at least 2. 

Proof.  Suppose that F is not connected. Then it has a component K containing some 

of  or all the vertices o f  the core gr The adjacency matrix of  F may be partitioned as 

follows: 

A ( r )  = 

Let Vo be a kernel eigenvector. I f  the core is a subgraph o f  K, then the vertices 

of  H are in the periphery and so H is a null graph. Thus, the nullity o f  F is more 

than one; a contradiction. If, on the other hand, the core has vertices both in K and 

H,  let vo = (~l, ct2 . . . . .  ~r, 0, 0 . . . . .  0, fib t2 . . . .  , fls, 0 . . . . .  0) r where the as are the non- 

zero components of  Vo corresponding to the vertices of  K and the fls are those cor- 

responding to the vertices of  H. Then each o f  the vectors ( a l , e z  . . . . .  c t r , 0 ,0 , . . . , 0 )  T 

and (0 ,0  . . . . .  0 , i l l , t 2  . . . . .  fis,0 . . . . .  0) f are kernel eigenvectors of  F;  again a 

contradiction. Hence, F is connected. Furthermore, the vertices in ~ ( i f  not 

empty)  have no edges between them and so ar~ adjacent to those of  the core, by 

definition of  minimal configuration. So F is an extension o f  the 

core. 

Suppose, now, that v E ~@ and v is a terminal vertex adjacent to vertex vj of  the 

core. Then i f  ~j is the component of  a kernel eigenvector v0 of  F corresponding to 

vertex vj then A(F)(vo) = 0 ==~ ~j = O; a contradiction as ~j is also a component of  

a kernel eigenvector o f  the core. Hence, the valency of  a vertex in the periphery is at 

least 2. [] 
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2.1. Illustration." construction of  the minimal configurations of  core number 4 

An algorithm to construct the minimal configurations, (F ,~4 ,  ;(4) of  core-number 4, 
is now presented. A graph F, with adjacency matrix A = (RI,R2 . . . .  )T, for which a 

relation "~4 : 

cqR1 + ~2R2 -}- ~3R3 -t- ~4R4 = 0 (2) 

(where :~i are non-zero integers and g .c .d . (~i)=l)  holds, is required. 

The corresponding core is ;(4 = (vl, re, v3, v4) and the kernel eigenvector v0 is (cq, 52, :~3, 
e4, 0 . . . . .  0) T, with exactly 4 non-zero components. 

For Z4 - v4 = (Vl,/)2, v3), all graphs on 3 vertices, namely /£3, K1,2, K2~-N1 and 
N3 are considered. To determine the core, all possible one-vertex extensions of  each, 

satisfying ~4,  are considered in turn. Let the additional vertex be v4. There are 23 = 8 

possibilities for v4. Taking each in turn and solving the resulting equations, only two 

cores are found to satisfy (2). These are C4 which has nullity 2 and N4 which has 
nullity 4. 

At this stage (2) is not determined having 1 and 3 unknowns, respectively, relative 

to ~l. To form a minimal configuration from C4, with (2) completely determined, 
another vertex, adjacent to two or more vertices of  the core, is required to reduce the 

nullity to 1. A unique extension A (up to isomorphism) is obtained with nullspace 
{v0} = { ( 1 , - 1 ,  1 , - 1 , 0 ) r } .  To form a minimal configuration from N4 another three 

vertices, each of  which is adjacent to two or more vertices of  the core, are required to 
reduce the nullity to 1. Four distinct one-dimensional nullspaces are obtained, viz., 

{ ( 1 , - 1 , 1 , - 1 , 0 , 0 , 0 ) r } ,  { (1 ,1 , - - I , I , 0 , 0 ,0 )T} ,  {(1 ,1 , - -2 ,1 ,0 ,0 ,0)T},  

{(2, 1 , - 1 , -  1,0, 0, 0)T}. 

Each eigenvector gives at least one minimal configuration. With reference to Fig. 4, 

v0 = (1, - 1, 1, - 1,0, 0, 0) v gives two minimal configurations P7 and F1 ; Vo = 
( 1 , 1 , - 1 , 1 , 0 , 0 , 0 )  v gives S(KI,3); vo = ( 1 , 1 , - 2 , 1 , 0 , 0 , 0 )  v gives H(K4);  v0= 
(2, 1, - 1, - 1,0, 0, 0) T gives 1 C6. This completes the construction. 

