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a b s t r a c t

In this paper, we obtain the relative perturbation bounds for weighted unitary polar
factors of the weighted polar decomposition in the weighted unitarily invariant norm,
the weighted spectral norm, and the weighted Frobenius norm. As special cases, we
also derive the new bounds for subunitary and unitary polar factors of (generalized)
polar decomposition. These special bounds improve the corresponding results published
recently to some extent.
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1. Introduction

Let Cm×n, Cm×nr , Cm
≥
, and Cm> denote the set of m × n complex matrices, the subset of C

m×n consisting of matrices with
rank r , the set of Hermitian positive semidefinite matrices of order m, and the subset of Cm

≥
comprising positive definite

matrices, respectively. Let Ir be the identity matrix of order r . Given A ∈ Cm×n, the symbols A∗, A#MN , R(A), A
Ď, AĎMN , ‖A‖2,

‖A‖F , and ‖A‖ stand for the conjugate transpose, weighted conjugate transpose, range, Moore–Penrose inverse, weighted
Moore–Penrose inverse, spectral norm, Frobenius norm, and unitarily invariant norm of A, respectively. The concepts and
symbols of A#MN and A

Ď
MN can be found in detail in, e.g., [1,2]. Moreover, without specification, here we always assume that

m > n > r and the given weight matricesM ∈ Cm>,N ∈ Cn>.
For amatrixA ∈ Cm×nr , there are an (M,N)weighted partial isometricmatrixQ [3,4] and a generalizedHermitian positive

semidefinite matrix H satisfying NH ∈ Cn
≥
such that

A = QH. (1.1)

This decomposition is called the (M,N) weighted polar decomposition [4,5] (MN-WPD) of A, and Q and H are called the
(M,N)weighted unitary polar factor and generalized nonnegative polar factor, respectively, of this decomposition.
In general, MN-WPD is not unique, while it has been proved that it is unique if the decomposition satisfies

R(Q #MN) = R(H). (1.2)

The condition was given by Yang and Li [5]. In this condition, MN-WPD (1.1) can be calculated from the (M,N) singular
value decomposition (MN-SVD) [2,6]

A = U
(
Σ 0
0 0

)
V ∗ = U1ΣV ∗1 (1.3)

by

Q = U1V ∗1 and H = N−1V1ΣV ∗1 , (1.4)
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where U = (U1,U2) ∈ Cm×m and V = (V1, V2) ∈ Cn×n satisfy U∗MU = Im and V ∗N−1V = In, U1 ∈ Cm×rr , V1 ∈ Cn×rr ,
Σ = diag(σ1, . . . , σr), and σ1 ≥ · · · ≥ σr > 0 are the nonzero (M,N) singular values of A. In this paper, we assume that
the condition (1.2) is always satisfied.
TheMN-WPD is reduced to the generalized polar decomposition (see, e.g., [7,8]), and Q and H are reduced to the subuni-

tary polar factor and nonnegative polar factor when M = Im and N = In. If, in addition, rank(A) = n, then decomposition
(1.1) is the polar decomposition, and Q and H are the unitary polar factor and positive polar factor.
The problem of estimating the perturbation bounds for subunitary and unitary polar factors has been studied by many

authors for additive perturbation in different norms (see, e.g., [8–21]), where the additive perturbation refers to the situation
when the perturbed matrix Ã is represented as A+ E. In view of the significance of MN-WPD [22], we studied the absolute
perturbation bounds for weighted polar decomposition under additive perturbation in [5,22]. In the present paper, we focus
our attention on the relative perturbation bounds for weighted unitary polar factors. That is, the bounds are involved with
the weighted Moore–Penrose inverse of the original matrix. Listed are some published relative bounds for subunitary and
unitary polar factors under additive perturbation.
Let A = QH and Ã = A+ E = Q̃ H̃ be the (generalized) polar decompositions of A and Ã, respectively. For in the unitarily

invariant norm, for the subunitary polar factor, i.e., when A, Ã ∈ Cm×nr , the following bound was obtained by Chen and
Li [10]:∥∥Q̃ − Q∥∥ ≤ σ1

