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Abstract

A graph G is singular of nullity 7(> 0), if its adjacency matrix A is singular, with the eigenvalue zero of multiplicity 5. A singular
graph having a 0-eigenvector, X, with no zero entries, is called a core graph. We place particular emphasis on nut graphs, namely the
core graphs of nullity one. Through symmetry considerations of the automorphism group of the graph, we study relations among
the entries of x which lead to interesting implications in chemistry. The zero eigenvalue is rare in a fullerene graph. We show that
there are possible nut fullerenes with relatively simple structures.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The graphs we consider are simple, i.e. without loops or multiple edges. A graph G is singular if its adjacency
matrix A is singular. The dimension of the nullspace of A, i.e. the number of linearly independent kernel eigenvectors
x satisfying Ax = 0, is the nullity n of A (and of G). Since A describes G completely up to isomorphism, we use
terminology for G and A interchangeably.

A graph on n vertices is said to be of order n. The valency val(v) of a vertex v in a graph is the number of edges
incident to v. Trivalent (cubic) polyhedra are 3-regular connected planar graphs. A fullerene is a trivalent polyhedral
carbon cage, C,,, with 12 pentagonal and (rn/2 — 10) hexagonal faces. It is the purpose of this paper to study relations
among the entries of a kernel eigenvector by focusing on the symmetries of the graph. Our motivation is to investigate
singular fullerenes and singular cubic polyhedra. This yields immediate results concerning the electronic structure and
predicted chemistry of molecules with these molecular graphs.

In Section 2, we discuss the relations among a core graph, a core with respect to a kernel eigenvector and a nut graph.
The symmetries of a graph, considered in Section 3, help to deduce properties of the entries of kernel eigenvectors that
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in turn yield information on the structure of the graph. In Section 4, we investigate the structure of nut fullerenes. We
conclude by discussing in Section 5 the chemical implications of these results.

2. Core graphs

If a graph G is singular, then there exists a kernel eigenvector x € R", such that Ax = 0. We direct our attention to
the entries of x.

Definition 2.1. A core graph is a singular graph having a kernel eigenvector with no zero entries.

Lemma 2.2. Let G be a singular graph and x a kernel eigenvector of G. The subgraph induced in G by the vertices
corresponding to the non-zero entries of X is a core graph.

Proof. Without any loss of generality, we may label the vertices of G such that only the first s entries of x = (x;, 0) are
non-zero. If Ay is the principal s x s submatrix, then Agx; = 0 and the graph corresponding to A; is a core graph. [

Definition 2.3. Let x¢ be a kernel eigenvector of a singular graph G. A subgraph of G induced by the vertices corre-
sponding to the s non-zero entries of X is said to be the K (w.r.f x), where s is the number of vertices of the core graph,
called the core order.

Thus a core graph is a singular graph of nullity at least one, having a core of order #. This also means that none of
the graph angles for the nullspace is zero (see [5]). In general, the core is disconnected, in which case the nullity is
necessarily more than one. In [7,8], the author has investigated the extent to which the core of a graph of nullity one
extends through the graph. For n >7, maximally extending core graphs of nullity one are shown to exist (see [9]).

Definition 2.4. A singular graph is said to be a nut graph if it is a core graph with nullity one.
Remark 2.5. For a nut graph, each entry of a kernel eigenvector is non-zero.
3. Symmetry considerations

Let the graph G = G(7", &) have vertex set ¥~ and edge set &. The automorphism group I'(G) of a graph G is the
group of permutations (symmetries) that act on ¥~ and preserve adjacencies. If P is a permutation matrix representing
a permutation p and A is the adjacency matrix of G, then A = P’AP. Recall that for all p € I'(G), {i, j} is an edge of
G if and only if {p(i), p(j)} is also an edge.

Immediate consequences are that non-edges are sent to non-edges by p € I'(G) and val(i) = val(p(i)).

Remark 3.1. The action of p on the set ¥~ of vertices of G is just a relabelling of ¥~ that leaves the overall structures
intact. The automorphism group of K, is the symmetric group S,. In general, the automorphism group of an n-vertex
graph is a subgroup of §,.

Definition 3.2. Let 2 be a subgroup of I'(G). The images of a vertex i of G under the permutations of X are said to
form the orbit Q; of i induced by 2. Thus Q; = {p(i) : p € 2}.