There may be different minimal configurations for the same relation ~ t :  ~lR1 + ~2R2 

+ . "  + ~tRt = 0, and core )~ = (vl, v2 . . . . .  vt). These have different sets of  edges join- 

ing the vertices of  the periphery whose vertices correspond to different submatrices 
(Rt+l ,Rt+ 2 . . . . .  Rn) y of  A. Thus, P7 and FI are two minimal configurations for the 
same core N4 and the same eigenvector 

v0 = ( 1 , - 1 ,  1 , - 1 , 0 , 0 , 0 )  v. (3) 

The graph Fl has P7 as a subgraph but both _F 1 and P7 are minimal configurations 
as each has nullity one, (~ )  = N3, and the deletion of  a vertex from the periphery 
increases the nullity in the resulting graph in each case. 

The questions considered now are whether larger extensions of  the core exist for 
the same relation between the vertices of  the core, and whether the nullity in the 
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C o r e - n u m b e r  4 
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Fig. 4. 

resulting extension is preserved. Adding another vertex adjacent to the core of  Fl so 
that the resulting graph F2 has the eigenvector Vo = ( 1 , - 1 ,  1 , - 1 ,  0,0,0, 0) v increases 
the nullity to 2 as besides the kernel relation of  F1 

R I -  R2 + R3 - R4 = 0, (4) 
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the graph F2 also satisfies R7-]-R8 = Rs. This graph is called an intermediate config- 
uration 3 as another vertex may be added to it adjacent to the vertices of  the core to 

obtain /"3. Relation (4) is still satisfied by /"3 but the nullity increases to 3 as 

RI - R2 + R3 - R4 = 0, R7 + R8 = R5 and R6 + R9 = Rs. 

Thus,/"2 has the two linearly independent kernel eigenvectors ( 1 , - 1 ,  1 , -  1,0, 0, 0, 0) T 

and (0, 0, 0, 0, - 1,0, 1, 1 )T, respectively. Similarly, F3 has 3 linearly independent kernel 

eigenvectors. Thus, molecules having structures F1, F2 and/"3 have 1, 2 and 3 NBMOs,  

respectively. 
Since no more vertices adjacent to the core (other than those of  the same type) may 

be added to 1"3 without altering the kernel relation (4) then /'3 is called a maximum 
configuration 3 for core N4 and relation(4). It is noted that F3 may also be 'grown'  

from P7 which has the same eigenvector Vo = ( 1 , -  1, 1 , -  1,0, 0, 0) T as F1. An inter- 

mediate configuration is then C8 with nullity 2 and the maximum configuration is /"3 
with nullity 3. Besides being an intermediate configuration, corresponding to minimal 

configuration PT, the graph C8 is a core for a minimal configuration of  core number 8 
as ( 1, - 1, 1, - 1,1, - 1, 1, - 1 )T is a kernel eigenvector. 

This algorithm is illustrated in Fig. 4. 

In the above construction, the nullity of  the extensions of  the graphs P7 and FI 
has increased. An example of  a minimal configuration of  core number 4 whose nullity 

remained unchanged on extension is A shown in Fig. 5. 
A and its extension A1 have core C4, eigenvectors ( 1 , - 1 , 1 , - 1 , 0 )  T and 

( 1 , - 1 ,  1 , - 1 , 0 , 0 )  T, respectively, and 1/= 1. 

Definition. A maximum configuration, ( F ' ,  ~ t ,  ;(t), is an extension of  the core Xt of  
a minimal configuration (F, ~ t ,  ;(t) if F "  is a singular graph with adjacency matrix A 

such that 
1. F is a subgraph of  F" ,  
2. (~ )  is a null graph and 

3 The formal definition will appear later. 
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3. F "  has the maximum number of  vertices Vt+l, vt+ 2 . . . . .  Vn, in 2 ,  adjacent to vertices 

of  the core, corresponding to rows Rt+l,Rt+2 . . . . .  Rn of  A (no two of  which are 
equal) such that relation ~ t  is still satisfied. 

