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A b s t r a c t - - I n  this paper we give sufficient conditions in order to assure the convergence of the 
super-Halley method in Banach spaces. We use a system of recurrence relations analogous to those 
given in the classical Newton-Kantorovich theorem, or those given for Chebyshev and Halley methods 
by different authors. (~) 1998 Elsevier Science Ltd. All rights reserved. 
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I N T R O D U C T I O N  

The s tudy of third-order iterative processes is becoming more and more important  in recent 
years. Among these methods,  probably, the most famous are Chebyshev, Halley, and super- 
Halley methods. In tha t  way, many  papers on third-order methods have been published. So for 
Chebyshev method we have [1-3] for Halley method [3-5], and [6-8] for super-Halley method. 
Most authors follow the technique developed by Kantorovich for Newton's  method [9,10]. In [11], 
a unified theory is presented for the above third-order methods. To sum up, in these papers 
the convergence of the sequence in Banach spaces follows from the convergence of a majorizing 
sequence, which is obtained by applying the real third-order method to a cubic polynomial. 

Another way to get the convergence is by using recurrence relations. This technique has also 
been used by Kantorovich and other authors for Newton's method [12,13]. 

In the same way, Candela and Marquina are established in [1,4], the convergence for Halley 
and Chebyshev methods,  respectively. Starting with two parameters,  they construct a system of 
recurrence relations, consisting of four real sequences of positive real numbers, which yields an 
increasing convergent sequence tha t  majorizes the sequence in Banach spaces. The use of these 
relations supposes some advantages, because we can reduce our initial problem in a Banach space 

to a simpler problem with real sequences and functions. 
In this paper  we present the recurrences for the super-Halley method, and we use them in order 

to prove the convergence of this method under Kantorovich-type assumptions. 
Besides, the use of these recurrences allows us to obtain a priori error bounds. We finish this 

paper  with some examples to illustrate the given results and to compare Chebyshev, Halley, and 
super-Halley methods.  As we will see, the error bounds obtained for the super-Halley method 

improve the ones obtained with the other two methods. 
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97/B12. 

Typeset by Afl4,S-TEX 



2 J.M. GUTI~RREZ AND M. A. HERN~NDEZ 

R E C U R R E N C E  R E L A T I O N S  

Let X, Y be Banach spaces and F : ~ C_ X --* Y be a nonlinear twice Frdchet differentiable 
operator in an open convex domain ~0 C_ ~. The super-Halley method to solve the equation 
F ( x )  -~ 0 is defined as follows: 

xn+l = x,~ - I + ~ L F ( x n ) [ I  - LF(Xn)] -1 F ' ( x n ) - l F ( x , ~ ) ,  (1) 

where, for x • X ,  L f ( x )  is the linear operator defined as follows: 

LF(X)  = F ' ( x ) - l F " ( x ) F ' ( x ) - l F ( x ) .  

Let us assume that  F0 = F~(xo) -1 E £ (Y ,  X )  exists at some Xo • f~o, where/ :(Y,  X) is the set 
of bounded linear operators from Y into X. 

Throughout  this paper we assume the following. 

(i) I IF" (z ) l l  < k~, z • f~o. 
(ii) I I F " ( z )  - F" (Y) I I  < ~:~ll:r - YlI, ::,U • flo. 

(iii) IIr'oll < B.  
( iv)  I l roF(xo) l l  < n. 
Let us denote 

a = k lB~ ,  b = k2B~l 2. (2) 

Then, we define the sequences 

2 - a  
a0 = bo = 1; co = a; do = 2(1 - a----~' 

an  
a n + l  = 1 - aand,~ ' 

b,,+, = a,,+lg~ ra~%(-1 - ~--)~'` ~] 
L ( 2 -  ~ )a  + ; 

Cn+l  = a a n + l b n + l ;  

2 - c n + l  b 
d . + l  = 2~i--~++1)  ~+~" 

In that  situation we prove the following• 

(I~) Ilrnll = IIf'(x~)-ll] < a~S. 
(II~) [[FnF(xn)[[ <_ bn~?. 

(m~) IILF(x~)II _< c~. 
(iVn) IIx~+l - z d l  -< d ~ .  