Remark 3.3. Here we consider the orbits induced by I'(G) itself. The orbits form a partition of the vertex set of G
into subsets of equivalent vertices of the same valency and are easily determined by representing the permutations in

I'(G) as a product of disjoint cycles.

Definition 3.4. A graph G is said to be (vertex) transitive if it has only one orbit; that is for all i, j € ¥"(G), there
exists p in I'(G) such that p(i) = j.

It what follows non-transitive graphs are called multi-orbit.
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Fig. 1. The fullerene C4g : 169: vertex labelling and entries in the generating kernel eigenvector.

3.1. Orbit spectrum

Let G have n vertices and r orbits Y1, Y2, ..., Y4. Let X = (x;;) be the n x d indicator matrix that partitions ¥~ into
orbits, such that x;; = 1 if vertex i lies in orbit Y;. If A is the adjacency matrix of G, then AX = XQ, where Q = (¢;;)
isad x d matrix and each v € Y; has g;; neighbours in Y;. The matrix Q is the adjacency matrix of the quotient graph
G/ E; then E is said to be an equitable partition of the vertices into orbits and Q corresponds to a directed graph where
gij arcs go from orbit i to orbit .

Proposition 3.5. Eigenvalues of the orbit—orbit matrix Q are also eigenvalues of G.
Proof. Lety be an eigenvector of Q corresponding to eigenvalue 4. Then
Qy =y = AXx = XQx = /XXx.

Hence Z is an eigenvalue of A with at least the same multiplicity as for Q since the columns of X are linearly
independent. [J

Definition 3.6. A cubic polyhedron is a balanced nut graph if it is a nut graph in which all the entries of a ker-
nel eigenvector are of the form (=2)", r € 7% U {0}. In addition, a balanced nut graph is said to be a uniform
nut graph if the entries of a kernel eigenvector are in {1, —2}. Then the graph is said to have a (1, 1, —2)-kernel
eigenvector.

We now give some examples to show the usefulness of these results.
Example. Fig. 1 shows a labelling and the associated entries of the kernel eigenvector for C4g : 169, the smallest
balanced but non-uniform nut fullerene.! The kernel eigenvector has entries {4, —2, 1}. The automorphism group has

12 orbits, namely {{1, 12, 34, 47}, {2, 20, 33, 48}, {3, 19, 24, 45}, {4, 6, 42, 43}, {5, 23, 29, 44}, {7, 16, 27, 46}, {8,
15, 28, 381, {9, 14, 37, 39}, {10, 30, 32, 36}, {11, 21, 35, 41}, {13, 18, 25, 40}, {17, 22, 26, 31} }, each containing

! Fullerenes are indexed according to the spiral convention [6].
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e entry of kernel eigenvector is +2
o entry of kernel eigenvector is -1

Fig. 2. The fullerene C3¢ : 14 and the trivalent polyhedron Cq» : 2.

four equivalent vertices. The eigenvalues of

01 1100000000
100110000000
100001100000
110000000100
010000011000
001000010010

=10 01000110000
000011100000
000010000101
000100001010
000001000101
000000O0O0T1O01 1

are 0,3, —1.618, 0.618, 1.317,2.278, —1.891, —0.705, 0.763, 2.055, —2.583, —1.235 which are indeed eigenvalues
OfC48 1 169.

For the uniform trivalent nut graphs in Fig. 2, Q = (% }) has eigenvalues 3 and O while a vertex transitive trivalent

graph’ has Q = (3) with eigenvalue 3. Though not particularly informative, the latter two cases agree with the result
of Proposition 3.5.

3.2. Orbits and entries of eigenvectors
Theorem 3.7. If 1 is a simple eigenvalue of G, then the entries of the A-eigenvector corresponding to the vertices in
an orbit have the same absolute value.
Proof. Let p € I'(G), P be the corresponding n x n permutation matrix and x = (x1, x2, .. ., x,)" be an eigenvector in

the A-eigenspace &, which is of dimension one. Then &', is generated by x, for 4 of multiplicity one. Since x, px € &,
then Px = ux forsome u € R.If c=(1 2...k) isacyclein p, then the vertices 1, 2, ..., k lie in the same orbit. Also if

2 The trivalent polyhedra are indexed according to the plantri program of Brinkmann and McKay [1].
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Fig. 3. A (vertex) transitive nut graph.

the matrix C represents the permutation ¢, then C*¥ = I and C*x’ = p*x’ where X' = (x1, x2, ..., x3)" is the restriction
of x to R. Thus u==xl,sothat |xi|=|x2|=---=|x¢|. U

Definition 3.8. An eigenvector x of A is said to be equidistributive if the entries of x have the same absolute value on
equivalent vertices, i.e. vertices in the same orbit.