It follows that the maximum configuration is a connected graph. 

Lemma.  Let Zt be a graph of  nullity more than one having a kernel eigenvector with 
no zero components and a kernel relation ~t. An extension of  )~t of  the least order 
such that q(F) = 1 is a minimal configuration (F,~t,)~t). The largest extension of  zt 
(excluding vertices of  the same type) such that the kernel relation still holds is the 

maximum configuration ( F ' ,  ~t ,  Zt ). 

Thus, the maximum configuration has core Zt and periphery which includes the union 

of  the peripheries, of  all the minimal configurations having the same core and relation, 

as described by the row vectors in their respective adjacency matrices. 

Lemma.  Every minimal configuration of  core number t, satisfying the same relation 

~lRl + c~2R2 + . . .  + ~tRt = O, and having the same core Zt = (Vl,V2 . . . . .  vt), is a 
subgraph of  the same maximum configuration. 

Extensions leading to a maximum configuration may be constructed when, for the 

same core and relation, there are more than one minimal configuration or isomorphic 
minimal configurations (with different labellings). 

Definition. An intermediate configuration ( U,  F, ~t,  Zt) corresponding to the minimal 

configuration (F, ~t,  Zt) is a connected singular graph U such that 
1. F t has F as a subgraph 

2. F' has more vertices than F but only a proper subset o f  the peripheral vertices of  

the corresponding maximum configuration F" and 

3. the relation ~ t  is still satisfied. 

2.2. Algorithm to construct a minimal configuration 

The algorithm constructs (F, ~ t ,  Zt), a minimal configuration of  core number t sat- 

isfying the relation ~ t :  CqRl + :~2R2 + . . .  + ~tRt = 0, ~i # 0,Vi. 
Let A = (R1,R2,...,Rt,Rt+l . . . . .  Rn) T and H t - l  be an arbitrary graph of  order ( t -  1). 

To determine the core Zt and the corresponding relation ~ t ,  all possible one-vertex 
extensions o f / / t - l  that satisfy ~ t  are considered systematically. Let the additional 
vertex be yr. There a r e  2 t - I  possibilities to consider. For each possible core Zt, the 
nullity # is determined. Since Nt is a possible core and v0 = (~l,C~2 . . . . .  ~t,0 . . . . .  0) T, 
c~i # 0,Vi, is in the eigenspace of  2 = 0 (i.e., in the nullspace of  A) then #>j 1. Once 
the core Xt is determined, v0 has ( # -  1) 'unknowns '  relative to cq. To determine these 
unknowns, groups of  (# - 1 ) vertices are considered in turn from the set o f  t - t up le s  
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(having entries 0 or 1), which are row vectors describing vertices adjacent to Zt" Each 

group ~ of  (~t - 1) vertices that determine v0 uniquely provides an extension of  Zt of  

order (t + # -  1). This extension of  Zt by ~ is a minimal configuration (F, .Nt, gt). The 

procedure is repeated for all other possible graphs Ht 1. Since straightforward proofs 

show that a core can neither have a terminal vertex, nor does it have an odd circuit or 

a complete graph as a disjoint component, nor is it an extension of  Kt-1, the algorithm 

can be shortened considerably. 

This algorithm determines the kernel eigenvectors v0 for 2 ~< t <~ 5. The minimal con- 

figurations for t ~< 4 were calculated manually but for t = 5 the use of  an appropriate 

software could not practically be avoided. The next two theorems present the unique 

minimal configurations (up to isomorphism) obtained for 2~<t~<5. 

Theorem 3. 

• t = 2  .~t :  

• t = 3  . ~ :  

• t = 4 ~ t :  

~ t  : 

, ~ t :  

The minimal configurations (F, ,~t, ~(t)fi~r t <~4 are 

R I = R e ,  z 2 = N 2 ,  F = P 3  of  rank 2. 

R1 + R2 = R3, Z3 -- N3, /~ = P5 of  rank 4. 

