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Abstract 

Many automated finite-state verification procedures can be viewed as fixpoint computations 
over a finite lattice (typically the powerset of the set of system states). For this reason, fix- 
point calculi such as those proposed by Kozen and Park have proved useful, both as ways to 
describe verification algorithms and as specification formalisms in their own right. We consider 
the problem of evaluating expressions in these calculi over a given model. A naive algorithm 
for this task may require time nq, where n is the maximum length of a chain in the lattice 
and q is the depth of fixpoint nesting. In 1986, Emerson and Lei presented a method requiring 
about nd steps, where d is the number of alternations between least and greatest fixpoints. More 

recent algorithms have succeeded in reducing the exponent by one or two, but the complexity 
has remained at about nd. In this paper, we present a new algorithm that makes extensive use 
of monotonicity considerations to solve the problem in about nd12 steps. 

1. Introduction 

Many automated finite-state verification algorithms can be viewed as fixpoint com- 

putations over a finite lattice. Examples include: model checking procedures for logics 
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such as CTL [7,8] and PDL [ 151, methods for computing strong and weak bisimu- 

lation equivalence in CCS [20], and language containment and emptiness algorithms 

for o-automata [6]. Approaches based on fixpoint logics such as the propositional 

/_calculus [ 161 are tied even more directly to fixpoint computation. With the increas- 

ing use of binary decision diagrams (BDDs) [4] for finite-state verification [5, 12, 191, 

fixpoint-based algorithms have become even more important, since methods that require 

the manipulation of individual states do not take advantage of this representation. In 

this paper, we consider the complexity of evaluating fixpoint expressions over finite 

lattices. Our main result is a new algorithm that makes extensive use of monotonicity 

considerations to reduce the complexity of evaluation. The number of steps required 

by our method is roughly the square root of the number of steps required by the best 

previously known algorithms. 

Numerous fixpoint calculi have been described in the literature [ 13,16,21], and our 

ideas for evaluating fixpoint expressions will work with any of them. However, for 

concreteness, we will be using the propositional p-calculus of Kozen [16]. This logic 

is designed for expressing properties of transition systems, and formulas in the logic 

(with no free propositional variables) evaluate to sets of states. There have been many 

algorithms proposed for evaluating a formula of the logic with respect to a given tran- 

sition system. These mostly fall into two categories: local and global. Local procedures 

are designed for proving that a specific state of the transition system satisfies the given 

formula. Because of this, it is not always necessary to examine all the states in the 

transition system. However, the worst-case complexity of these approaches is gener- 

ally larger than the complexity of the global methods. Tableau-based local approaches 

have been developed by Cleaveland [9], Stirling and Walker [22], and Winskel [24]. 

More recently, Andersen [I] and Larsen [ 171 have developed efficient local methods 

for a subset of the p-calculus. Mader [18] has also proposed improvements to the 

tableau-based method of Stirling and Walker that seem to increase its efficiency (though 

Mader does not give a complexity bound). Global procedures generally work bottom-up 

through the formula, evaluating each subformula based on the value of its subformulas. 

Iteration is used to compute the fixpoints. Because of fixpoint nesting, a naive global 

algorithm may require about ~4 steps to evaluate a formula, where n is the number of 

states in the transition system and q is the depth of nesting of the fixpoints. A lin- 

ear time algorithm for evaluating alternation-free fixpoint expressions is given in [2]. 

Emerson and Lei [14] improved on this by observing that the complexity of evaluat- 

ing a formula really depends only on the number of alternations of least and greatest 

fixpoints. That is, successively nested fixpoints of the same type do not increase the 

complexity of the computation. Emerson and Lei formalized this using the notion of 

alternation depth, and they gave an algorithm requiring only about nd steps, where d 

is the alternation depth. In an implementation, bookkeeping and set manipulations may 

add another factor of n or so to the time required. Subsequent work by Cleaveland and 

co-workers [ 10, 1 l] and Andersen [l] has reduced this extra complexity, but the overall 

number of steps has remained at about n d. Our new algorithm is also a global method. 

By using extensive monotonicity considerations, we are able to show that only about 
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nd12 steps are required to evaluate a formula with alternation depth d. Thus, our method 

requires only about the square root of the time needed by the earlier algorithms. 

The remainder of the paper is organized as follows. Section 2 summarizes the syntax 

and semantics of the propositional p-calculus and briefly reviews Emerson and Lei’s 

work. In Section 3 we give our new algorithm, present a proof of correctness, and 

show that it requires no more than about n dJ2 steps. Section 4 presents an example 

that shows that our complexity bound is tight, i.e., there are cases where the algorithm 

does use nd12 steps. We discuss some open questions and directions for future research 

in Section 5. 

2. The propositional p-calculus 

In the propositional p-calculus, formulas are built up from: 

(1) atomic propositions p, ~1, ~2, . . . ; 

(2) atomic propositional variables R, RI, Rz, . . ; 

(3) logical connectives . A . and . V . ; 

(4) modal operators (a). and [a]. , where a is one of a set of program letters 

a,b,al,az ,... ;and 

(5) fixpoint operators pR,.(...) and VRi. (...). 