Corollary 3.9. A kernel eigenvector of a nut graph is equidistributive.
Proof. The result follows from Theorem 3.7, since a nut graph has zero as a simple eigenvalue. [J
3.3. Signs of entries of eigenvectors

If x is a kernel eigenvector of a singular graph G of nullity one, then we identify three disjoint subgraphs G, G~
and GV (if it exists), induced by the vertices corresponding to the positive, negative and zero entries of x, respectively.
(Clearly their vertex sets partition ¥”(G)). Note that GT and G~ can exchange roles.

Remark 3.10. There are no nut graphs of order less than seven but there exist nut graphs of all orders n>7. The
occurrence of nut graphs is not so common among graphs of small order. However, among the singular cubic polyhedra
of higher order, a considerable number are nut graphs. For instance, there are 285 nut graphs among the 1249 trivalent
polyhedra of order 18.

Theorem 3.11. Let G be a connected transitive graph (Fig. 3). If 2 # p is a simple eigenvalue with J-eigenvector
X = (X1, X2, ...,%,)., then

(M) xil=lxal == |xl;

(2) the number of positive entries in X is n(G)/2;

3) n(G) is even;

(4) A=2q—peZ whereqeZ";

(5) the valency q of each of the regular subgraphs G* and G~ is %(p + 7).

Proof. Since G has one orbit (1) follows by Theorem 3.7. Recall that Aj = pj where j is the all-one vector. If
X=(x1,x2, ..., %) generates &, then xt Jj= Z:’: 1xi =0, since eigenvectors of distinct eigenvalues are orthogonal
when A is real and symmetric. By (1), the number of positive entries of x is the same as the number of negative entries,
that is n(G)/2, so that (2) follows. From (2), it is clear that n(G) is even, thus proving (3). Let G and G~ be the
disjoint subgraphs induced by the vertices corresponding to the n/2 positive and n /2 negative entries of X, respectively.
If vertex i has ¢ neighbours in G and p — ¢ in G™, then,

Ax=/ix= Y x;=Jx, I<i<n,
j~i
where the summation runs over the neighbours {j} of i
=qx; + (p —q@)(—x;)) = Ax;, 1<i<n
—i=2q—p e’
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Hence (4) follows. Since —x is also an eigenvector, G and G~ can change roles. The value of g is dependent only on
/.and p. Hence GT and G~ have the same degree and (5) follows from (4). [

From Theorem 3.7, we deduce:

Proposition 3.12. [f G is a singular graph of nullity one with a kernel eigenvector having entries of different absolute
value, then G is non-transitive.

From Theorem 3.11, we deduce other sufficient conditions for non-transitivity.

Proposition 3.13. Each of the following is a sufficient condition for an n-vertex, connected, p-regular graph G to be
non-transitive:

(1) nis odd and G has two simple eigenvalues;,
(2) nis even and G has a simple even eigenvalue A # p and p is odd, or G has a simple odd eigenvalue /. % p and p
is even.

Proof. Suppose G is transitive. If # is odd, then by Theorem 3.11(3), p is the only simple eigenvalue, proving (1). For
n even, a simple eigenvalue A satisfies 1 =2g — p, where ¢ is the valency of each of the regular subgraphs G and G~.
Thus / and p have the same parity thus proving (2). [J

Proposition 3.14. Let G be a connected transitive graph of valency p. If zero is a simple eigenvalue, then

(1) G is a nut graph;

(2) the generator of the nullspace is a kernel eigenvector with each entry being £1;
(3) n(G) is even and p is even;

(4) each of the subgraphs G+ and G~ is (p/2)-regular on n/2 vertices.