R1 - Re + R3 - R4 = 0, X4 = C4, F = A of  rank 4, 

R1 - R2 q- R3 - R4 --- O, Z4 = N4, F = P7 or El both of  rank 6, 

R1 + R2  - R 3 + R 4  = 0 ,  Z4 = N 4 ,  F = S ( K I . 3 )  of  rank 6, 

RI + Re - 2R3 + R4 -- 0, Z4 = N4, /~ = H(K4) of  rank 6, 

2R~ + R2 - R3 - R4 = 0, Z4 = N4, /" -~ 1C6 of  rank 6. 

The minimal configurations for t = 4 are given in Fig. 4. 

Theorem 4. There are 53 distinct minimal configurations (F, ~5, ;~5), o f  core 

number 5, represented in Figs. 12(a) and (b). 

- -  Core:  C4-~Nl:There are 3 linearly independent kernel eigenvectors 

to which correspond 10 minimal configurations of  rank 6. 

- -  Core:  /£2,3: There is 1 kernel eigenvector 

to which correspond 3 minimal configurations of  rank 6. 

- -  Core : Ns: There are 17 linearly independent kernel eigenvectors 

to which correspond 40 minimal configurations of  rank 8. 
The above configurations were obtained using the software package 'Mathematica' 

in programming mode. Two main programs were processed. The first produced the 

one-dimensional nullspace {v0} of  each of  the possible minimal configurations with 

one of  the three cores in turn. The output o f  the second consisted of  the sets ~ ,  

each of  which describes a minimal configuration for a particular core and a particular 

nullspace {v0). 
To ensure that ~i ~ 0 Vi, 1 ~<i~<5, the sets ~ of  vertices were found such that 

A(v0) = 0 and A(G - vi)(Vo) ¢ O, where vi is each of  the vertices o f  the core in turn 

and G - vi is the corresponding vertex-deleted subgraph of  G. Care was taken to select 

only non-isomorphic minimal configurations from the output. For instance, for core 
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Core-number 5 

I l i Core C, UN~ Co Kz3 Core N5 

i o!0 3 Kemel Eigenvectors 17 Kernel envectorS 

10Minimal ConfigurationSlsomorphic configurations [ 1KernelEilenvect°r ~s0omMi~hilCo~iilgu~ s 

3 Minimal Configurations 
-i- 

Isomorphic configurations 

Fig. 6. 

Ns, the kernel eigenvectors whose non-zero components were the same but ordered 
differently, produce isomorphic minimal configurations. 

3. Construction of larger singular graphs 

3.1. Use of  the character&tic polynomial 

A well-known relation for the characteristic polynomial ~b(G) of a graph G is given 
in the following theorem [7, 10]: 

Theorem 5. I f  G -  v is the subgraph obtained from G by deletin9 vertex v, and N(v) 
denotes the set of  neighbourin9 vertices o f  v, then the characteristic polynomial (~( G) 

of Gis 

~ b ( G ) = 2 ~ b ( G - v ) -  ~ ~ b ( G - v - w ) ,  (S) 
wEN(v) 

provided no subyraph of  G is a circuit passing throuyh v. 

Corollary 1. I f V w  E N(v), G - v - w is sinyular then so is G. 

Definition. Let G be a graph and v E ~//'(G). 
(i) v is critical in G if G is non-singular and G - v is singular. 

(ii) G is a critically non-singular graph if Vv E ~U(G), v is critical in G. 

An infinite family of critically nonsingular graphs consists of the bipartite nonsingular 
graphs of even order such as C4t+2 and Pet. 
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G* 

Fig. 7. 

Definition. The graph G~, is constructed by joining an isolated vertex v to one vertex 

v~ of  each o f  r disjoint connected graphs G j , j  = 1,2 . . . . .  r. 

Corol la ry  2. The characteristic polynomial  o f  G,~ is given by 

j j i f j  

Proof. Since G~, - v is the disjoint union of  Gl,  G2 . . . . .  Gr, then q~(G~* - v) is the 

product of  ~b(Gl ), ~b(G2),. . . ,  (~(Gr). I f  a component Gj of  G~* - v has vj connected to 

v then G~* - v - vj is the disjoint union of  G~ - vj and Gi, i ~ j .  The result follows 

from (5). E] 

Theorem 6. Let  the connected components o f  the graph G~*, - v be Gi, G2 . . . .  , Gr. I f  

two or more o f  the graphs G1, G 2 , . . . ,  Gr, are singular or i f  v i is critical in Gi, Vi = 

1,2 . . . .  , r, then G~ is singular. 