Notice that  (Io), (IIo), and (IIIo) follow immediately from the hypothesis. If 

IILF(XO)[I <_ co = a < 1, 

then [I - LF(Xo)] -1 exists and 

[[Xl-  x0[[_  < [ 1 +  IIILF(XO)IIII(I--LF(XO))-I[[] ['FoF(xo)[[ 

[ °] _< 1+2(1-a)  n=don, 

and (IVo) also holds. 
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Following an inductive procedure and assuming 

x n E ~ o  and aandn <1, 

if Xn+l E fl0, we have 

[[I - FnF'(zn+l)[[ <_ Ilrnlll[F'(zn) - F'(Xn+l)[[ <_ aandn < 1. 

Then Fn+l is defined and 

I lrn+ll l  Ilrnll < anB 
1 - I l r n l l l l F ' ( x n )  - F ' ( X n + l ) [ [  - 1 - aandn 

- -  a n + l B .  

and then 

~XXr,+ 1 
F(xn+l) = F"(xn)[Lf(xn)[I-LF(Xn)]-lFnF(xn)]2+ [F"(x)-F"(x,~)](Xn+l-X)dx, (3) 

n 

222 k2~773 ] 
f l r .+ l f (xn+l ) f l  < ]lrn+ll[llf(xn+l)ll < an+iS [klb~C~- + _  

- - [8(1 - an)2 

= r / [8(1 - an) 2 + an+l. 

As bn = 2d~(1 - an)/(2 - an), we obtain 

[b a2anan(1 - -an ) ]  
flr~+lF(xn+l)ll _< nan+id~ + (-an)32 j = b~+l~. 

Finally, it is easy to deduce tha t  

I[LF(Xn+I)H <-- flrn+lllllF"(Xn+l)llllrn+lF(Xn+l)ll <_ aan+lbn+l = an+l 

and, as in the case n = 0, if it is assumed an+l < 1, we get 

I]z~+2 - zn+111 < dn+l~}. 

So, to s tudy the sequence {xn} defined in a Banach space, we must analyse the real se- 
quences {an}, {bn}, {an}, and {dn}. To establish the convergence of {Xn}, we only have to 
prove tha t  {d~} is a Cauchy sequence and the assumptions 

an < 1, n E N, 

xn E ~to, n E N, 

aandn <: 1, n E N. 

Tha t  is the aim of the following section. 

C O N V E R G E N C E  S T U D Y  

In this section, we are going to s tudy the sequences {an}, {bn}, {an}, and {dn} defined in the 
previous one to prove the convergence of {Xn} defined in (1). First at all, we give a technical 
lemma including the results concerning one and two variable functions tha t  we next need. We 
omit  the proof expecting the reader could get it patiently but without any difficulty. 

On the other hand, we deduce from (1) and the Taylor 's  formula tha t  (see [11] for more details) 
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LEMMA 1. Let  us define the functions 

Q(x)  -- 6(1 - x)(1 - 2x) (x  2 - 6x + 4) x 4 
(2 - x)  2 , f ( x )  = 2(1 - 4x + X2) 2 

b(2- )3 1 g(x, y) = f ( x )  1 + 6a~-~xy-~-l---x) j , go(x) = g(x, 1). 

Then  Q(x)  is a decreasing function in [0, 0.5]; f ( x )  increases in [0, 0.5], f (0 )  = 0, f (0 .5)  = 0.5 
and f ( x )  < x for x • (0,0.5);  for a fixed x • (0,0.5),  g(x ,y )  decreases as a function of  y; go(x), 

and g~(x) axe increasing for x • [0, 0.5). 

Now we s t a r t  wi th  an easy l e m m a  t h a t  gives us a recurrence relat ion for the  sequence {ca}. 

The  proof  follows f rom the  definition of the  sequences {an}, {b,},  {an}, and {dn}. 

LEMMA 2. For the  sequence {ca}, the following recurrence is true: 

4 [ b(2 _ an)2 ] cn 1 + 
e-n+1 = 2(2 - 4-~ + c2n) 3 6a2~-nc~(~-- an) 

LEMMA 3. Let 0 < a <: 0.5 and 0 <_ b <_ Q(a). Then the sequence {an} is decreasing. Moreover 

an < l for n E N. 

PROOF. From the hypothes is  we deduce t h a t  cl _< co. Besides, Cl < co if b < Q(a) and ca -- co 
if b = Q(a). But  in bo th  cases, c2 < cl and,  in general,  an+l < an for n _> 1. From the previous 

lemma,  c2 < Cl if and  only if 

(1 - 2cx)(c~ - 6cl + 4) b ( 2 - C l )  2 < (4) 

6a2al(1  -- Cl) 

Then ,  (4) is equivalent  to 
b Q(Cl) < _ _  (5) 

a2al C~l 

As a l  > 1, cl _< co and  Q decreases in [0, 0.5] (see L e m m a  1), we get 

b b Q(a) Q(ca) < < - - < ~  
a2al " ~ _  a 2 -- c 2 

Therefore,  (5) holds and c2 < Cl. In  a similar  way, it can be establ ished t h a t  an+l < an for n > 1. 