Proof. Since G is transitive, 7"(G") = . Hence G is a p-regular nut graph, thus proving (1). By Theorem 3.11(1),
result (2) follows. By Theorem 3.11(3), n is even and by Theorem 3.11(4), 2 =2g — p = 0, so that p = 2¢, and (3)
follows. Since ¥"(G) =7 (GHUY (G7), |7 (GT)|=|7"(G™)|=n/2, by Theorem 3.11(2). Also =0 so that p =2g¢,
proving (4). O

Proposition 3.15. Let G be a singular transitive graph. Then G is a regular core graph.

Proof. A transitive graph is regular since an automorphism preserves adjacencies. The case is settled for n(G) = 1,
since by Proposition 3.14, G is a nut graph (which is a core graph) and by Theorem 3.11, G has a kernel eigenvector
with each entry equal to +1.

Let the eigenvalue zero of G be repeated and x = (x1, x2, .. ., x,)" be a kernel eigenvector with x; # 0 and x; = 0.
There exists y € I'(G) such that (i) = j, so that the kernel eigenvector yx has the jth entry non-zero. Thus there exists
a kernel eigenvector which is a linear combination of the basis vectors of the nullspace with each entry being non-zero.
Thus G is a core graph. [

Example. The triangular prism of Fig. 4 is a transitive graph of nullity two and is a core graph.

Fig. 4. A trivalent transitive core graph.
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4. Nut fullerenes
Consider first cubic graphs. From Proposition 3.14, we deduce:
Proposition 4.1. A transitive cubic graph G is either non-singular or has nullity more than one.

Proposition 4.2. A cubic nut graph G is non-transitive and has a kernel eigenvector with entries having distinct
absolute values.

Proof. Suppose, for contradiction, that G is transitive. Then by Proposition 3.14(2) a (1, —1)-kernel eigenvector exists.
Thus fori € GT, Z,’~1xj is &3 or &1, contradicting Ax =0. [

4.1. Uniform nut fullerenes

Remark 4.3. Fig. 2 shows two uniform nut graphs, that is graphs having a (1, 1, —2)-kernel eigenvector. The first
graph is the smallest nut fullerene, C3¢ : 14, while the second is the trivalent nut polyhedron Cj5 : 2.

Lemma 4.4. If a cubic nut graph has a (1, 1, —2)-kernel eigenvector, then

(1) G is 2-regular (the union of cycles).
(2) G~ is l-regular (the union of disjoint edges)

or vice versa.

Proof. If x1, x2, x3 denote the entries of x corresponding to the neighbours of vertex i, then Z
any loss of generality, x; = xp = 1, x3 = —2. Hence,

jiXj = 0. Thus without

fori € GT, p, is 2 (possible structures of G are the union of cycles);
fori € G, p_is 1 (possible structures of G~ are the union of disjoint edges).
It is clear that GT and G~ may switch roles. [

We notice that the nut fullerene C3¢ : 14 of Fig. 2 can be covered by the six-vertex motifs M given in Fig. 5, such
that all the vertices are covered. Moreover, the weights attached to the vertices of the motif coincide with the entries of
the kernel eigenvector. More generally the same happens in any nut cubic graph with a (1, 1, —2)-kernel eigenvector
and girth at least 5.

Proposition 4.5. If a cubic nut graph G, of girth at least 5, has a (1, 1, —2)-kernel eigenvector, then

(i) n(G) =6k, k=2.
(i1) G has the motif M of Fig. 5 as a factor (i.e. there are n /6 disjoint motifs M spanning G).

Proof. Every induced subgraph K in G~ has a unique set of four vertices of G incident to it. There is no vertex of
G which is not adjacent to a vertex of G~ and vice versa. Thus the six-vertex motif M spans G. [

@ &

@ the weight of the vertex is -2
the weight of the vertex is -1

Fig. 5. The motif M in a nut fullerene with a (1, 1, —2)-kernel eigenvector.
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Fig. 6. The nut fullerene Cyq : 14.

The fullerene Czg : 14 of Fig. 2 is an example of a nut fullerene with a (1, 1, —2) kernel eigenvector, while
the fullerene C4q4 : 14 of Fig. 6 is an example of a multi-orbit nut graph with several distinct entries in its kernel
eigenvector.

4.2. Balanced nut graphs

Remark 4.6. Balanced nut fullerenes are a generalization of uniform nut fullerenes, where the generator of the kernel
eigenvector has entries in +{1, —2,4, -8, ...,(=2)",...},r € 7+ U{0}.