A similar result may be obtained using Schwenk's  formula for the characteristic 

polynomial  of  the coalescence K.H of  two rooted graphs (K,u) ,  ( H , w )  obtained by 

identifying the vertices u, and w so that this vertex v = u = w becomes a cut-vertex 

[7]: 

~ ( K . H )  = c~(K)c~(H - w)  + O(K - u ) ~ ( H )  - ).O(X - u)c~(H - w).  

Definition. The graph G c' is constructed by identifying one vertex vj of  each of  r 

disjoint graphs G j , j  = 1,2 . . . . .  r. 
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K H 

KH+uw 

Fig. 8. 

K H u~" " "'° 
V2 

Fig. 9. 

Lemma. The characteristic polynomial of  G c is given by 

~b(GC) = }--~(O(Gj)I-]O(G~ - v~)) - (r -1)2FI(qS(G j - vj). 
j is~j j 

The proof follows by induction on r. 

Definition. Let K , H  be two labelled graphs such that graph G = K tO H and graph 

P = K N H. Then K, H are said to be the parts of  G. 

Theorem 7. Let the parts of  the graph G c be G1, G2 . . . . .  Gr, and their intersection be 
(v). I f  Gi is singular, Vi = 1,2 , . . . ,  r, or vi is critical in Gi, for 2 (or more) distinct 
i E 1,2 . . . . .  r, then G c is singular. 

If  (K, u) and (H, w) are two rooted graphs, then the characteristic polynomial of  the 

graph KH + uw, given in Fig. 8, obtained by joining vertices u, w [7] is 

O(KH + uw) = 49(K)O(H) - (o(K - u)O(H - w). (6) 

Theorem 8. Let the components of  the graph obta&ed by deleting edge uw from 
KH + uw be (K, u) and (H, w). I f  one of  the following conditions is satisfied then 
KH + uw is singular. 

1. One component and its root-deleted subgraph are singular. 
2. One component and the root-deleted subgraph of  the other component are 

singular. 

Theorem 9. Let path P2t-l, t ~2  be labelled so that vl,v2, v3 are 3 consecutive ver- 
tices and v2 is a vertex of  the core of  the path. Let (K, u) and (H, w) be two rooted 
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Fig. 10. 
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non-s&gular graphs and KH + P2t-I, drawn in Fig. 9, be constructed such that vj is 

j o&ed  to u and v3 is.joined to w. Then KH +P2~-1 has nullity one. 

The proof follows from (6). 

This result agrees with that obtained by using a well-known theorem that states that 
the nullity is preserved when a terminal vertex and its neighbour are deleted [3, 13]. A 

more general construction is presented in the next theorem. 

3.2. Extension o f  (P) 

The importance of the distinction between the vertices of the core and of the pe- 

riphery is apparent from the following theorem. 

Theorem 10. Let  G be a singular graph satisfying a relation ~t ,  t < o(G). I f  such 

a graph G has a core Zt and periphery ~ ,  and graph G N is produced by joining one 

or more vertices in ~ to vertices o f  a graph N, then the kernel relation ~ t  will still 

be satisfied. 

Proof. There exists a labelling of G for which a relation between the row vectors of 
A(G)  is 

~ t  : OqRl + ~2R2 + "'" + ~tRt = O, ~i ~ 0, (7) 

t ~< o(G). The corresponding kernel eigenvector is (~l, ~2 . . . .  at, 0, 0 , . . . ,  0) T. The graph 
G N has an eigenvector with the same non-zero components corresponding to the ver- 

tices of the core, all other components being zero. [] 

In Fig.10 graph U is C6-~-K3. Graph M is produced by joining vertices of the 
periphery of the minimal configuration 1C6 to vertices of U. From the above theorem 

it follows that U and l C6 satisfy the same relation 2R1 + R2 - R3 - R 4  : 0. 

Lemma. Let  G be a graph o f  order n. Let  each vertex o f  G be joined to a terminal 

vertex to f o rm a graph G L o f  order 2n having n more edges than G and at least n 

terminal vertices. Then G L is a non-singular graph. 
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G L G~ 

Fig. 11. 