(We can also allow negations to be applied to atomic propositions, but this is not 

important for our purposes.) Formulas in this calculus are interpreted relative to a 

transition system that consists of: 

(1) a nonempty set of states T (throughout this paper the size of this set is denoted 

by n); 
(2) a mapping L that takes each atomic proposition to some subset of T (the states 

where the proposition is true); and 

(3) a mapping T that takes each program letter to a binary relation over T (the state 

changes that can result from executing the program). 

The intuitive meaning of the formula (cz)~ is “it is possible to execute a and transition 

to a state where 4 holds”. [.I is the dual of (.); for [a]4, the intended meaning is that 

“4 holds in all states reachable (in one step) by executing a.” The p and v operators 

are used to express least and greatest fixpoints, respectively. To emphasize the duality 

between least and greatest fixpoints, we write the empty set of states as 1. 

Formally, a formula 4 depending on free propositional variables RI, Rz,. . . , Rk is 

interpreted as a k-argument predicate transformer. (A predicate transformer is simply a 

mapping from sets of states to a set of states.) We write this predicate transformer as 

c#?. c$~ is defined inductively by giving its value c$~(S) for a vector 3 = (Sr, . . . , &) 

of arguments. 

(1) PM(S) = L(P). 
(2) R?(S) = Si. 

(3) (C#I A $)“(,?) = 4”(s) n I+/I~(S). Disjunction is similar. 
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(4) w#Ym = 1s I 3 [(s,t) E T(a) A t E PC31 ). 
ma#Ym = {s I v’t [(s, t) E T(a) + t E @ml ). 

(5) (@x$)““(S) is defined to be the least fixpoint of the predicate transformer 

r : 2T --+ 2T defined by 

r(S) = @V,Q, 

where the first parameter 

is similar, except that we 

of $M is the value for R. The interpretation of vR.4 

take the greatest fixpoint. 

Within formulas, there is no negation (except potentially on the atomic propositions), 

and so the fixpoints are guaranteed to be well-defined. Formally, each possible r is 

monotonic (SC S’ implies r(S) C: z(S’)). This is enough to ensure the existence of the 

fixpoints [23]. Further, since we will be evaluating formulas only over finite transition 

systems, monotonicity of r implies that r is also U-continuous and rl-continuous, and 

hence the least and greatest fixpoints can be computed by iterative evaluation: 

w.Hv) = U~‘W, (vR.&~(S) = f-+'(T). 
i i 

Since the domain is finite, the iteration must stop after a finite number of steps. More 

precisely, for some i < ITI, the fixpoint is equal to r’(1) (for a least fixpoint) or z’(T) 
(for a greatest fixpoint). To find the fixpoint, we repeatedly apply r starting from _L 

or from T until the result does not change. 

Since we will be using the concept of alternation depth, we briefly summarize Emer- 

son and Lei’s observations [14]. Consider the expression 

PRI.((~)RI) v (PRz.RI v P v (b)Rz). 

The subformula &. (. .) defines a monotonic predicate transformer z taking one set 

(the value of RI) to another (the value of the least fixpoint of R2). When evaluating 

the outer fixpoint, we start with the approximation i and then compute r(l). Now 

RI is increased (say to St), and we want to compute the least fixpoint r(&). Since 

I & St, by monotonicity we know that r(l) & r(St ). To compute a least fixpoint, it is 

enough to start iterating with any approximation known to be below the fixpoint. Thus 

here, we can start iterating with r(l) instead of 1. At the next step, RI will be even 

larger, and so we will start the inner fixpoint computation with r(St ). We never restart 

the inner fixpoint computation, and so we can have at most about n increases in the 

value of the inner fixpoint variable. Overall, we only need about n steps to evaluate 

this expression, instead of n2. 

Emerson and Lei show that this type of simplification makes it possible to evaluate 

a formula r#~ in about nd steps, where d is the alternation depth of the formula. The 

alternation depth of a formula is intuitively equal to the number of alternating nestings 

of least and greatest fixpoints. Formally, the alternation depth is defined as follows. 

Assume for simplicity that the formula does not contain any nonatomic subformulas 

that which do not contain free propositional variables (these can be independently 

evaluated and then treated as atomic propositions). 



(1) 
(2) 

(3) 
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The alternation depth of an atomic proposition or propositional variable is 0. 

The alternation depth for formulas like @A$, $Vll/, (a)4, etc., is the maximum 

alternation depth of the subformulas 4, $, etc. 

The alternation depth of pR.4 is the maximum of: one, the alternation depth 

of 4, and one plus the alternation depth of any top-level v-subformulas of 4. 

A top-level v-subformula of 4 is a subformula vR’$ of 4 that is not contained 

within any other fixpoint subformula of 4. The alternation depth for vR.4 is 

similarly defined. 

3. The algorithm 

To simplify notation, we consider a fixpoint computation of the form: 

F1 = ~R1.$1(Rt2’2), 

F2 = VR242@1,R2,F3), 

F3 = PR~.$~(RI,R~,R~,F~), 

F4 = VR~.*~(RI,R~,R~,R~,F~), 

where = denotes syntactic equality. Note that d is the alternation depth of this formula. 

We write akRk.(. . .) to mean @k.(’ . .) if Rk is given by a least fixpoint, and to mean 

V&.(. . .) otherwise. Define 4d E *d, and let 

&(R t,...,Rk) = $k(Rt,...,Rk,Fk+t) 

for k < d. Note that $k is a formula with k + 1 free propositional variables (except for 

@d/d); the last parameter gives the value of the inner fixpoint. Then & is obtained from 

tjk by instantiating the last parameter with the inner fixpoint. For notational simplicity, 

we will identify syntactic formulas with their interpretations in the discussion below. 