LEMMA 4. Under the hypothesis of  the  L e m m a  3, we have aandn < 1 for n >_ 0 and {a~} is an 

increasing sequence. 

PROOF. Firs t  notice t h a t  
aand,  - en(2 - an) 

2(1 - an) 

and then  aandn < 1 because of 0 _< an < 0.5. 
On the  o ther  hand,  ao = 1, a l  -- a0/(1  - aaodo) > ao = 1 and,  inductively, an+l  = anl(1 - 

aandn) > an > a , - i  > "'" > al > ao = 1. 

LEMMA 5. With  the previous notations, let 0 < a < 0.5 and 0 <_ b <_ Q(a). Let  us define 

7 = c2/c l ,  then  
tTa/2~s" c! 

an+, <_ ~ j 7al2. 

Consequently, as 7 < 1, l i m n . ~  an = 0. Fur thermore ,  ~ = o  ca < c¢. 
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PROOF. First, notice that co -- a < 0.5 implies al > I. Then, by using the Lemma I and with 

the same notation, we obtain 

C 2 = g ( c l , a l )  < g(Cl, 1) = gO(C1) <_ go(Co) <_ g(co, 1) = c 1. 

So we have c2 = 7cl ,  where 7 < 1. Besides, if ck _< 7ck-1,  then ck-1 _< 73ck. Indeed,  

_ c~ 1 + 
~k+~ - 2 (2 - 4ck + c~) 2 6~2~kc~(1 - c~)J 

< ~/3c~-1 I "rck-1 b(2 - ~ck) 2 

-- 2 (2--4'~Ck-1 +') '2C2-1) 1.2--4"yCk-1 + ' y 2 d _  1 -[ 6a2ak(X -- "~Ok-l) (2 -- 4"~Ck_ 1 q- "y2c2_1 ) 

3 3 [ b(2 - Ck) 2 ~' Ok_ 1 Ck-1 

- 2 (2 - 4Ck-1 + C~_,) [2 -- 4Ck-1 + C~_, + 6a2a~(1 -- Ok-l) (2 -- 4ck-I  + c2_1) 

Since ak >_ ak-1,  we get 
Ck+l 5 ~3g(Ck-1,  a k - 1 )  = "/3Ck. 

By using the  above inequality, we obta in  an+l _< "r3"-1c~, and recursively, 

Cnq-1 <~_ (~1/2)3"C1"~-1/2. 

Therefore  an --* 0. 
On the  other  hand,  let us define go(x) = g(x,  ao) = g(x ,1) .  From L e m m a  1 we know tha t  

go(x) increases in [0, 0.5), g~(x) > 0 in [0, 0.5), and g~(0) = 0. As g~ is continuous in [0, 0.5) and 
c~ --* 0, there  exists no E N and ~ E [0, 1) such tha t  

g~(cn) ~ a < 1, Vn > no. 

Then  by using the  Mean Value Theorem and Lemma  1 again, 

C~o+k+l = g(c~o+k, ano+k) _< g(c~o+k, co) = go(C~o+k) 

= go(C~o+~) - go(0)  < g~(Cno+k)C~o+k < ~C~o+k, 

and recurrent ly  ano+k _< c~kano • Therefore,  

no- I  oo no--I c~ 

~ 0  n m O  ~.~ 'D.O n ---.~0 n ---..-~no 

LEMMA 6. The  sequence {an} is upper bounded, tha t  is, there  exists a constant  M > 0 such 

that  an <_ M for n >_ O. 

PROOF. By  the  definition of the sequences, we get 

2(1 - ~) 
an+l m an 2 - 4c~ + c 2" 

Taking into account  this equal i ty  and with the notat ions of the  L emma  1, we wri te  

l~i [ ck(2-~_) ] 
an = i + ~-- ~c~ + c~J' 

k--0 

and consequently, as 0 < ck < 0.5, V k E N, 

n n 

k=O k=O 
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Therefore 

In an _< In H [1 + 6ck] = In [1 + 6ck] <_ 6 ck < oc. 
k=O k=0 k=0 

LEMMA 7. We have dn 
Cauchy sequence. 