σr + σ̃r

(∥∥AĎE∥∥+ ∥∥EAĎ∥∥)+ ∥∥EAĎ∥∥+ ∥∥AĎE∥∥ , (1.5)

where σ1 is the biggest singular value of A, and σr , σ̃r are the smallest singular values of A, Ã, respectively. Moreover, Chen
and Li [10] also gave two similar bounds for the unitary polar factor, i.e., when A, Ã ∈ Cm×nn and A, Ã ∈ Cn×nn .
For if the unitarily invariant norm is replaced with the Frobenius norm, a bound for the unitary polar factor, i.e., when

A, Ã ∈ Cm×nn , was derived by Chen et al. [12]:

∥∥Q̃ − Q∥∥F ≤
√
1
η2
(‖AĎE‖F + ‖EAĎ‖F )2 +

(
1−

1
η2

)
‖EAĎ‖2F (1.6)

≤
1
η
(‖AĎE‖F + ‖EAĎ‖F )+ ‖EAĎ‖F

√
1−

1
η2
, (1.7)

where η = σ1+σ̃n
σ1
, and σ̃n is the smallest singular value of Ã. Li [17] extended the bound (1.6) and presented a bound for the

subunitary polar factor:

∥∥Q̃ − Q∥∥F ≤
√
1
η2
(‖AĎE‖F + ‖EAĎ‖F )

2
+

(
1−

1
η2

)
(‖EAĎ‖2F + ‖AĎE‖

2
F ), (1.8)

where η = σ1+σ̃r
σ1
.

Furthermore, Chen and Li [11] also obtained an alternative relative perturbation bound involved in both the original
matrix A and the perturbedmatrix Ã for the subunitary polar factor in Frobenius normwithout the restriction that the ranks
of A and Ã are the same.
In order to make this paper more self-contained, we now introduce some preliminaries which include the definitions of

the weighted norms (see Definition 1.1) and two lemmas needed later in this paper, where Lemma 1.2 can be found in [23]
and Lemma 1.3 can be found in [24].

Definition 1.1. Let A ∈ Cm×nr . The norms ‖A‖(MN) =
∥∥M1/2AN−1/2∥∥, ‖A‖2(MN) = ∥∥M1/2AN−1/2∥∥2, and ‖A‖F(MN) =∥∥M1/2AN−1/2∥∥F are called the weighted unitarily invariant norm, weighted spectral norm, and weighted Frobenius norm of

A, respectively.

It is worth pointing out that the weighted spectral norm of A is synonymous with the weighted norm of A defined as
‖A‖MN =

∥∥M1/2AN−1/2∥∥2 in [1] and the weighted unitarily invariant norm is equivalent to the (M,N)-invariant norm
defined by Rao and Rao [25] in essence. Furthermore, combining the properties of the Frobenius norm with Definition 1.1,
we can show that

‖A‖F(MN) = (tr(A
#
MNA))

1/2. (1.9)

Lemma 1.2. Let Ω ∈ Cs×s and Γ ∈ Ct×t be two Hermitian matrices, and S ∈ Cs×t , and

∆ = [α, β] ⊂ R, ∆′ = R \ [α − δ, β + δ], δ > 0.

Let λ(Ω) and λ(Γ ) denote the eigenvalue sets of Ω and Γ , respectively. If

λ(Ω) ⊂ ∆, λ(Γ ) ⊂ ∆′,

then the equationΩX − XΓ = S has a unique solution X ∈ Cs×t , and moreover, ‖X‖ ≤ ‖S‖
δ
for any unitarily invariant norm.
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Lemma 1.3. Let Ω ∈ Cs×s and Γ ∈ Ct×t be two Hermitian matrices, and let λ(Ω) and λ(Γ ) denote the sets of eigenvalues of
Ω and Γ , respectively. If λ(Ω)∩λ(Γ ) = ∅, then for any E, F ∈ Cs×t the equationΩX−XΓ = ΩE+ FΓ has a unique solution
X ∈ Cs×t , and moreover,

‖X‖F ≤
1
η

√
‖E‖2F + ‖F‖

2
F ,

where η = minω∈λ(Ω),γ∈λ(Γ )
|ω−γ |
√
|ω|2+|γ |2

. If, in addition, F = 0, we have a better bound

‖X‖F ≤
1
η
‖E‖F ,

where η = minω∈λ(Ω),γ∈λ(Γ )
|ω−γ |

|ω|
.