So, depending on context, a formula like $k may mean either the actual formula or 

the k-argument predicate transformer $;1”. 

3.1. The basic idea 

Before going into details of our new algorithm, we illustrate the idea on a formula 

involving three fixpoints: 

To compute the outer fixpoint, we start with RI = I, R2 = T and R3 = 1. Call these 

values Ry, Rio, and Rio’, respectively. The superscript on Rk gives the iteration indices 

for the fixpoints involving R 1, . . . , Rk. We then iterate to compute the inner fixpoint; 
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call the value of this fixpoint R, OoO. We now compute the next approximation Ri’ for 

RZ by evaluating t+bp(R~,R~O,R~oo) and go back to the inner fixpoint. Eventually, we 

reach the fixpoint for Rz, having computed Rio, RyW, Ri’, RilO, . . . , R!f”, Ri-‘. Now 

we proceed to RI = +‘(Ry, R!jO, RF,). We know that Ry C Rt, and we are now going 

to compute Rp. Note that the values RiW and RIW are given by 

RiW = vR~&(R:,R~, PRG+~(R:,R~,R~)). 

and 

R:O = vR~.~(R~,R~,~~.~(R~,R~,R~)). 

By monotonic&y, we know that Ri” will be a superset of R!f”. However, since R2 is 

computed by a greatest fixpoint, this information does not help; we still must start 

computing with R, ” = T. At this point, we begin to compute the inner fixpoint again. 

But now let us look at RpW and RloW. We have 

Rio, = PRG+MR(:,R;~,R& 

R’O” = pR3.&(R;,R;‘, R3). 3 

Since R” CR’ and Rio G Rio, monotonicity implies that Rtow C Rio*. Now R3 is a least I- 1 

fixpoint, so starting the computation of Rioa anywhere below the fixpoint value is 

acceptable. Thus, we can start the computation for Rio, with Rio0 = Rio,. Since Rio, 

is in general larger than I, we obtain faster convergence. Also note that since Ry & Ri 

and Rpm s RioW, we will have R!f 5 R, . ” This means that we can use the same trick 

when computing RllW: we start the computation from Ri” = Rfj’,. In general, we can 

start computing R:/‘w from Ry = Ry. Similarly, once we find R: (or in general, 

R:+‘), we can start computing the inner fixpoints from Rima (Rv). 

If we use this idea, how many steps does the computation take? The dominating 

term is the number of steps made when computing the inner fixpoint. With previously 

known algorithms, this inner computation starts from I each time, and hence may 

involve about n3 steps (one factor of n for each of the three fixpoints). In our case, if 

we fix a particular j, then we have 

This implies that for each j, we can have at most n strict inclusions among the values 

of Ry that we compute, and so for each j we take only about n steps. Since there 

can be up to n different j values, we take only about n2 steps while computing the 

inner fixpoint, thus saving a factor of n. 

The relationship between the different approximations to R3 is shown in Fig. 1. The 

computation of least fixpoints proceeds from bottom to top, and the computation of 

greatest fixpoints proceeds from left to right. When computing with approximation @, 

we save the “frontier” values RI-O and use them as the initial approximations R30’+‘)-’ 

when computing with R, . j+’ We have at most n strict inclusions within each vertical 

chain in the figure. 
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II II i 

R;‘” > R;‘” > . . -J Rp 
Ul - UI Ui 

Fig. 1. Relationships between approximations for R3 

Note that we can build this type of table for arbitrarily nested fixpoints. Suppose, 

for example, that we were also computing an outer greatest fixpoint for a relation Ro. 

Fig. 1 would correspond to a series of computations with Ro at T. If we then compute 

the next approximation for Ro, it will be smaller than the initial approximation. Then 

by monotonicity, when we go through the computations for RI, R2, and R3 again, we 

will get at each stage something smaller than during the first set of computations. For 

Rz, this means that we can use the frontier fixpoint values produced during the first set 

of computations as initial approximations when doing the second set of computations. 

The effect is to build a second table like the one in the figure to the right of the 

previous table. This process would be repeated for each new approximation for Ra. 

As before, we could argue that the number of strict inclusions along any chain (now 

running horizontally) would be bounded by n. At first it seems that these ideas must 

lead to a polynomial time algorithm for evaluating formulas of arbitrary alternation 

depth. This appears reasonable because we have a bound of n on the number of strict 

inclusions going both horizontally and vertically, so the number of distinct entries in 

a table should be about n2. Unfortunately, this intuition is not correct. The problem 

arises because the chains may not “line up” due to fixpoint computations converging in 

less than n steps. The result is that we can only guarantee that the algorithm will take 

no more than about nd/* steps. We will give an example in Section 4 that demonstrates 

that this bound is tight. 
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3.2. A simple version of the algorithm 

Now we turn to the details of the algorithm. For reasons of notational simplicity, 

the first approach that we will describe will be one that always iterates n times when 

computing a fixpoint, even when convergence is achieved earlier. It will also only 

save frontier values for least fixpoints. Afterwards we will prove that terminating the 

computation of least fixpoints once convergence is achieved is allowable. This will 

be enough to give us the desired time bound on the algorithm. We will then give 

the general algorithm that saves frontier values and terminates once convergence is 

achieved for both types of fixpoints. 

