Journal of Combinatorial Theory, Series A 118 (2011) 2056-2058

Contents lists available at ScienceDirect



Journal of Combinatorial Theory, Series A Journal of Combinatorial Theory

www.elsevier.com/locate/jcta

# A construction of pooling designs with surprisingly high degree of error correction

# Jun Guo<sup>a</sup>, Kaishun Wang<sup>b</sup>

<sup>a</sup> Math. and Inf. College, Langfang Teachers' College, Langfang 065000, China
<sup>b</sup> Sch. Math. Sci. & Lab. Math. Com. Sys., Beijing Normal University, Beijing 100875, China

### ARTICLE INFO

Article history: Received 3 November 2010 Available online 23 April 2011

*Keywords:* Pooling design Disjunct matrix Error correction

#### ABSTRACT

It is well known that many famous pooling designs are constructed from mathematical structures by the "containment matrix" method. In this paper, we propose another method and obtain a family of pooling designs with surprisingly high degree of error correction based on a finite set. Given the numbers of items and pools, the error-tolerant property of our designs is much better than that of Macula's designs when the size of the set is large enough.

© 2011 Elsevier Inc. All rights reserved.

Pooling design is a mathematical tool to reduce the number of tests in DNA library screening [2–4]. A pooling design is usually represented by a binary matrix with columns indexed with items and rows indexed with pools. A cell (i, j) contains a 1-entry if and only if the *i*th pool contains the *j*th item. Biological experiments are notorious for producing erroneous outcomes. Therefore, it would be wise for pooling designs to allow some outcomes to be affected by errors. A binary matrix *M* is called *s*<sup>*e*</sup>-*disjunct* if given any *s* + 1 columns of *M* with one designated, there are *e* + 1 rows with a 1 in the designated column and 0 in each of the other *s* columns. An *s*<sup>0</sup>-disjunct matrix is also called *s*-*disjunct*. An *s*<sup>*e*</sup>-*disjunct* matrix is called *fully s*<sup>*e*</sup>-*disjunct* if it is not *s*<sup>*e*</sup><sub>1</sub>-*disjunct* whenever *s*<sub>1</sub> > *s* or *e*<sub>1</sub> > *e*. An *s*<sup>*e*</sup>-*disjunct* matrix is  $\lfloor e/2 \rfloor$ -error-correcting (see [5]).

For positive integers  $k \leq n$ , let  $[n] = \{1, 2, ..., n\}$  and  $\binom{[n]}{k}$  be the set of all *k*-subsets of [n].

Macula [10,11] proposed a novel way of constructing disjunct matrices by the containment relation of subsets in a finite set.

**Definition 1.** (See [10].) For positive integers  $1 \le d < k < n$ , let M(d, k, n) be the binary matrix with rows indexed with  $\binom{n}{k}$  and columns indexed with  $\binom{n}{k}$  such that M(A, B) = 1 if and only if  $A \subseteq B$ .

D'yachkov et al. [6] discussed the error-correcting property of M(d, k, n).

E-mail addresses: guojun\_lf@163.com (J. Guo), wangks@bnu.edu.cn (K. Wang).

<sup>0097-3165/\$ –</sup> see front matter  $\ @$  2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jcta.2011.04.008

**Theorem 1.** (See [6].) For positive integers  $1 \le d < k < n$  and  $s \le d$ , M(d, k, n) is fully  $s^{e_1}$ -disjunct, where  $e_1 = \binom{k-s}{d-s} - 1.$ 

Ngo and Du [13] constructed disjunct matrices by the containment relation of subspaces in a finite vector space. D'yachkov et al. [5] discussed the error-tolerant property of Ngo and Du's construction. Huang and Weng [9] introduced the comprehensive concept of pooling spaces, which is a significant addition to the general theory. Recently, many pooling designs have been constructed using the "containment matrix" method, see e.g. [1,7,8].

Next we shall introduce our construction.

**Definition 2.** Given integers  $1 \leq d < k < n$  and  $0 \leq i \leq d$ . Let M(i; d, k, n) be the binary matrix with rows indexed with  $\binom{[n]}{d}$  and columns indexed with  $\binom{[n]}{k}$  such that M(A, B) = 1 if and only if  $|A \cap B| = i$ .