2. Main results

Let us have the perturbedmatrix Ã ∈ Cm×nr . Like for (1.1) and (1.3), we can give theMN-WPD andMN-SVD of Ã as follows:

Ã = Q̃ H̃ and Ã = Ũ
(
Σ̃ 0
0 0

)
Ṽ ∗ = Ũ1Σ̃ Ṽ ∗1 , (2.1)

in which

Q̃ = Ũ1Ṽ ∗1 and H̃ = N−1Ṽ1Σ̃ Ṽ ∗1 , (2.2)

where Ũ = (Ũ1, Ũ2) ∈ Cm×m and Ṽ = (Ṽ1, Ṽ2) ∈ Cn×n satisfy Ũ∗MŨ = Im and Ṽ ∗N−1Ṽ = In, Ũ1 ∈ Cm×rr , Ṽ1 ∈ Cn×rr ,
Σ̃ = diag(σ̃1, . . . , σ̃r), and σ̃1 ≥ · · · ≥ σ̃r > 0 are the nonzero (M,N) singular values of Ã.
Next, we first present the relative perturbation bounds for weighted unitary polar factors in the weighted norms

introduced in Definition 1.1.

Theorem 2.1. Let A, Ã = A+ E ∈ Cm×nr with the MN-WPDs as in (1.1) and (2.1), respectively. Then∥∥Q̃ − Q∥∥
(MN) ≤

σ1

σr + σ̃r

(∥∥∥AĎMNE∥∥∥
(NN)
+

∥∥∥EAĎMN∥∥∥
(MM)

)
+

∥∥∥EAĎMN∥∥∥
(MM)
+

∥∥∥AĎMNE∥∥∥
(NN)

, (2.3)

whereσ1 is the biggest (M,N) singular value of A, andσr , σ̃r are the smallest nonzero (M,N) singular values of A, Ã, respectively.

Proof. From the MN-SVD of A in (1.3) and the two facts U∗MU = Im and V ∗N−1V = In, we know the weighted Moore–
Penrose inverse of A can be written as

AĎMN = N
−1V

(
Σ−1 0
0 0

)
U∗M = N−1V1Σ−1U∗1M (2.4)

and

U∗1MU1 = V
∗

1 N
−1V1 = Ir , Ũ∗1MŨ1 = Ṽ

∗

1 N
−1Ṽ1 = Ir . (2.5)

According to (2.4), (1.3) and (2.1), we have

AĎMN (̃A− A) = N
−1V1Σ−1U∗1M(Ũ1Σ̃ Ṽ

∗

1 − U1ΣV
∗

1 )

= N−1V1Σ−1U∗1MŨ1Σ̃ Ṽ
∗

1 − N
−1V1V ∗1 , (2.6)

(̃A− A)AĎMN = (Ũ1Σ̃ Ṽ
∗

1 − U1ΣV
∗

1 )N
−1V1Σ−1U∗1M

= Ũ1Σ̃ Ṽ ∗1 N
−1V1Σ−1U∗1M − U1U

∗

1M. (2.7)

The equalities (2.6) and (2.7) imply that

V ∗1 A
Ď
MNEN

−1Ṽ1 = Σ−1U∗1MŨ1Σ̃ − V
∗

1 N
−1Ṽ1, (2.8)

Ũ∗1MEA
Ď
MNU1 = Σ̃ Ṽ

∗

1 N
−1V1Σ−1 − Ũ∗1MU1. (2.9)

Subtracting (2.9) from the conjugate transpose of (2.8) leads to

Ṽ ∗1 N
−1(AĎMNE)