As in the discussion earlier, we will superscript relation names with vectors of 

iteration indices to show various approximations. Each iteration index will be a number 

between 0 and n, inclusive. We will let J and Z denote vectors of iteration indices. For 

- example, we could write Rio0 as Ri with J = 000. When we write such an expression, 

it is implicit that the length of the vector corresponds in the right way to the depth of 

nesting of the fixpoint. Variables j and i will denote individual iteration indices. By the 

juxtaposition a vector of iteration indices with some expressions denoting individual 

indices, we mean the vector formed by concatenating the values of the expressions 

onto the end of the vector. So if J = 00, then Rio would mean Ryoo. The notation 

8 will indicate a vector of all zeros of an appropriate length. Given a vector 7 of 

iteration indices, the notation ,u(?) will be the vector of indices that correspond to 

least fixpoint variables. In our earlier example, RI and R3 are the least fixpoints, so 

~(123) would denote the vector 13. Similarly, v(T) selects the indices corresponding to 

greatest fixpoints. We will also need a partial order on vectors of indices. The notation 

Z 3 3 will mean that Z and J have the same length, that v(zQ = v(J), and that ~(23 is 

lexicographically less than or equal to p(J). If the first and third indices represent least 

fixpoints, then 312 3 410. The relation 3 holds between successive elements in the 

vertical chains in Fig. 1. The notation p(J) will denote the immediate predecessor of j 

under 3. This exists whenever ~(3) # 6. Note that v(p(J)) = v(J), and that p(p(j)) is 

the immediate predecessor of ~(3) in the lexicographic ordering. The notation h(j, I) 

will denote the vector of length I that agrees with J on the initial indices. As an 

example, h(3 12,2) = 3 1. 

The algorithm will consist of computing the following approximations: 

(1) Iff&=v: 

(a) RJko = T. 
(b) Ri’+‘) = t,bk(Rf’j”‘, . . ,Rig<k-“,Rf, RF:, ). (Note that RF:, is an (inner) 

fixpoint since we must have convergence in at most n steps.) 

(2) If C,k = p: 

(a) Rp = -L if p(p) = 6. 

(b) Rio,= Rkp(“) if ,@O) # 6. 
(c) R;(/+‘) = $k(R;‘ti.” ,..., R:~;k-l),$i&;,). 

The evaluation is to be done in computation order. Computation order is simply the 

natural order of evaluation. Formally, it is the total order on vectors of iteration indices 
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of potentially different lengths defined as follows. Z occurs before 3 in computation order 

when: 

Z and J have the same length and Z strictly precedes J lexicographically, or 

i is shorter than J, and Z is lexicographically less than or equal to h(j, ICI), or 

7 is shorter than 2; and h(<, IJI) strictly precedes j lexicographically. 

For our earlier three relation example, computation order is: 0, 00,000,001,. . . , 0011, 

01,010,. . . , Onn, 1, 10, etc. Thus, we would compute Ry, Rp, Rio’, . . . , Ry, Ri' , etc. 

The result returned from the algorithm is R;. Notice that f 5 ? implies that Z preceded 

3 in the computation order. This fact is used throughout the paper. 

3.3. Proof of correctness 

As a preliminary step to proving the correctness of the above algorithm, we show 

that the elements in a vertical chain are related by set inclusion. 

Lemma 1. For all C, j and k, if % 5 J then RL C Ri. 

Proof. The proof proceeds by induction on 3 in the computation order. 

(1) If ok = v and 7 = j’0, then Ri = T, and hence Ri C Ri for all i 3 J. 

(2) Suppose ok = v and J = ?‘(j + 1). Then 

R”k = $k(R;(“i”), . . . , Rh’j’j.k-1),RJk’i,R~~;). k_, 

Since i 3 j, we know that J and Z have the same values for the v indices. This implies 

that 1= f’( j + 1) and that Rr must be defined by 

Now h(C’j, 1) 5 h(?‘j, 1) for 1 < k, and so by the induction hypothesis 

_, _I. 
Similarly, Ri ’ C RJk * and Ri$ C R$. Since $k is monotonic, Ri s R;%I. 

(3) If (Tk = p and ~(3) = 0, then Ri = 1. Since i 3 J, ,u(Q = 6, so Ri = I also. 

(4) Suppose ak = ~1, p(J) # 6, and J has the form 3’0. If Z = j, then Ri = Ri. 

Otherwise, i 3 p(J). Then by the induction hypothesis, RX s R$‘. But by definition 
RJk = R;(fi, and so Ri c Ri. 

(5) If ok = ,U and J has the form J’( j + 1 ), then 

When Z = j, we have Ri = Ri; otherwise C 3 j’j. By the induction hypothesis 

Ri & Ri’j. Hence we just need to show that Ri’j 2 Ri’(‘+‘). If j > 0, then 

-I. 

RJk * = $k(R;‘i’cj-l),‘), . . . , Rh(3’(j-l),k-l) R?‘(j-l) j’(j-l)n k_, 9 k ‘Rk+l ), 
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Now h(j’(j- l), I) = h(f’j, I) for 1 < k, and hence R~‘7’Ci-“” = R:‘i’i,r’. Since J’(j- 

1) 3 j’j, the induction hypothesis implies RI’“-” C Ri’j. Similarly, R~~(--“” c Ri$‘. 