Note that M(i; d, k, n) and M(d, k, n) have the same size, and M(i; d, k, n) is an  $\binom{n}{d} \times \binom{n}{k}$  matrix with row weight  $\binom{d}{i}\binom{n-d}{k-i}$  and column weight  $\binom{k}{i}\binom{n-k}{d-i}$ . Since M(d; d, k, n) = M(d, k, n), our construction is a generalization of Macula's matrix.

Let  $B \in {\binom{[n]}{k}}$  and  $C = [n] \setminus B$ . Then, for any  $D \in {\binom{[n]}{d}}$ ,  $|D \cap B| = i$  if and only if  $|D \cap C| = d - i$ . Therefore, M(i; d, k, n) = M(d - i; d, n - k, n) when n > k + d - i. Since  $i \leq \lfloor d/2 \rfloor$  if and only if  $d - i \geq d/2$ |(d+1)/2|, we always assume that  $i \ge |(d+1)/2|$  in this case.

**Theorem 2.** Let  $1 \le s \le i$ ,  $|(d+1)/2| \le i \le d < k$  and  $n - k - s(k + d - 2i) \ge d - i$ . Then

(i) M(i; d, k, n) is an  $s^{e_2}$ -disjunct matrix, where  $e_2 = \binom{k-s}{i-s} \binom{n-k-s(k+d-2i)}{d-i} - 1;$ 

(ii) For a given k, if i < d, then  $\lim_{n \to \infty} \frac{e_2 + 1}{e_1 + 1} = \infty$ .

**Proof.** (i) Let  $B_0, B_1, \ldots, B_s \in {\binom{[n]}{k}}$  be any s+1 distinct columns of M(i; d, k, n). Then, for each  $j \in [s]$ , there exists an  $x_j$  such that  $x_j \in B_0 \setminus B_j$ . Suppose  $X_0 = \{x_j \mid 1 \leq j \leq s\}$ . Then  $X_0 \subseteq B_0$ , and  $X_0 \nsubseteq B_j$  for each  $j \in [s]$ . Note that the number of *i*-subsets of  $B_0$  containing  $X_0$  is  $\binom{k-|X_0|}{i-|X_0|} = \binom{k-|X_0|}{k-i}$ . Since  $\binom{k-|X_0|}{k-i}$  is decreasing for  $1 \leq |X_0| \leq s$  and gets its minimum at  $|X_0| = s$ , the number of *i*-subsets of  $B_0$  containing  $X_0$  is at least  $\binom{k-s}{k-i}$ .

Let  $A_0$  be an *i*-subset of  $B_0$  containing  $X_0$ . Then  $|A_0 \cap B_j| < i$  for each  $j \in [s]$ . Let  $D \in {[n] \choose d}$ satisfying  $|D \cap B_0| = i$ . If there exists  $j \in [s]$  such that  $|D \cap B_j| = i$ , then  $|B_0 \cap B_j| \ge |D \cap B_0 \cap B_j| \ge |B \cap B_0 \cap B$ 2i - d. Suppose  $|B_0 \cap B_j| \ge 2i - d$  for each  $j \in [s]$ . Since  $|\bigcup_{0 \le j \le s} B_j| \le k + s(k + d - 2i)$ , the number of *d*-subsets *D* of [*n*] containing  $A_0$  satisfying  $|D \cap B_0| = i$  and  $|D \cap B_j| \neq i$  for each  $j \in [s]$  is at least  $\binom{n-k-s(k+d-2i)}{d-i}$ . Then the number of d-subsets D containing  $X_0$  in  $\binom{[n]}{d}$  satisfying  $|D \cap B_0| = i$  and  $|D \cap B_j| \neq i$  for each  $j \in [s]$  is at least  $\binom{k-s}{i-s} \binom{n-k-s(k+d-2i)}{d-i}$ . Therefore, (i) holds. (ii) is straightforward by (i) and Theorem 1.  $\Box$ 

**Example 1.** M(5, 7, 50) is fully  $1^{14}, 2^9$  and  $3^5$ -disjunct, but M(3; 5, 7, 50) is  $1^{9989}, 2^{2324}$  and  $3^{299}$ -disjunct; M(4, 5, 13) is fully  $1^3$  and  $2^2$ -disjunct, but M(3; 4, 5, 13) is  $1^{29}$  and  $2^5$ -disjunct.