∗V1 − Ũ∗1MEA
Ď
MNU1

= (Σ̃Ũ∗1MU1Σ
−1
− Ṽ ∗1 N

−1V1)− (Σ̃ Ṽ ∗1 N
−1V1Σ−1 − Ũ∗1MU1). (2.10)
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Thus, postmultiplying (2.10) byΣ , we have

Σ̃(Ũ∗1MU1 − Ṽ
∗

1 N
−1V1)+ (Ũ∗1MU1 − Ṽ

∗

1 N
−1V1)Σ =

(
Ṽ ∗1 N

−1(AĎMNE)
∗V1 − Ũ∗1MEA

Ď
MNU1

)
Σ . (2.11)

Applying Lemma 1.2 to (2.11) withΩ = Σ̃,Γ = −Σ , and

X = Ũ∗1MU1 − Ṽ
∗

1 N
−1V1,

S =
(
Ṽ ∗1 N

−1(AĎMNE)
∗V1 − Ũ∗1MEA

Ď
MNU1

)
Σ

(2.12)

gives

‖X‖ ≤

∥∥∥(Ṽ ∗1 N−1(AĎMNE)∗V1 − Ũ∗1MEAĎMNU1)Σ∥∥∥
δ

, (2.13)

where δ = σr + σ̃r . Note that∥∥∥(Ṽ ∗1 N−1(AĎMNE)∗V1 − Ũ∗1MEAĎMNU1)Σ∥∥∥ ≤ ∥∥∥Ṽ ∗1 N−1(AĎMNE)∗V1 − Ũ∗1MEAĎMNU1∥∥∥ ‖Σ‖2
≤ σ1

(∥∥∥Ṽ ∗1 N−1(AĎMNE)∗V1∥∥∥+ ∥∥∥Ũ∗1MEAĎMNU1∥∥∥) . (2.14)

Then, (2.13) and (2.14) together reveal that

‖X‖ ≤
σ1

σr + σ̃r

(∥∥∥Ṽ ∗1 N−1(AĎMNE)∗V1∥∥∥+ ∥∥∥Ũ∗1MEAĎMNU1∥∥∥) . (2.15)

Since

Ũ∗M(Q̃ − Q )N−1V =
(
Ṽ ∗1 N

−1V1 − Ũ∗1MU1 Ṽ ∗1 N
−1V2

−Ũ∗2MU1 0

)
, (2.16)

observing (2.12), we can obtain∥∥Ũ∗M(Q̃ − Q )N−1V∥∥ ≤ ‖X‖ + ∥∥Ṽ ∗1 N−1V2∥∥+ ∥∥Ũ∗2MU1∥∥ . (2.17)

Thus, it follows from (2.15) and (2.17) that∥∥Ũ∗M(Q̃ − Q )N−1V∥∥ ≤ σ1

σr + σ̃r

(∥∥∥Ṽ ∗1 N−1(AĎMNE)∗V1∥∥∥+ ∥∥∥Ũ∗1MEAĎMNU1∥∥∥)+ ∥∥Ṽ ∗1 N−1V2∥∥+ ∥∥Ũ∗2MU1∥∥ . (2.18)

From (2.6) and (2.7), it is seen that∥∥V ∗1 N−1Ṽ2∥∥ = ∥∥∥−V ∗1 AĎMNEN−1Ṽ2∥∥∥ , ∥∥∥Ũ∗2MEAĎMNU1∥∥∥ = ∥∥−Ũ∗2MU1∥∥ . (2.19)

Note that V ∗N−1Ṽ is unitary. Then∥∥V ∗1 N−1Ṽ2∥∥ = ∥∥Ṽ ∗2 N−1V1∥∥ = ∥∥Ṽ ∗1 N−1V2∥∥ = ∥∥∥−V ∗1 AĎMNEN−1Ṽ2∥∥∥ . (2.20)

