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Abstract 

Hamidoune, Y.O., A.S. Llado and 0. Serra, The connectivity of hierarchical Cayley digraphs. Discrete 

Applied Mathematics 37/38 (1992) 275-280. 

An ordered generaiing set of a group is hierarchical when the group generated by the first k generators 

is a proper subgroup of the group generated by the first k + 1 for each k. Hierarchical Cayley graphs 

were introduced by Akers and Krishnamurthy in [1] and other related papers as an interesting model 

to build symmetrical networks. In this paper we study the connectivity of hierarchical Cayley digraphs, 

and we show that they have maximum connectivity except in a special case. An example of this excep- 

tional case is given. The result generalizes similar statements of Godsil[3], Akers [ 1] and Hamidoune [S]. 

I. Introduction 

Only simple digraphs are considered in this paper. We identify undirected graphs 
with symmetrical digraphs. Notions used but not defined can be found in [2]. 

The problem of determining the connectivity of Cayley digraphs has been widely 
studied. In [3], Godsil proved that the connectivity of (undirected) Cayley graphs 
with respect to a minimal generating set is the degree of the graph. This result was 
generalized to the oriented case by Hamidoune in [5]. Akers and Krishnamurthy 
state the same result in [ 11 for Cayley graphs with respect to a hierarchical generating 
set with certain restrictions on the size of the group. In this paper we prove that 

hierarchical Cayley digraphs have maximum connectivity except in some particular 
cases in which the connectivity is one unit lesser. Examples of these situations are 
also given. In Section 2, we summarize definitions and results on atoms of a digraph. 
These results are used in Section 3 to determine the connectivity of hie;-archical 
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Cayley digraphs. It is also shown that the results can be extended to the case of in- 

finite Cayley digraphs. 

2. Atoms in Cayley digraphs 

Let G=(V,A) be a finite strongly connected digraph. If X is a subset of I/, the 

subdigraph of G generated by X is Gx = (X, Ax) where Ax = {[x, y] E A: x, y E X >. 
A subset T of Y is called a cutset of G if GV_ T is not strongly connected. The con- 
nectivity of G is 

K(G)=min{ITI: Tis a cutset or ITi=lVl-1). 

A cutset of minimal cardinality is called a minimurn cutset. Given FC V, we set 

r+(F)={y~ V: [x,y]~A and XEF}, 

N+(F) = T+(F) - F, 

T-(F)=(_YE V: [y,x]~A and XEF}, 

N-(F)=T-(F)-F. 

Notice that N’(F) (N-(F)) is a cutset of G unless FUN+(F) = V (FU N-(F) = V). 
Hence 

‘IN+(F)1 zmin([ V-FI,K(G)), 

i IN-(F)1 ?min{ ( V- FI,K(G)}. 
(1) 

A subset Fof I/is called apositive(respectively negative)fiagr~rent of G if IN+(F)1 = 
K(G) and FU N+(F) # V (respectively, 1 N-(F): = K(G) and FU N--(F)# V). A 

fragment of minimal cardinality is called an atom, see [4 -, $1. Notice that any 

strongly connected noncomplete digraph contains either a positive or a negative 

atom. Since a negative atom of G is a positive atom of its converse G-‘, we will 

assume that our digraphs contain positive atoms. If G is d-regular and without 

loops, and A is a positive atom of G such that 1 A I = 1, then K(G) = d. We next sum- 

marize some results about atoms. 

2.1. Proposition [4]. Let G be a vertex-transitive digraph. If G contains a positive 
atom, then the set of positive atom is a partition of V(G). 

Let G = Cay( $9, S) be a Cayley digraph. The left translations in $9, y,(x) = ax, are 

easily seen to be automorphisms of Cay( %, S). Hence Cay( $9, S) is vertex-transitive. 

In particular, by Proposition 2.1, for every vertex of Cay(%, S) there exists a positive 

atom which contains it. 

3.2. Theorem [j]. Let *__4 be a positive atom of Cay( $9, S) containing 1. Then *_pJ is 
the subgroup of $9 generated by S(I =FJ/. 
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When S= S-l, the Cayley digraph Cay(%, S) is symmetrical. The following result 
is a direct consequence of the main theorem in [7]. 

2.3. Proposition [7]. Let A be an atom of a symmetrical Cayley digraph G. Then 
214 <K(G). 

3. Connectivity in hierarchical Cayley digraphs 

A set S of generators of a group 9J is said to be hierarchical if there exists an 
ordering of the elements in S, say S = {s,, . . . , sd} such that, for every i = 1, . . . , d - 1, 
the group Bi generated by {si, . . . , Si} is a proper subgroup of the group %i+ 1 

generated by { ~1, . . s, Si, Si+ 1 }. Notice that a minimal set of generators is hierarchical, 
but the converse is not true. For instance, if t has an even order greater than 2, 
{t*, t} is hierarchical but not minimal. If S is hierarchical and S c s E S U S-‘, 
Cay@, S) is said to be a hierarchical Cayley digraph. In this section we prove that 
the hierarchical Cayley digraphs have maximum connectivity except in a single case. 
We first establish some preliminary results. 