## **Concluding remarks**

(i) For given integers d < k the following limit holds:  $\lim_{n \to \infty} \frac{\binom{n}{d}}{\binom{n}{k}} = 0$ . This shows that the test-toitem of M(i; d, k, n) is small enough when n is large enough. By Theorem 2, our pooling designs are better than Macula's designs when *n* is large enough.

(ii) It seems to be interesting to compute e such that M(i; d, k, n) is fully s<sup>e</sup>-disjunct.

(iii) In [12], Nan and the first author discussed the similar construction of  $s^e$ -disjunct matrices in a finite vector space, but the number e is not well expressed. By the method of this paper, e may be larger. We will study this problem in a separate paper.

(iv) For positive integers  $1 \le d < k < n$ , let *I* be a nonempty proper subset of  $\{0, 1, ..., d\}$ , and let M(I; d, k, n) be the binary matrix with rows indexed with  $\binom{[n]}{d}$  and columns indexed with  $\binom{[n]}{k}$  such that M(A, B) = 1 if and only if  $|A \cap B| \in I$ . How about the error-tolerant property of M(I; d, k, n)?

#### Acknowledgments

We would like thank the referees for their valuable suggestions. This research is partially supported by NSF of China, NCET-08-0052, Langfang Teachers' College (LSZB201005), and the Fundamental Research Funds for the Central Universities of China.

#### References

- Y. Bai, T. Huang, K. Wang, Error-correcting pooling designs associated with some distance-regular graphs, Discrete Appl. Math. 157 (2009) 3038–3045.
- [2] Y. Cheng, D. Du, Efficient constructions of disjunct matrices with applications to DNA library screening, J. Comput. Biol. 14 (2007) 1208–1216.
- [3] Y. Cheng, D. Du, New constructions of one- and two-stage pooling designs, J. Comput. Biol. 15 (2008) 195-205.
- [4] D. Du, F.K. Hwang, Pooling Designs and Nonadaptive Group Testing, Important Tools for DNA Sequencing, Ser. Appl. Math., vol. 18, World Scientific Publishing Co., Pte. Ltd., Hackensack, NJ, 2006.
- [5] A.G. D'yachkov, F.K. Hwang, A.J. Macula, P.A. Vilenkin, C. Weng, A construction of pooling designs with some happy surprises, J. Comput. Biol. 12 (2005) 1127–1134.
- [6] A.G. D'yachkov, A.J. Macula, P.A. Vilenkin, Nonadaptive and trivial two-stage group testing with error-correcting d<sup>e</sup>-disjunct inclusion matrices, in: Entropy, Search, Complexity, in: Bolyai Soc. Math. Stud., vol. 16, Springer, Berlin, 2007, pp. 71–83.
- [7] H. Huang, Y. Huang, C. Weng, More on pooling spaces, Discrete Math. 308 (2008) 6330–6338.
   [8] T. Huang, K. Wang, C. Weng, More pooling spaces associated with some finite geometries, European J. Combin. 29 (2008)
- [8] I. Huang, K. Wang, C. Weng, More pooring spaces associated with some ninte geometries, European J. Combin. 29 (2008) 1483–1491.
- [9] T. Huang, C. Weng, Pooling spaces and non-adaptive pooling designs, Discrete Math. 282 (2004) 163-169.
- [10] A.J. Macula, A simple construction of d-disjunct matrices with certain constant weights, Discrete Math. 162 (1996) 311– 312.
- [11] A.J. Macula, Error-correcting non-adaptive group testing with  $d^e$ -disjunct matrices, Discrete Appl. Math. 80 (1997) 217–222.
- [12] J. Nan, J. Guo, New error-correcting pooling designs associated with finite vector spaces, J. Comb. Optim. 20 (2010) 96–100.
- [13] H. Ngo, D. Du, New constructions of non-adaptive and error-tolerance pooling designs, Discrete Math. 243 (2002) 167-170.