Furthermore, from Definition 1.1 and the properties of the unitarily invariant norm, we have∥∥Ũ∗M(Q̃ − Q )N−1V∥∥ = ∥∥M1/2(Q̃ − Q )N−1/2∥∥ = ∥∥Q̃ − Q∥∥
(MN) , (2.21)∥∥∥Ṽ ∗1 N−1(AĎMNE)∗V1∥∥∥ ≤ ∥∥∥N−1/2(AĎMNE)∗N1/2∥∥∥ = ∥∥∥AĎMNE∥∥∥

(NN)
, (2.22)∥∥∥Ũ∗1MEAĎMNU1∥∥∥ ≤ ∥∥∥M1/2EAĎMNM−1/2∥∥∥ = ∥∥∥EAĎMN∥∥∥

(MM)
, (2.23)∥∥∥V ∗1 AĎMNEN−1Ṽ2∥∥∥ ≤ ∥∥∥N1/2AĎMNEN−1/2∥∥∥ = ∥∥∥AĎMNE∥∥∥

(NN)
, (2.24)∥∥∥Ũ∗2MEAĎMNU1∥∥∥ ≤ ∥∥∥M1/2EAĎMNM−1/2∥∥∥ = ∥∥∥EAĎMN∥∥∥

(MM)
. (2.25)

Therefore, the proof follows from (2.18)–(2.25). �

If the weighted spectral norm, i.e., the weighted norm, is chosen as the specific weighted unitarily invariant norm in
Theorem 2.1, we have the following smaller perturbation bound.
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Theorem 2.2. Assume that the conditions of Theorem 2.1 hold. Then∥∥Q̃ − Q∥∥MN ≤ σ1

σr + σ̃r

(∥∥∥AĎMNE∥∥∥NN + ∥∥∥EAĎMN∥∥∥MM)+max {∥∥∥EAĎMN∥∥∥MM , ∥∥∥AĎMNE∥∥∥NN} .
Proof. Observe that (2.16) can be rewritten as

Ũ∗M(Q̃ − Q )N−1V =
(
Ṽ ∗1 N

−1V1 − Ũ∗1MU1 0
0 0

)
+

(
0 Ṽ ∗1 N

−1V2
−Ũ∗2MU1 0

)
.

Then, noting (2.12), we have∥∥Ũ∗M(Q̃ − Q )N−1V∥∥2 = ∥∥Q̃ − Q∥∥MN ≤ ‖X‖2 + ∥∥∥∥( 0 Ṽ ∗1 N
−1V2

−Ũ∗2MU1 0

)∥∥∥∥
2

≤ ‖X‖2 +max
{∥∥Ṽ ∗1 N−1V2∥∥2 , ∥∥−Ũ∗2MU1∥∥2} ,

which together with (2.15), (2.19), (2.20), (2.24) and (2.25) implies the proof. �

If we take the weighted Frobenius norm as the specific weighted unitarily invariant norm in Theorem 2.1, an alternative
perturbation bound can be derived as follows.

Theorem 2.3. Assume that the conditions of Theorem 2.1 hold and set η = σ1+σ̃r
σ1
≥
√
2− ε, where σ1 is the biggest (M,N)

singular value of A, σ̃r is the smallest nonzero (M,N) singular value of Ã, and 0 ≤ ε ≤ 1. Then

∥∥Q̃ − Q∥∥F(MN) ≤
√(
1+

ε

η2

)(∥∥∥AĎMNE∥∥∥2F(NN) + ∥∥∥EAĎMN∥∥∥2F(MM)
)

(2.26)

≤

√
2
2− ε

(∥∥∥AĎMNE∥∥∥2F(NN) + ∥∥∥EAĎMN∥∥∥2F(MM)
)
. (2.27)

Proof. Applying Lemma 1.3 to (2.11) withΩ = Σ̃,Γ = −Σ , E = 0, X as in (2.12), and