Then monotonicity of $k implies that R, s’i 2 RJ^k, which is the desired result. 

For the case j = 0, we want to show that R{” & Ri”. We have two cases, depending 

on the value of ~(7’0). 

(a) If p(?‘O) = 6, then R{” = I, and trivially Ri” G R$. 

(b) If p(?‘O) # (5, then Ri” = R{(“‘). Define j” so that T”n = p(J’0). By definition, 

Rjk” = $k(R;(i”+“,l’, , . . , R,_, h(j”(n-l),k-1) Rj”(n-l) j”(n-1)n 
’ k ,Rk+l ). 

Also 

NOW h(j”(n - l), I) 3 h(J’0, I) for 1 5, k, and s: the induztion hypothesis implies 
that R;(?“(n-i)?i) c $(?‘c,‘), Similarly, Ri (‘-I) c Ri 0 and Ri+y-‘)n C R{yF. Then by 

monotonicity of $k, we have Ri” C Ri”, which is the desired result. 0 

Now we show that the fixpoints are correctly computed. 

Theorem 1. For all J and k, if J has the form J’n, then 

h(.T’,‘) R: = d+dh(R, , . . . ,R;(j;‘k-“,&). 

In particular, 

R; = MI.~I(RI 1. 

Proof. Again, we proceed by induction on J in computation order. 

1. Assume ok = v. Ri is computed by the sequence R{‘” = T, Ri”,. . .,Rjfn. We 

have 

Note that h(J’j, I) = h(J’, I) for I < k. Hence, we can rewrite the above equation as 

Rp+l) = $k(R;(i’sl’, . . . ,R:‘i;,“-‘),R~‘j,R’~), 

By the induction hypothesis, 

R :‘;i; = fJk+,Rk+, .f$k+,(R;(“i.‘), . ,R:‘i’Lk’,Rkf, ). 

Now h(J’, I) = h(?‘j, I) for 1 < k, and we also have that h(J’j, k) = J’j. Substituting 

gives 

R $ = CT~+,R~+, .&+,(R;(““), . . , R,_, h(i’,k-l),R;‘i,Rk+, ). 
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Now we see that R3” k , . . . , Ri’” is just the standard iterative computation of the fixpoint. 

Since we must have convergence within n steps, 

RJ^‘” = vR/&(R, NT’,l) 
k ,. . .,R;(j;‘k-“,i?k) 

2. The case when cs = p and I = 0 is analogous to the previous one: we start 

with R, 3 ’ = I and compu te the standard series of approximations. 

3. Assume CJ = p and I # 6. Here, we start the computation with Ri” = R,f”“. 

Define y” so that J”n = p(j’0). To ensure that Ri is equal to the desired fixpoint, 

we first show that the initial approximation R, p(f’o) is a subset of the fixpoint. By the 

induction hypothesis, we know that 

Ry”” = pRk.&(R, W”.l) 
k 

,..., R;‘jI”k-“,Rk). 

We want to know that this is a subset of 

By the definition of J”, we have that J” 5 j’. Hence h(j”, 1) 5 h(j’, Z) for all I < k. 

Using the previous lemma, we see that Rf(““” & Rf”““. Then monotonic&y implies 

R;1”” c /.LR,+.&(R, W’,l) ,.. .,R;(j;‘k-i’, Rk). 

Now we simply proceed as in the previous two cases, using the fact that to compute 

a least fixpoint with iteration, it is only necessary that the initial approximation be a 

subset of the fixpoint. 0 

As mentioned, the algorithm given above does not stop the computation of a fixpoint 

when convergence is achieved. As a result, it will take about nd steps when evaluating 

the alternating fixpoint formula that we are considering. To see what potential problem 

might arise with terminating the computation early, let us consider how an implemen- 

tation of the algorithm would work. The idea will be to keep a table of frontier values 

for each least fixpoint. This table is indexed by the iteration indices for the enclosing 

greatest fixpoints, and initially all the entries are 1. When computing a least fixpoint, 

we take the table value corresponding to the current greatest fixpoint iteration indices 

and use that as our initial approximation. After computing the fixpoint, we store the 

result back in the same spot in the table. In our earlier example with three fixpoints, 

the table for R3 would have n + 1 entries, since there is one enclosing greatest fix- 

point. During the computation of the Rip, the table entries will be used and replaced. 

Just after we compute RI, the jth entry in the table will contain the fixpoint value 

Ry. Suppose now that we cut off the computation of Ry- as soon as convergence 

is detected. Then some of the table values for R3 will not be updated. For our three 

fixpoint example, this is not too complex, but in the general case it is hard to argue 

that “stale” table values will not cause problems. Fortunately, we can easily prove that 

when computing a least fixpoint, we can stop as soon as convergence is detected. To 

do this, we just need to show that once we obtain convergence, none of the table 
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values for the inner fixpoints can change. More precisely, we consider a situation in 

which R”+‘) = Rf for the least fixpoint variable Rk. A table value for an inner least k 

fixpoint variable RI after the computation of RF is of the form Rf’, where ?’ agrees 
with jj on the first k indices and where ~(3’) = ,n(Tj)n.. .n (the indices for least 

fixpoint variables nested between & and RI are n). The same table value after the 

computation of R%j+‘) is Ri”, where J” differs from 3’ only at position k, and at that 

position, j” has j+ 1 instead of j. We claim that these two table values must be equal. 