PROOF. Observe tha t  

< 3Cl('y1/2)3"-l/2a'yl/2. Consequently, ~n~=odn < oo and {dn} is a 

dn = c ~ ( 2 -  cn) 
2aan(1 - c~)" 

Then, by using the previous lemmas and taking into account 0 < an < 0.5 and an _> 1, Vn E N, 
we get 

OO 

o¢ 3 ~--~ c~ < o¢, 

n = 0  n = 0  

and the proof is completed. 

So we are ready to state the following result on the convergence of the iterative method defined 

in (1). 

THEOREM 1. Let X ,  Y be Banach spaces and F : f~ C_ X --+ Y be a nonlinear twice Frdchet 
differentiable operator in an open convex domain f~o C fL Let us assume that Fo = F ' (xo)  -1 E 
£.(Y, X )  exists at some Xo E f~o and 

(i) IlF"(x)ll  _< kl ,  x • f~0; 
(ii) I I F " ( x ) -  F"(Y)II ___ k211x- yll, x,y • f~o; 

(iii) Ilroll < B; 
(iv) I lroF(xo)l l  < r/. 
Let us denote a = klBr/, b = k2Br/2. Suppose that 0 < a < 0.5 and 0 < b < Q(a), where Q(x) 

is the function defined in the Lemma 1. Then, i fB(xo,rr/)  = {x • X; IIx-xoll < r~} c_ f~o, where 
d r = ~ n = o  n, the sequence {x,~} defined in (1) and starting at xo converges at least R-cubically 

to a solution x* of the equation F(x)  = O. In that case, the solution x* and the iterates xn belong 
to B(xo, rT?), and x* is the only solution o f F ( x )  = 0 in B(xo, ( 2 / k lB )  - rr/) n f~o. 

Furthermore, we can give the following error estimates in terms of  the real sequence {dn} 

(or {cn}): 
do ~ 2 ~ c2 

IIX* -- Xn+lll --< dkr/ _< -~ A.~ 7 , ~/= - -  (6) 
k = n + l  k = n  Cl 

PROOF. When 0 < a < 0.5, the convergence of the sequences {xn} follows immediately from the 
previous lemmas. When a = 0.5, then b = 0 and we have the following sequences: an = 4 n, bn = 
1/4 n, Cn = 1/2 and dn = 6/4 n+l. Now it is easy to prove tha t  the conditions aandn < 1, Cn < 1, 
and {dn} is a Cauchy sequence also hold and consequently the sequence {xn} is convergent. 

On the other hand, if x* is the limit of the sequences {xn}, then taking norms in (3), we have 

2 2 2 k l b n C n r  / k2d3n~ 3 
IIF(xn+l)ll < 8 ( 1 -  an) + ---- if--  

The limit of the expression appearing on the right side is cero so, by the continuity of F,  we 
prove tha t  F(x*) = O. 

Besides we have I lxn+l  - x . l l  _< dnr/, and therefore, for p > 0, 

]mxp - xol[ <_ i lxp - Xp_l]1-1-  . . .  -4- i lXl  - xo]l <_ (dp-1 -4- ' "  + d 0 ) r / .  

Then Xp E f)o and by letting p ~ c¢, we obtain the region where the solution is located, 
[I x* - xol) < rr/, and the error estimates given by (6). 
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To show the unicity, suppose tha t  y* E B(x0, ( 2 / k l B )  - r~)  is another solution of F ( x )  = O. 
Then 

0 = F ( y * )  - F ( x * )  = F ' ( x *  + t(y* - x*) )  dr(y* - x*) .  

Using the est imate 

/0 /o tlFoll HF'(x* + t (y* - x*) )  - F ' ( xo ) l l  dt  < k l B  IIx* + t(y* - x*)  - xoH dt 

<_ k l B  ((1 - t)[[x* - x0[[ + tl[y* - x0[[) dt < r v +  ~ I B  - r v  = 1, 

we have tha t  the operator  f ~  F ' ( x *  ÷ t (y* - x*) )  dt  has an inverse. Consequently y* = x*. 
Finally, from Lemma 7, we deduce tha t  the R-order of convergence [14] of the sequence (1) is, 

at least, three when 0 < a < 0.5: 

c¢ 3C2~ [ ]3 n 
H x * - x n l [  < _ ~ Z d k  <_ 2 a ( 1 - 7 1 / 2  ) ~1/2 , ~ / < 1 .  

k = n  

When a = 0.5, we have ]Ix* - xnH <_ 2~/4 n and the convergence is linear. 