F = −Ṽ ∗1 N
−1(AĎMNE)

∗V1 + Ũ∗1MEA
Ď
MNU1

leads to

‖X‖2F ≤
1
η2

∥∥∥−Ṽ ∗1 N−1(AĎMNE)∗V1 + Ũ∗1MEAĎMNU1∥∥∥2F ≤ 1
η2

(∥∥∥Ṽ ∗1 N−1(AĎMNE)∗V1∥∥∥F + ∥∥∥Ũ∗1MEAĎMNU1∥∥∥F)2 , (2.28)

where η = min1≤i,j≤r
|σi+σ̃j|
|σi|

=
σ1+σ̃r
σ1
≥
√
2− ε. Then, it follows from Definition 1.1, (2.16), (2.21), (2.28), (2.19) and

(2.20) that∥∥Ũ∗M(Q̃ − Q )N−1V∥∥2F = ∥∥M1/2(Q̃ − Q )N−1/2∥∥2F = ∥∥Q̃ − Q∥∥2F(MN)
≤
1
η2

(∥∥∥Ṽ ∗1 N−1(AĎMNE)∗V1∥∥∥F + ∥∥∥Ũ∗1MEAĎMNU1∥∥∥F)2
+

∥∥∥Ṽ ∗2 N−1(AĎMNE)∗V1∥∥∥2F + ∥∥∥Ũ∗2MEAĎMNU1∥∥∥2F
≤
2− ε
η2

(∥∥∥(Ṽ1, Ṽ2)∗N−1(AĎMNE)∗V1∥∥∥2F + ∥∥∥(Ũ1, Ũ2)∗MEAĎMNU1∥∥∥2F
)

+
ε

η2

(∥∥∥Ṽ ∗1 N−1(AĎMNE)∗V1∥∥∥2F + ∥∥∥Ũ∗1MEAĎMNU1∥∥∥2F
)

+

(
1−

2− ε
η2

)(∥∥∥Ṽ ∗2 N−1(AĎMNE)∗V1∥∥∥2F + ∥∥∥Ũ∗2MEAĎMNU1∥∥∥2F
)

≤
2− ε
η2

(∥∥∥N−1/2(AĎMNE)∗N1/2∥∥∥2F + ∥∥∥M1/2EAĎMNM−1/2∥∥∥2F
)

+
ε

η2

(∥∥∥N−1/2(AĎMNE)∗N1/2∥∥∥2F + ∥∥∥M1/2EAĎMNM−1/2∥∥∥2F
)
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+

(
1−

2− ε
η2

)(∥∥∥N−1/2(AĎMNE)∗N1/2∥∥∥2F + ∥∥∥M1/2EAĎMNM−1/2∥∥∥2F
)

=

(
1+

ε

η2

)(∥∥∥AĎMNE∥∥∥2F(NN) + ∥∥∥EAĎMN∥∥∥2F(MM)
)

≤
2
2− ε

(∥∥∥AĎMNE∥∥∥2F(NN) + ∥∥∥EAĎMN∥∥∥2F(MM)
)
.

Therefore, we obtain the desired results. �

When A, Ã ∈ Cm×nn , the MN-SVDs of A and Ã are reduced to

A = U
(
Σ

0

)
V ∗ = U1ΣV ∗ and Ã = Ũ

(
Σ̃

0

)
Ṽ ∗ = Ũ1Σ̃ Ṽ ∗.

In this case, the MN-WPDs of A and Ã can be computed using

Q = U1V ∗, H = N−1VΣV ∗ and Q̃ = Ũ1Ṽ ∗, H̃ = N−1Ṽ Σ̃ Ṽ ∗,

and (2.4) is reduced to

AĎMN = N
−1V (Σ−1, 0)U∗M = N−1VΣ−1U∗1M.