Theorem 2. Assume ok = p and R, ““) = Rf. Then for all 1 > k and j’ and 3” 

such that. 

1. h(j’,k - 1) = h(j”,k - 1) = j, 

2. p(j’) = p(Jj)n . . . n, 

3. p(j”) = p(j(j+ l))n...n, and 

4. v(7) =y v(Y); 
we have Rj = R3 , . (Note that we are not requiring 01 = v here.) 

Proof. We proceed by induction on 3’ in computation order. Note that since j’ and 

j” differ only on the index for &, fixing 3’ also fixes j”. 

(1) Assume ~1 = v and 3’ has the form 2’0. Then j” has the form 2”0, and so 
lp;’ = R;” = T. 

(2) Assume (TI = v and 7’ has the form P(m + 1). Let J” have the form C’(m + 1). 

We have 

and 

Rf” = $t(R;(i”msl’, . . . , R;y;‘m,l- I’, R;““, R?;““). 

Now h(C’m,o) = h(f”m, o) for o < k. By hypothesis, R:“‘“sk’ = R:(“‘m’k)(we have 

that,fz(i’m, k) = jj and h(C’m, k) = J(j + 1)) By the induction hypothesis, Rt(i’m@) = 

R$’ W) for k < o < 1. Also by the induction hypothesis, Rilrn = Rr’lrn and Rj;” = 

Riy;““. Hence Rf’ = Rf”. 

(3) Assume UI = p. Let 2’ and f” be chosen so that 3’ = z’n and j” = i”n. By 

the previous theorem, we have 

Rj’ = /,&#Q(R:(~‘~‘), . . , R;“;“-I), RI) 

and 

RI” = p&.~&(“““, . . . ,Rf~;‘-‘,Rl). 

As in the previous case, we have: h(C’, o) = h(i”, o) for o < k; Ri(““k) = R:““,k’; and 
Rh(“‘d 

0 = RtCi”“) for k < o < 1. Hence Rf’ = Rf”. 0 
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Note that this result, combined with our earlier correctness theorem and monotonicity 

lemma, implies that once R:‘+‘) = RF, then R’i = RI’ for any zand 2’ with v(i) = v(?-‘) 

and with i and i’ between j( j + 1) and jn . . . n in computation order. In other words, 

no table values will change if we keep iterating for Rk, and hence we can safely stop 

this part of computation. 

3.4. Complexity analysis 

Now we analyze the complexity of the algorithm. We will just be counting the num- 

ber of approximations produced to avoid details such as how relations are represented. 

Let Tk denote the maximum number of approximations that can be produced for Rk. 

Obviously Tl = n + 1 and Tz = (n + 1)2. If Tk+l is a greatest fixpoint, then each time 

we evaluate it, we produce nf 1 approximations. The fixpoint can be evaluated at most 

Tk times, SO when ck+l = V, Tk+l <(n + 1)Tk. For Crk+l = ~1, the fixpoint can also 

be evaluated at most Tk times. For this fixpoint, there are (n + l)l(k+1)‘2J table entries 

(since there are L(k + 1)/2J enclosing greatest fixpoints). Over all the evaluations, each 

of these increases monotonically, so the total number of changes in these table values is 

bounded by n(n + l)lCk+‘)“J. Du rmg each of the Tk evaluations, we can also make one 

extra step to detect convergence. The overall number of steps is bounded by the sum 

of these numbers: Tk+l d Tk + n(n $ l)lCk+‘)‘*l < Tk + (n f l)‘+l(k+1)/21. In our fixpoint 

formula, k is even for least fixpoints, so this simplifies to Tk+l < Tk + (n + l)(k+2)!2. 

Overall, we get 

Tzk<k(n+ 1) 
k+l 

, Tzk+I d(k + l>(n + ljkf’, 

and so 

T, < [k/21(n + l)‘+1k’2J. 

Summing the Tk for all d of the fixpoints in our formula, we get a total of 

0(d2(n + l)‘+l@l) steps to do the evaluation. 

3.5. The general algorithm 

Fig. 2 is a pseudo-code version of the algorithm that works for formulas of arbitrary 

form, and that saves information and stops iterating after detecting termination for both 

types of fixpoints. The potential problems with stale table values are avoided by storing 

frontier values in queues; the length of a queue tells us the number of approximations 

were produced when computing the frontier represented by the queue. We will not give 

a proof of correctness here. In the algorithm, the frontier values for starting the fix- 

point computations are stored on stacks. There are two stacks for each fixpoint variable 

R, one associated with the current frontier (ZR) and one associated with the frontier 

being constructed (FR). Each stack element is either a set of states (representing an 

earlier fixpoint value), or a queue (representing a frontier). The queue elements may 

themselves be either queues (representing sub-frontiers) or sets of states. We will write 
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1 function evaI 

2 Handle base cases, logical operations, etc. 
3 if ++ = /LR. q(R) then 
4 

5 

G 

7 

8 

9 

10 

11 

12 

13 

14 

15 

1B 

li 

18 

19 

20 

21 

22 

23 

24 

2.5 

26 
‘27 

set R to the top element of IR 
for each inner v variable R’ 

push [] on FR’ 
repeat 

for each inner Y variable R’ 
let Q be the queue on top of i,a 

dequeue e from Q 
if Q is now emp:i, enqueue E again 
push e on I,! 