REMARK. In the previous theorem we have proved that  the sequence (1) converges cubically, but 
for a kind of functions, the order is four. Let us consider the situation b = 0 (for instance, when 
F is a quadratic operator)  and 0 < a < 0.5. Then, in Lemma 2 we have 

c: 
~ + 1  = 

Consequently, an+l _< 8c 4, c~ <_ (2a)4"/2 and dn+l  <_ 3 (2a )4" /4a .  Then it is easy to deduce that  

the R-order of convergence is, at  least, four. 

E X A M P L E S  
Finally we give three examples to illustrate the previous results. We take three functions used 

as a test  in several papers. In these examples we compare the error bounds obtained for different 
third-order iterative processes. 

EXAMPLE 1. [1,4,15] Let us consider F ( x )  = x 3 - 10, x0 = 2 and denote x* the positive root of 
F ( x )  = 0. We will give an upper bound M for 101111x* - x211, where x2 is the second iterate of 
the super-Halley method. Start ing from the interval [1, 3], we have B = 1/12, ~ = 1/6, kl = 18, 

and k2 = 6. So a = 1/4 and b = 1/72. Then 

IIx* - x211 _< ~ Z dk = ~? d2 + dk • 
k = 2  

Thus, if we est imate the sum of the series by means of the complete geometric series, we get M = 

383.384. For the same function, Candela and Marquina [1,4] have obtained tha t  M = 21 561.183 
for the Halley method and M = 142 360.973 for the Chebyshev method. 

Start ing from the interval [1.73, 2.27], the value of M is 36.3862, whereas for the Halley method, 
Candela and Marquina obtained M = 1615.941, and DSring [15] obtained tha t  M is approxi- 

mately  60 000 for the Halley method. 

EXAMPLE 2. [1,4,15] Let us consider F : C[0, 1] --* C[0, 1] the operator defined by 

lfol F ( x ) ( s )  = x ( s )  - s + s c o s ( x ( t ) )  dr, 
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where  C[0, 1] is t he  space  of  all cont inuous  funct ions  defined on the  in terval  [0, 1] wi th  the  sup 

norm [[" [[ = [1" Iloo. 
I f  we t ake  xo = xo ( s )  = s as a s t a r t i ng  point ,  we ob t a in  the  uppe r  b o u n d  for M = 4631410  

for 10ztllx* - x211, where  x2 is the  second i t e r a t e  of the  supe r -Ha l l ey  me thod .  Ca nde l a  and 

M a r q u i n a  have ob t a ined  t h a t  M = 14987029 for the  Hal ley  m e t h o d  and  M = 137022683 for 

the  Chebyshev  me thod .  For  the  Hal ley  me thod ,  Dbr ing  o b t a i n e d  t h a t  M = 82 500 000. 

EXAMPLE 3. [16] Let  X = C[0, 1] be t he  space of  cont inuous  funct ions  defined on the  inter-  

val [0, 1], wi th  the  m a x - n o r m  and  consider  t he  in tegra l  equa t ion  F ( x )  = O, where  

F(x ) ( s )  = Ax(s) x(t)  dt - x (s )  + 1, 

with s e [0, 1], x E C[0, 1] and 0 < A <_ 2. Integral equations of this kind (called Chandrasekhar 
equations) arise in elasticity or neutron transport problems [10,16]. Notice that  the above oper- 
ator is quadratic. Then the results got from the super-Halley method really improve the results 
obtained by using other third-order methods. 

For A = 1/4,  and  s t a r t i ng  a t  x0 = zo ( s )  = 1, we o b t a i n  [16], HFoH = 1.53039421 = B.  W i t h  

the  same no ta t ion ,  we have 

I l r0F(x0) l l  _< 0.2651971 : ~}, IIF"(x)l[ < 0.3465735 = k l ,  k2 -- 0. 

So a = k l B r l  = 0.140659 and  b = 0. To compare  Chebyshev,  Halley,  and  super -Ha l l ey  me thods ,  

we give an  uppe r  b o u n d  M to  the  number  1016[[x * - x 2 [ [ ,  where  x2 is t h e  second i t e ra t e  ob ta ined  

by using these  me thods .  We have t h a t  M is 63 858 314 for t he  Chebyshev  me thod ,  5 596 218 for 

the  Hal ley  me thod ,  and  31 for t he  super -Ha l ley  me thod .  

As we can  see, the  er ror  b o u n d  t h a t  we have for super -Ha l ley  m e t h o d  is much b e t t e r  t h a n  the  

ones o b t a i n e d  for t h e  o the r  two methods .  
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