ProoL Let /)1,/)2 . . . . .  /)n be a labelling for G and let G L be an extension of G so that 
/)n+i is the terminal vertex adjacent to /)i, 1 <.i<.n. The adjacency matrix of G c may 
be partitioned into 4 submatrices of order n × n. Thus, 

A(G L) = 

\ /. 

where the principal submatrix is A(G), In is the identity matrix and 0 is the zero 
matrix. Since In is non-singular, the rank of G z is 2n and q(G c) = O. [] 

Theorem 11. Let  G1 be a graph o f  nullity one satisfying the kernel relation ~ t  : 

~1R1 + ~ 2 R 2 + " - + T t R t  = O, c~i ~ O, for l <~i<~t and t < o(G1). Then a graph 

G2, constructed by joining one vertex o f  the periphery o f  G1 to one vertex o f  a 

non-singular graph o f  the f o rm  G L, is also o f  nullity one, satisfying ~ t .  

Proofl When a terminal vertex and its neighbour are deleted from the graph G2, the 
nullity is preserved. Thus, G1 and G2 have the same nullity, that is one. Furthermore, 
by Theorem 10, G2 satisfies the kernel relation ~t.  Hence, the coefficients of ~t  are 
the non-zero components of the kernel eigenvector of G2, which is unique (up to scalar 
multiples)• [] 

In Fig. 11, G is a graph of order 5 and G c is a non-singular graph of order 10. If 
GI is lC6, which has nullity one, then G2 is also of nullity one. 

It may be concluded that a sufficient condition for a graph to be singular is that it 
has one of the following induced subgraphs: 

(i) a minimal configuration; 
(ii) a minimal configuration having edges between the vertices in the periphery. 
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Principal Eigenvector: Core 

(1,1,_1,_1,1,0,0) r C4-i- I'll 

(2,1,-2,-1,1,0,0) T C4+ N 1 

(1,-1,-1,1,-2,0,0) T C4-i- N 1 

(1,1,-2,1,-1,0,0) T K2,3 

(1,1,-2,-1,2,0,0,0,0) T N 5 

T 
(1,1,-1,-1,1,0,0,0,0) N5 

(1,-1,1,1,-3,0,0,0,0) T Ns 

(1,2,-1,-1,1,0,0,0,0) T Ns 

(3,-2,-2,-1,1,0,0,0,0) T N5 

I 2 

1 2 

I 

2 4 

5 

Minimal Configurations 
1 2 1 2 ~ 2 1 2 ~ . - , . . ~ 2  

4 3 

5 5 

1 

A 

5 4 ~ 1 5  2 3 
5 

2 2 

1 1 I 

1 

3 3 3 3 
5 

1 

2 2 ® 
4 

Fig. 12. a 

The lists of  kernel eigenvectors and their corresponding minimal configurations are 
useful to point out properties common to singular graphs. It is observed that the 
cores of  order at most 5 (considered here) have nullity greater than one. It turns 
out from related work [6,11 ] that nullity one can be achieved for cores of  all orders at 
least 7. 
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Principal Eigenvector: Core Minimal Configurations 

3 (1,2,1,-2 -3,0,0,0,0) T NS , ~  1 

(1,1,-2,-2,3,0,0,0,0) T N 5 
I 5 

4 "= = " 3  

(-11,1,1,1,0,0,0,0) T a 5 
2 " 5  

(3,- 1,- 2,-'1,-1,0,0,0,0) N s 5 

3 

(1'-3'-2'1'1'0'0'0'0/T NS ~ s  

(2,-1,-1,-1,-1,0,0,0,0) T Ns ~-- ~ 

(l.2,1_2,1,0,0,0,0) T Ns 2 
4 

I 

(2,1,-3,-1,-1 0,0.0,0) T N 5 ~ 3  

(1,1,'3,1,1,0,0,0,0) T N s 
1 5 

2 1 4 (1,-1,1,-2,-2,0,0,0,0) T N s 

('1,2,-2,1,1,0,0, O,0) 'r N s ' ~  

Fig. 12. b 
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