&Id := R 
R := eval(+) 
for each inner Y variable R’ 

pop e from FRY 
let Q be the queue on top of FR, 
enqueue e in Q 

pop IR' 
if R # &I, then 

for each inner p variable R’ 

POP JR’ 
pop e from FJ+ 
push e on 1~~ 

until R = &,j 
push H on FJ+ 
return R 

24 if d = r/R. u.(R) then 
29 Analogous code to thr above 

Fig. 2. Pseudo-code for the general algorithm. 

stacks using angle brackets and queues using square brackets, with the top of a stack 

and the head of a queue being on the left. Initially, the I, stack for a top-level fixpoint 

variable R holds either T or I, depending on whether R is a greatest or least fixpoint. 

The stack IR for a least fixpoint variable R nested inside k greatest fixpoints holds 

I nested inside k queues ([[... [[_L]] . ..]I). Th e initial value for a stack corresponding 

to a greatest fixpoint variable nested inside a number of least fixpoints is similarly 

defined. 

As an example of the algorithm’s operation, we consider a formula with three fix- 

points: pR,.vR~.pR3.(...). Initially, ZR, = (I), ZR* = ([T]), and ZR~ = ([l]). All the 

stacks FR, , FRY, and FRY are empty. The computation proceeds as shown in Fig 3. ln 

the figure, @I : l- denotes a call to the evaluation routine for the formula @I .(. . .) 

with I on the top of the stack Z,, (i.e., the evaluation of the fixpoint starting from I). 

The notations “start RI” and “end RI ” denote the start of an iteration for comput- 

ing RI and the end of an iteration, respectively. The notation “return Rim” indi- 

cates returning a fixpoint value for R2. Finally, pR3: -L -+ Rtow denotes the evalu- 

ation of pR3.... starting with I and yielding Ryw as the result. The figure shows 

how the state of the stacks evolves during the computation. During each iteration 
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. . 
(PI) 

O-, VI) 
(T> P-1) 

(Tt iTI) 
0, I’-1) 
P-7 [Tl) 
f’-, P-1) 

(R”3”W,[R;1W,. . . , Ry”“]) It! 
(R~,[R;‘“,...,R;““‘]) 

([R;‘“, . . . , R30”“]) 
WV;]: 

( R;lw, [R;2w,. . , R;““]) W~owl) 
( R$lw, [Ri2” , . . , I?:““]) ( R;lw, [R:‘“]) 

end RI 

rcturrl Ry 
(1) 0 UT]) (@““,.~.~&“I) ... ([R’jO”, . . ) Rt;““]) 
(1) (Ry) ([T]) ([R:w>...,RyW]) ... ([R:‘“, , Ry”“]) 

Fig. 3. Example computation of the algorithm in Fig. 2. 

for the fixpoint pR.(. . .), we pull out the next sub-frontier for the inner v variables 

(lines 8-12), recursively evaluate the inner fixpoints, and build up sub-frontiers for 

subsequent evaluations (lines 15-19). If the computation of R has not yet converged, 

we discard the old frontiers for the inner p fixpoints and replace them with the 

new frontiers that have been built up (lines 21-24). Note that with two successive 

p fixpoints, this simply results in picking up the inner fixpoint from the previous 

stopping point. Hence the algorithm also makes use of Emerson and Lei’s observa- 

tion [14]. 

4. A worst-case example 

We now give an example that shows that even the general algorithm (Fig. 2) may 

take about nd/2 steps. Consider the transition system shown in Fig. 4. There is a 

transition on a from state si+l to state si for all i>O, and there is a transition on b 

from state SO to state si for all i >O. We also assume there is an atomic proposition 

that is true only in state SO. We will abuse notation and denote this proposition by SO 

as well. 
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Fig. 4. Transition system 

For the formula to evaluate, we take: 

for worst-case example. 

F, E J- A pR, .so v (a)R, V(iAvR;.(a)R{ VF2), 

F2 E _L A pR2.q A [b](Rl V R’,) V (a)R2 V (I A vRi.(b)(Rl AR’,) V (a)Ri V Fx), 

Fi+l E I A /&+I .SO A [b](Ri V RI) V (a)Ri+l 

V(I A vRj+l.(b)(Ri A RI) V (a)R(+, V Fi+2) 

In the formula given above T means true and I means false. The additional T and 

I are needed so that the inner fixpoints do not interfere with the outer fixpoints. This 

formula is obviously equivalent to a much simpler formula, but it will serve to illustrate 

the kind of frontier structure that can cause exponential behavior. To understand how 

this expression works, consider Fi+l. When the union of Ri and R[ is T, the fixpoint 

for Ri+l will be T as well, and otherwise it will be 1. Similarly, when Ri and RI have 

a nonempty intersection, the fixpoint for Rj,, will be T, and otherwise it will be 1. 

Consider the following pairs of (Ri,Ri) values: 

(LT), ({~oj,T - {so}), . . . . (T - Is,-i},{s,-I}), (T9-L). 

