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We consider the (2rn + 1)th-order nonlinear ordinary differential equa-
tion

n-1
X@HD 4 Y e x@D 4 f(f ) = 0, (1)
i=0

where f: R X R — R is continuous and 2m-periodic with respect to ¢ and
¢;,i=12,...,n— 1, are constants.

During the past 20 years, there has been a great amount of work in
periodic solutions for the high-order Duffing equation

n—1

e+ Loy + (=1 V(e y) 0.
i=1
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Among previous results [1-4], one fundamental nonresonance condition

n—1 ) .
0<N¥+ Y (—1) "¢;N?
j=1

<A<f(t,y) <

<(N+1)™"+ nf(—l)f*”cj(N +1)%,

j=1

where N is a nonnegative integer, is required. However, the study of
odd-order differential equation is rare.
Forc;,=0,i=1,2,...,n — 1, and f satisfies

M=>f(t,x)>2¢g>0 (or =M <f(t,x) < —¢g, <0),

Li Yong and Wang Huaizhong [4] proved that (1) has a unique 2-periodic
solution.

In this note, using the Schauder fixed-point theorem and the continua-
tion theorem of Mawhin, we give results on the existence and uniqueness
of the 2m-periodic solution to (1). Assume that the following conditions
hold:

(H1) f, is continuous and there are positive constants m and M such
that

m<|f(t,x)|<M  forall (¢, x). (2)

(H2) The linear equation

n—1
x(2n+1) + Z CiX(ZiJrl) — 0 (3)
i=0

has only the constants for its 27-periodic solutions.
(H3)¢;>0,j=0,1,...,n — 1, satisfies the inequality

n—1
Y (2m)*" e < 1, (4)
j=0

Our results are the following.

THEOREM A. Under conditions (H1) and (H2) above, the differential
equation (1) has at least one 2-periodic solution.
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THEOREM B. Under conditions (H1) and (H3) above, the differential
equation (1) has a unique 2m-periodic solution.

To prove the theorems, we need the following lemma.

LEMMA 1. Letx € CY(R) and let it be a 2m-periodic function; and there
exists t, € R such that x(t,) = 0. Then

foz”xZ(t) dt < 4772f02” [x'(1)]? dr.

Employing the Schwarz inequality, the proof of Lemma 1 is easy. Set
X={yeC*R):y(t) =y(t +2m), forallteR},

with the norm || - || defined by Ilyll = 2", max ,,, |y(2)], for each y € X.
Rewrite (1) in the following form:

n—1
x@1FD 4 N e x@FD 4o g(f,x)x = —f(t,0), (5)

i=0

g(t,x) = /(;1fx(t,6x)d9.

For each y € X, we consider the linear differential equation

n—1

x@FD 4 N e x@FD 4 gt y)x = —f(t,0). (6),
i=0

LEMMA 2. There is M, > 0 such that any 2m-periodic solution xy(t) of
(6), satisfies

lx,l <M,  forally € X.

Proof. Let x,(¢) be any 2m-periodic solution of (6),. By Rolle’s theo-
rem, we have ¢ € [0, 2] satisfying

X(E)=0, j=1,2,....2n. (7)
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Applying Lemma 1,
1/2
2 -y 2
[y al

2 2 1/2
T .
< 2 [ (x00) al
0
1/2

< (277)2”"(f:”(xgz'“)2 dt) . j=12,...2n—1. (8)

From (5),
m <|g(t,x)| <M, forall (z,x). (9)

Let L = sup, g |f(z,0)l. Take the product (6), with x (¢) and then inte-
grate over [0, 27 ]. It follows that

-1

27 n 27 2w

2n+1 2i+1 2

'[o XDy dr + ) cifo x @ )xydt+/0 g(t,y)x*dt
i=0

= — [T 1(1,0)x, d.
0

Noting that [77x*'*Px dr = 0 and using (9) and the Schwarz inequality,
we derive

(/Ozwxﬁ df)l/z = %(f:wlf(t,o)l2 dt)l/z < @L. (10)

From (6), and the Schwarz inequality, using Lemma 1, (10), and 2ab <
ga’ + b%/&, we have

/Zﬂ(xgzn))z dt = _/27T(x§}2n+1))(x5)2n71)) dt
0 0
:/277 nZ
0
2m @n-1 2m @n-1
[ Ta(ty)x dt+fo F(2,0)x2"~Y dr

n_1 2 24 1)\ 2 1/2 2w 20— 1))\ 2 1/2
el Gy a) (G al

0

1
Cix;Zi-%— l)x;Zn - 1)) dt
0

i=

IA
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2 2
+ M [T 2@ de+ [TTL Dl di
0 0

e 2n-0 (27 1 2n))2 1 27 0 (@n-1))\2
'ZOCi(ZW) /; (xy ) dt + EMaj;) (xy ) dt
iz

IA

2

1 ™ 1 on
+ZMf02 x5 dr + Es/j (x;Z"’l))z dt + Z-Zﬂ'

IA

i=0

n—1
_i 2w
2m2Me + 27% + Y ¢, (2m)*" ))f (xf”))z dt
0
w2 M
+—|1+ = |.