3.1. Proposition. Let S be a proper subgroup of $2, !? a generating set of S, and 
suppose that there exists t in $4 - #such that SU (t ) generates 33. If 1% 1 L 1s I+ 10 1, 

where 0+A C_ (t, t-l), then 

K(cay(B,sud))2K(cay(~,s))+ )A). 

Proof. Set X= Cay( 8, s U A) and Y = Cay(ti, s). If X is the complete digraph, 
K(X) = ISU A /. If not, let &be a pcsitive atom of X containing 1. By Theorem 2.2, 
d is the subgroup of % generated by (SU t) f7 d. 

First suppose that t $ d. Then & is a subgroup of .&? and iv+(d) = N;(d) U&A, 
where N;(d) = N+(d) n 2. Since &A n &?= 8, using (l), 

K(X)=IN+(~)~=JN~(J&)I+I~A(~~~~{~~-~I,K(Y)}+(~AI. 

If Is-&I ZK(Y), then 

K(X)ZK(Y)+ IdA/ at(Y)+ IAl. 

On the other hand, if I%- dj c K( Y)s 

ZK(Y)+ IAI. 

NOW suppose t E d. Let s E s such that se &, and 4P the subgroup generated by 
S n&. Then, N@%) U @As C_ N&x2). Since &?n WAS = 0, we get, 

K(X)Z IN#v)I + i@Asl rmin(lti-%&K(Y)} * lQd(. 
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If K( Y)c I#- &! j the rcsult holds trivially, while if K(Y)> IX- %V), 

at(Y)+ ILlI. q 

Notice that wz always have I*%[ 1 ISI + 1, where the equality holds iff Y= 
Cay(.X, S) is the complete digraph. Therefore, the hypothesis leti/ 2 Is] + )d 1 in the 
last proposition always holds except when Y is the complete digraph and )d I= 2. 
The next lemma characterizes the hierarchical Cayley digraphs which are complete. 
Let us introduce the following notation. Given a hierarchical generating set of %, 
S= {s,, . . . . sJ, let Sk = {st, . . . . Sk), s,cs,cs,us,-‘, O#d,E(s&), V?k=(.Q.) 
and Gx- =Cay(%&&.), 1 ~kd. For XE g’, O(X) denotes the order of x in % 

3.2. Lemma. The on& complete hierarchical Cayley digraphs are 
(0 CayW,, &I), s:=l, Gi =I$, 

(ii) Cay@&, (s,$}), ST = 1 5 G, = R; and 
(iii) Cay<%+, {sIgs,&‘>), sz=st, sf=l, G2 =K& 

Proof. Since &__ 1 is a proper subgroup of $& and 1 Sl I L 2, we have 1 %k 1~ 2’C 

Therefore, Gk is complete iff 2k s 1 Sk I= I& I+ 1 I 28c + 1, hence kl2. When k= 1, 
either I&l=l, IS,l=2 and s:=l or I&I =2, Is,I =3 and st=s;‘. When k=2, we 
must have I%, I= 2 (otherwise I s!& 12 6) and then, I ST& I = 4 and s2 #sir. Therefore, 
O(S2)=4 and S;=+ 0 

3.3. Lemma. For ks3, K(G~)= l&l unless k=3, s~=s~=s,, s:=l and I&I =5, in 
which case, d={l,sr} is an atom of Gj and K(G;)= ]$I -1. 

Proof. The result is obvious when k= 1. Suppose that K(G& I&f- Then, by the 
remarks following Proposition 3.1, G1 is complete and 142 I =2. In particular, G2 
is symmetrical and s2#s$ Let & be a positive atom of G2. By Proposition 2.3, 
2 IdI 5 K(G~) < I IF2 I 5 4, hence I&l = 1, a contradiction. Similarly, suppose that 
K(G~)< I&i. Then, G2 is complete, Id* I = 2, G3 is symmetrical and s3 #ST’. Let d 
be an atom of G3. From 21&19c(G2)< l&i 16 we get I&l =2. Since o(s,j>2, 
s3$&. Moreover, G2 is the complete digraph shown in Lemma 3.2(iii), so that 
o(s2)>2 and s, B&. Hence we should have &= (1,~~). Then, IN+(&)/ = lJBs2 U 
&Is3 U &Is;’ ] 5 5. As S3 is hierarchical, &Is2 fl &sJ = 0. Hence, &I3 = &$, or s: = s,. 
In this case, IN+(&)1 = 4, so that { 1,~~) is an atom of G3 and K(G~) = I& I- 1. Cl 

3.4. Lemma. Suppose that sf = 1 and let & be an atom of Gk, k > 3. Then, cild= 
dOG,__, is a positive fragment of Gk_,. Moreover, (N+(d)1 ~K(G,&+ l%&l. 