Thus, X , F , and Ũ∗M(Q̃ − Q )N−1V appearing in the proof of Theorems 2.1 and 2.3 are changed to

X = Ũ∗1MU1 − Ṽ
∗N−1V ,

F = −Ṽ ∗N−1(AĎMNE)
∗V + Ũ∗1MEA

Ď
MNU1,

Ũ∗M(Q̃ − Q )N−1V =
(
Ṽ ∗N−1V − Ũ∗1MU1
−Ũ∗2MU1

)
.

In terms of the above discussions and the proofs of Theorems 2.1 and 2.3, we have the following two theorems.

Theorem 2.4. Let A, Ã = A+ E ∈ Cm×nn with the MN-WPDs as in (1.1) and (2.1), respectively. Then∥∥Q̃ − Q∥∥
(MN) ≤

σ1

σn + σ̃n

(∥∥∥AĎMNE∥∥∥
(NN)
+

∥∥∥EAĎMN∥∥∥
(MM)

)
+

∥∥∥EAĎMN∥∥∥
(MM)

,

whereσ1 is the biggest (M,N) singular value of A, andσn, σ̃n are the smallest nonzero (M,N) singular values of A, Ã, respectively.

Theorem 2.5. Assume that the conditions of Theorem 2.4 hold and set η = σ1+σ̃n
σ1
≥
√
2− ε, where σ1 is the biggest (M,N)

singular value of A, σ̃n is the smallest nonzero (M,N) singular value of Ã, and 0 ≤ ε ≤ 1. Then

∥∥Q̃ − Q∥∥F(MN) ≤
√
2
η2

∥∥∥AĎMNE∥∥∥2F(NN) +
(
1+

ε

η2

)∥∥∥EAĎMN∥∥∥2F(MM) (2.29)

≤

√
2
2− ε

(∥∥∥AĎMNE∥∥∥2F(NN) + ∥∥∥EAĎMN∥∥∥2F(MM)
)
. (2.30)

Two new relative perturbation bounds for subunitary or unitary polar factors can be obtained as followswhen theweight
matricesM and N in Theorems 2.3 and 2.5 are reduced to the identity matrices Im and In, respectively.

Corollary 2.6. Let A, Ã = A+E ∈ Cm×nr with the generalized polar decompositions A = QH, Ã = Q̃ H̃. If η = σ1+σ̃r
σ1
≥
√
2− ε,

where σ1 is the biggest singular value of A, σ̃r is the smallest nonzero singular value of Ã, and 0 ≤ ε ≤ 1, then

∥∥Q̃ − Q∥∥F ≤
√(
1+

ε

η2

)
(‖AĎE‖2F + ‖EAĎ‖

2
F ) (2.31)

≤

√
2
2− ε

(‖AĎE‖2F + ‖EAĎ‖
2
F ). (2.32)
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Corollary 2.7. Let A, Ã = A+ E ∈ Cm×nn with the polar decompositions A = QH, Ã = Q̃ H̃. If η = σ1+σ̃n
σ1
≥
√
2− ε, where σ1

is the biggest singular value of A, σ̃n is the smallest nonzero singular value of Ã, and 0 ≤ ε ≤ 1, then

∥∥Q̃ − Q∥∥F ≤
√
2
η2
‖AĎE‖2F +

(
1+

ε

η2

)
‖EAĎ‖2F (2.33)

≤

√
2
2− ε

(‖AĎE‖2F + ‖EAĎ‖
2
F ). (2.34)

Remark 2.8. It is easy to find that if the conditions in Corollaries 2.6 and 2.7 hold, i.e., η ≥
√
2− ε and 0 ≤ ε ≤ 1, and the

value of ε is set to a suitable one, the new bounds (2.31)–(2.34) may be smaller than the corresponding ones (1.6)–(1.8). In

fact, for the bounds (1.8) and (2.31), if 0 ≤ ε ≤
2‖AĎE‖F‖EA

Ď‖F

‖AĎE‖
2
F+‖EA

Ď‖
2
F
and η ≥

√
2− ε, the bound (2.31) is less than or equal to that

of (1.8). For the bounds (1.6) and (2.33), if 0 ≤ ε ≤
2‖AĎE‖F‖EA

Ď‖F−‖A
ĎE‖

2
F

‖EAĎ‖
2
F

and η ≥
√
2− ε, the bound (2.33) is not greater

than that of (1.6). Moreover, the new bounds (2.31) and (2.32) are obviously better than that of (1.8) if ε = 0, i.e., η ≥
√
2.