& m

Choose ¢ > 0 so that
n—1 )
1- ) (277)2("_’)cj —27% — 2w Me £ A > 0;
j=0

then we get

- wl?
[ T (xem) <

1+ M) s B?L?. (11)
m2

&

On the basis of (7), (8), (11), and the Schwarz inequality, we obtain

|<(1)] = ‘ [xyeha
J

1/2 2 . 2 1/2
< (2m) ([O (xD) dt)

< (277)2n_/+1/zBL,
forallr € [0,27], j=1,2,....2n — 1. (12)

Also by (6),,

fzwg(t, y)x, di = —fzwf(t,O) dt.
0 0
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Using (9), there exists & € [0, 277 ] satisfying

1 o L
|xy(§)|smf02 |f(t,0)|dlSZ- (13)

From (8), (11), and (13),

|lx,(0)] <|x,(&)] + fgtxy(t)dt

+ (2m)?" " Y?BL 2 LD, forallre[0,27]. (14)

L
< —
m

According to (6),, for all ¢ € [0,27],

f’ x§2”+1)(t) dt

2n

100 -

n_l 2w . 2w
ZO Cifo |x@ D] dr + /0 lg(t,y)|lx,|dt
i

IA

2
+ [T1F(,0) . (15)
0
Using (12), (14), and (15), there is constant E > 0, such that
|x#(t)| < EL,  forall r € [0,27],

which, with (12) and (14), completes the proof of Lemma 2.

THEOREM C. Assume that h(t) = h(t + 21) is continuous and satisfies
m<|h(t)| <M  forallt €[0,27],
where m, M are constants, and c;, i = 0,1,...,n — 1, satisfies the inequality
(4). Then the equation

n—1
x@rHD 4 N e x@FD 4 (1) x =0 (16)
i=0

has only a zero solution.

The proof of Theorem C is similar to that of Lemma 2. We only need to
note that in (12), (14), and (15), L = 0,
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THEOREM D. Assume that h(t), ¢, i =0,1,...,n — 1, satisfies the
conditions in Theorem C. Then the linear differential equation

n—1
x@n+D 4 Zcix(2i+l)+h(t)x=e([), (17)
i=0

where e(t) = e(t + 2) is continuous, has a unique 2-periodic solution.

Proof. By Theorem C, (16) has only a zero solution. Since the equation
(17) is linear, the uniqueness implies the existence. The proof is com-
pleted.

Proof of Theorem B. First prove the uniqueness. Let x,(¢) and x,(¢) be
any two 2m-periodic solution of (1). Then x(¢) = x,(¢) — x,(¢) is a 2#-peri-
odic solution of the following equation:

n—1 . 1
x@tD 4N e x @D f fo(t, x,(2) + 0x(1))dox = 0.
i=0 0

From the hypothesis (H1), we see

m < <M.

folfx(t,xz(t) + 0x(1))do

Hence by Theorem C, x(¢) = 0, on R.
We next prove the existence. For each y € X, define

Py=x,,

where x, is a 2#-periodic solution of (6),. By Theorem D, P is well
defined.

Let x,, x € X such that [[x, — x|/ = 0, as n — . We assert: |[Px, —
Px|| = 0(n — ). If not, by Lemma 2, {Px,} would have a convergent
subsequence, still denoting it by {Px,}, such that ||Px, — yll = 0(n — )
and Px #y. Set u, = Px, — Px. Then u,(¢) satisfies

n—1
w4+ Y cultY + g(t,x,)u, + (g(t,x,) —g(t,x))Px =0,
i=0

and u, is 27-periodic. Hence by the continuity of g, as n — o, we get
n—1

uE)ZnJrl) + Z cqu)ZHD +g(t,x)u0 =0, (18)
i=0
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where u,(t) = y(¢) — Px(¢). By Theorem C, (18) has only the zero solution,
which contradicts y # Px. By (18) and the Arzela—Ascoli theorem, it
follows that P is completely continuous. From Lemma 2, PX is bounded.
Applying the Schauder fixed-point theorem, P has a fixed point x(¢) in X,
which is a solution of (1). This completes the proof of Theorem B.

Now we prove Theorem A by applying the continuation theorem of
Mawhin (see, e.g., [5] or [6]).

Consider the following auxiliary equations:

n—1
x@D 4 N e x@FD 4 ag(t, x)x = —Af(£,0), 0<A<1, (19),
i=0

using the notation in (5). Define the linear operator L: C3" — L*(0,2m)
by
n—1
Lx = x@ D 4 Y ¢ x@itD) x e Cn.
i=0

By (2) in Condition (H1), the operator x(-) — f(-, x(-)) maps L? into itself.
Multiplying each side of (19), by x(¢), integrating over [0, 27 ], and using
the boundary conditions, we get

A Tg(tx(1) (e di = A [TF(1,0)x(1) dr.
0 0
Dividing out A and using |g(¢, x)| = m for all (¢, x), we get
[Tty dt < M, (20)
0

for a constant M, independent of x and A. This gives an a priori bound
in L2,

Instead of working in L?, one could work in C,_, using (20) and the
equation (19), to obtain a bound in C, ..

Clearly, according to (H1) and the definition of topological degree, the
mapping from the constants (the kernel of the operator L) to the con-
stants, given by

1 on
P E[: f(t,%)dt, FER,

has nonzero topological degree on a large interval containing 0.
Employing the continuation theorem of Mawhin, we can complete the
proof of Theorem A.
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