If we imagine storing all the fixpoint approximations in tables as in Fig. 1, then we 

can think of these pairs as analogous to “diagonal” elements. Above the diagonal (i.e., 

if we add elements to either set in the pair), the union of Ri and Rj is T and they 

also have a nonempty intersection. Hence the fixpoints for both Ri+l and RI+* will be 

T. Below the diagonal (if we remove elements from either set in the pair), the union 

is not T and the intersection is empty. Here, both Ri+l and RI,, will have a fixpoint 

of 1. On the diagonal, Ri+l has a fixpoint of T and Ri+, has a fixpoint of 1. Thus, 
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if Ri+l starts at J_ and RI,, starts at T, then we will do about n2 evaluations of F,+2 

while computing these two fixpoints. Of these n2 evaluations, n of them will represent 

diagonal values for (Ri+l,Ri+,), and for these elements, we will get the same effect 

within the computation of Fi+2. Let us say that a configuration for all the fixpoint 

variables RI, RI, R2,. . . , is a “diagonal configuration” when each pair (Ri,Ri) is a 

diagonal element. Then adding another pair of fixpoints will increase the number of 

possible diagonal configurations by a factor of n. To see that all these diagonal configu- 

rations will occur during the computation, we note that any two diagonal configurations 

for the variables RI, R{, . . . , Ri, RI are incomparable with respect to set containment. 

Hence computing the fixpoints for Ri+l and Ri,, for one of these configurations will 

give us no information about the fixpoint values for any of the other configurations. 

This implies that the computations for Ri+l and Rj,, will always start from I and T, 
respectively (for diagonal configurations of RI, . . . , Rj), and thus that all diagonal con- 

figurations for R,, . . . , Ri+l, RI,, will occur. We can analyze exactly the number of 

times during the computation in which a fixpoint variable iterates from I to T or 

from T to I while running the algorithm of Fig. 2. For Ri, this occurs (n + l)i-’ 

times. For RI, it happens (n + 1)’ times. This implies that F4 is evaluated (n + 1)4 

times. The alternation depth of the formula is d = 2q - 2, so this is (n + l)‘+d!2 steps. 

5. Conclusion 

We have presented a new algorithm for evaluating a formula in the proposition p- 

calculus with respect to a finite transition system. Our algorithm takes about nd/2 steps, 

where d is the alternation depth of the formula. The best previously known algorithms 

required about nd steps. A straightforward implementation of our algorithm would 

require an extra factor of n or so for bookkeeping and set manipulations, but we believe 

that methods such as those used by Cleaveland and coworkers [ 10,111, and Andersen 

could be used to reduce this extra complexity. It is not as clear whether efficient local 

procedures can be developed that make use of our ideas, but this is an interesting 

question. It would also be interesting to see whether it is possible to make even more 

use of monotonic&y considerations. This is certainly possible, at least conceptually. 

Suppose, for example, that pR.$(R, RI,. . . , Rk) is a subformula of the formula that we 

are evaluating. We could imagine saving every fixpoint value computed for R together 

with the values for the parameters RI,. . , Rk. Then before evaluating the subformula 

for some new set of parameters, we take the union of all previous fixpoints for R for 

which the parameters used were all subsets of the current parameters. This becomes 

the initial approximation, Note though, that an algorithm based on this idea would still 

take about nd/2 steps on the example described in Section 4. Thus, pure monotonicity 

considerations seem unlikely to lead to a polynomial time algorithm. 

This suggests another line of research: trying to place lower bounds on the complex- 

ity of the evaluation process. Suppose we cast the problem as a language recognition 

problem, where a string gives a formula, a transition system, and a designated state, 
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and a string is in the language if the designated state of the transition system is in 

the interpretation of the formula. We note that the recognition problem is in NP. The 

basic idea for showing this is to use an algorithm that computes least fixpoints by 

iterating, and that guesses greatest fixpoints. The guess for a greatest fixpoint can be 

easily checked to see that it really is a fixpoint. Further, while we cannot verify that 

it is the greatest fixpoint, we know that the greatest fixpoint must contain any verified 

guess. Then by monotonicity, the final value computed by this nondeterministic algo- 

rithm will be a subset of the real interpretation of the formula. If the designated state is 

in the computed result, the string is accepted, and if not, the string is rejected. When 

the greatest fixpoints are correctly guessed, the string is accepted iff the designated 

state is in the real interpretation of the formula. Also note that we can negate formulas 

(the syntax we gave allows negation only at the atomic proposition level, but we can 

always drive negations inwards using semantic equivalences). Hence the complexity of 

recognizing the language is the same as the complexity of recognizing the complement 

of the language. Thus, the problem is in the intersection of NP and co-NP. This sug- 

gests that it would be very difficult to prove that there is no polynomial time algorithm 

for the problem. However, it might be possible to prove something about a restricted 

class of algorithms. A natural class to consider is “oblivious” algorithms. These are 

methods that only make use of the structure of the nesting of fixpoints, and perhaps the 

fixpoint values. Formally, given a formula like pR1. $l(Rl, VRZ. $z(Rl, Rz)), we would 

view $1 and $2 as being given by oracles. The complexity of an algorithm would be 

measured in the number of calls to the oracles. This is a natural class of methods. For 

example, both Emerson and Lei’s original algorithm and our new one can be viewed as 

members of this class. A proof that no algorithm of this class can make do with just a 

polynomial number of oracle queries would imply that any polynomial time algorithm 

would have to do something clever based on the structure of the formula. 
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