Of course, it must be emphasized that if ε = 1, i.e., without the restriction on singular values, the bounds (2.31) and (2.33)
are worse than the corresponding ones (1.8) and (1.6). Furthermore, in comparison with the bounds (2.31) and (2.33), the
bounds (2.32) and (2.34) are simpler in form although they are a little larger than the corresponding ones (2.31) and (2.33).

Remark 2.9. As we know, without assuming that ‖E‖F is tiny, the current best absolute perturbation bound for additive
perturbation in the Frobenius norm is [19]∥∥Q̃ − Q∥∥F ≤ 2

σr + σ̃r

∥∥̃E∥∥F , (2.35)

where σr and σ̃r are the smallest nonzero singular values of A and Ã, respectively. The bound (2.35) was obtained by Li [16]
for A, Ã ∈ Cn×nn and by Li and Sun [18] for A, Ã ∈ Cm×nr .
From the discussions in [12] and [17],we know that neither the relative perturbation boundnor the absolute perturbation

bound for (generalized) polar decomposition in the Frobenius norm is uniformly better than the other in general. This rule
is also applicable to the bounds (2.31)–(2.35). Two examples are given below, for which the relative perturbation bounds
(2.33) and (2.31) are a little better than the corresponding ones (1.6) and (1.8), and not greater than that of (2.35) if we set
ε = 0.2, 0.5, 0.8, respectively. Moreover, it is easy to verify that the rule mentioned above is also suitable for the relative
perturbation bounds obtained in this paper and absolute perturbation bounds derived in [5,22] for weighted unitary polar
factors.

Example 2.10. Let

A =

( 1 0
0 1.5
0.5 0

)
∈ C3×22 , Ã = A+

(0 0
0 0.001
0 0.001

)
∈ C3×22 .

Then, we can get η = 1.7454 and the perturbation bounds (1.6) and (2.35), respectively, as follows:∥∥Q̃ − Q∥∥F ≤ 0.00125 and
∥∥Q̃ − Q∥∥F ≤ 0.00126.

If the value of ε is set to be 0.2, 0.5, 0.8, respectively, then the corresponding bound (2.33) can be obtained as follows:∥∥Q̃ − Q∥∥F ≤ 0.00116, 0.00120, 0.00123.
Furthermore, we have

2‖AĎE‖F‖EA
Ď‖F−‖A

ĎE‖
2
F

‖EAĎ‖
2
F

= 0.9692. As a result, we can conclude that the bound (2.33) is always not

bigger than that of (1.6) if 0 ≤ ε ≤ 0.9692 for this example.

Example 2.11. Let

A =

 1 0 0
0 1.5 0
0.5 0 0
0 0.75 0

 ∈ C4×32 , Ã = A+

0 0 0
0 0.001 0
0 0.001 0
0 0.001 0

 ∈ C4×32 .

Then, we can obtain η = 1.67 and the perturbation bounds (1.8) and (2.35), respectively, as follows:∥∥Q̃ − Q∥∥F ≤ 0.00159 and
∥∥Q̃ − Q∥∥F ≤ 0.00155.
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If we set ε = 0.2, 0.5, 0.8, the bound (2.31) can be derived, respectively, as follows:∥∥Q̃ − Q∥∥F ≤ 0.00141, 0.00148, 0.00155.
In addition, we can get

2‖AĎE‖F‖EA
Ď‖F

‖AĎE‖
2
F+‖EA

Ď‖
2
F
= 0.9897 for this example. Therefore, the bound (2.31) is always not greater than

that of (1.8) if 0 ≤ ε ≤ 0.9897.
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