Proof. Ifs,+&, there exist SE& such that scfd and Nf(d)3Ngk_,(~)U %&l,s, 
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where these two sets are disjoint. If sk $A& then A= % and N+(d) I, N&,, ,(@) u 
J&A k , where these two sets are also disjoint. In any case, 

IN%OI 1 IN& ,(W)I+l@Akl ~~~~{K(G~_~),IC~-,-~I)+I~A~I. 

If K(G&z IGk_l- ~1, then 

Therefore, we must have IN& , (@)I = K(G,+ I), and @ is a positive fragment of 
Gk-,a Cl 

3.5. Theorem. Let S= {s, ,..., Sk > be a hierarchical generating set of $9, S E s E 
SUS-’ and G=Cay(B,S). Ther:, K(G)= IsI unless kz3, sf=s, for 21&k, sf=l 
and ISI =2k-1, in which case, ~Z={l,s,} is an atom of G, and K(G)= ISI -1. 

Proof. The proof is by induction on k. By Proposition 2.3, the result holds for 
k 5 3. Using the above notation, suppose that k 14 and K(Gk) < I& I. Then, by 
Proposition 3.1, K(Gk_ 1) < I&_ 1 I, and, by the induction hypothesis, sf =s, for 
21ilk-l,$=l and I&l=2k-3. Let&beapositiveatomofGkcontaining 1. 
By Lemma 3.4, @=dn Gk_* is a positive fragment of Gk_+ In particular, I %?I 12. 
Moreover, 

2k-2 L IN+(&)1 1 K(Gk_,)+ 1 @Akl 2 2k-2 

so that 1 @Ak I = I UZG~ = 2 (otherwise IN+(d)1 > 2k - 2) and IAk I = 2 (otherwise 
K(Gk) = I!$ I). Then, @ is an atom of GA_ 1 and, by the induction hypothesis @= 
{ 1,~~). Then, I %‘Ak I= 2 implies @Sk = asi’, or sf =sI. Finally, we must show that 
%!!= ~52. Suppose on the contrary that Sk E &and let V= Sk - (St, Sk). Then, N+(d) > 
A$/$ ,(@) u @Sk V and 

2k-2 1 IN+(&)1 rK(GI,_,)+I@ski+E2k-2. 

Therefore, 11/l =1 and k=3. Hence, Sk&#, &= %Y=(l,q) and K(Gk)=K(G&+ 

/&!?&.I =2k-2= l&-l -1. 0 

For k 13, let Sk be the subgroup of Sym(2k), generated by s1 =(12)(34), SZ= 

(1324) and si=s2(2i-1,2i), 31i1k. Then, &={s,,...&) is a hierarchical gener- 
ating set of Sk satisfying sf= 1, sf = sl, 2 I is k. Therefore, according to the singular 
case considered in the theorem above, when Sk = & U S$, K(Cay(&, Sk>> = I$ I - 1. 

In particular, Theorem 3.5 leads to the following results. 

3.6. Corollary. k hierarchical nonsymmetric Cayley digraph has maximum connec- 
tivity. 

3.1. Cawollarjr [3]. If S is a minimal generating set of G, then K(Cay(%, SU S-l)) = 

pus-y. 
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3.8. Corollary [I]. If Sk is a hierarchical generating set of C!&. and I%, 1 L (i+ l)!, 
then K(Cay(%&.US~*))= IS&&$ 

Proof. Since I%Ir6, either sffl or s$Q,. Cl 

The above results can be extended to the nonfinite case by using the generaliza- 
tions introduced in [6]. Let % be a nonfinite group and S a finite generating set of 
%. The outconnectivity of G = Cay(%, S) is defined as 

K+(G) = min{ IN+(F)1 s.t. F is a nonempty finite subset of %}. 

A positive fragment of G is a finite subset F s.t. N+(F) = K+(G), and a positive 
fragment of minimum cardinality is a positive atom of G. It is proved in [6] that, 
with these definitions, Proposition 2.1 and Theorem 2.2 can be extended to the non- 
finite (finitely generated) case. Then, we can prove the following theorem. 

3.9. Theorem. Let 9 be an infinite group, S a finite hierarchical set of generators 
of 8, scsus- ‘. Then, K+(Cay(B, 3)) = ISl. 

Note added in proof 

After the revision of the paper we were aware of two results due to B. Alspach 
and M. Baumslig. The three methods are different. B. Alspach (Cayley graphs with 
optimal fault tolerance, IEEE Trans. Comput., to appear) obtained Theorem 3.6 for 
the undirected case. M. Baumslig (Ph.D. Thesis, City University of New York 
(199 1)) gave anot her generalization of the results in [ 1 ] using a lemma similar to Prop- 
osition 3.1. Both Alspach and Baumslig were only interested in the undirected case. 
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