Lemma 4.7. Let G be a balanced nut graph with kernel eigenvector X. Let ni,n_s,...,n (—2)k denote, respectively,
the number of entries 1, =2, ..., (—2)k that appear in X. Then

ny—2n_s+4ns — -+ (—2)’<n(72)k =0. (1)
Proof. The eigenvectors belonging to distinct eigenspaces of G are orthogonal. Thus if j= (1, 1, ..., 1)", thenx'.j=0

and the result follows. [

Theorem 4.8. Let G be a balanced nut graph with kernel eigenvector X. If k is the largest integer r that appears in the
entries (—2)" of X, then all the integers from 0 to k appear in the entries; i.e. the entries of x are 1, —2,4, ..., (—Z)k,
possibly with repetitions.

Proof. If j is the least integer , 1 < j <k such that (—2)j is missing from the entries of x, then for a suitable labelling
of G,

X=(1, .0, =2, .4, (=2 (=i
S e e

It is clear that two linearly independent kernel eigenvectors can be found, namely
xi=(,...,=2,...,4,..., (=277, ...,0,...,0) and

x2=0(0,...,0,...,(=2)/FTL .. (=2)%,...,), acontradiction. [J
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5. Chemical implications of nuts and core graphs

In Htickel molecular orbital theory, the eigenvalues of A estimate the energies of the n-electrons in conjugated
unsaturated systems, while the eigenvectors of A model the n-molecular orbitals.

As used in the chemical model, x is usually normalized to unit length. In the present paper we have taken entries
in X to be normalized to some suitable but usually non-unit length, chosen where possible to have all entries integer,
with no overall common factor, and with arbitrary overall sign. Statements about entries in x are therefore to be taken
modulo sign and an overall normalization factor.

For n = 1, a kernel eigenvector x generating the nullspace of A describes the non-bonding orbital (NBO) of a
n-conjugated molecule whose C-skeleton is the same as that of G, according to the Hiickel molecular orbital model
applied to a simplified Schrédinger equation. The entries of x determine the distribution of the electron(s) occupying
the NBO: from them follow the charges on the atoms, the bond-orders and, in the case of single occupation, the net
spin density at each site.

For alabelling of G, a zero entry in the ith position of x indicates a lack of charge at the ith C-centre. The NBO-charge
is distributed among the C-atoms in proportion to the square of the entries of x. Thus the charge is concentrated in the
substructure, the core with respect to x, that corresponds to the non-zero entries of x.

The eigenvalue zero of A, for a molecular graph G, indicates the presence of a NBO, x, with no net stabilization or
destabilization [10]. For the graph G, with the same structure as a molecule, the eigenvalues of A estimate the energies
of the n-electrons in these unsaturated systems, while the eigenvectors of A model the n-molecular orbitals. Computer
searches up to n = 120 show that zero energy levels are rare in fullerenes. The non-zero entries of the corresponding
eigenvectors of A determine the substructures in fullerenes (and other trivalent polyhedra) responsible for the presence
of the NBOs. We place particular emphasis on polyhedral structures which are nut graphs, implying equidistributivity
and the absence of zeroes in the corresponding m-electron charge/spin density, and those which are core graphs where
each C-centre carries r density. Through symmetry considerations of the automorphism group of the graph, by studying
relations among the entries of x, we showed in Sections 3 and 4 that there are hypothetical nut fullerenes with relatively
simple structures. Moreover, these results yield information on the chemical properties of trivalent polyhedral carbon
cages, in general.

From Corollary 3.9 we deduce:

Proposition 5.1. A NBO of a nut fullerene is equidistributive.

Since fullerenes have odd valency, it follows, by Proposition 3.14, that there are no nut fullerenes which are transitive.
We deduce from Proposition 4.2:

Proposition 5.2. A nut fullerene is multi-orbit and has a kernel eigenvector with entries having distinct absolute values.

Nut graphs differ from other graphs of nullity one in that contributions by an NBO-electron to charge, net spin and
bond-order take place at vertices and edges over the whole n-framework of the graph whereas, in other graphs, they
are concentrated into the core-substructure (not affecting the atoms with zero graph angles which correspond to the
zero-entries in all possible kernel eigenvectors).

There are 13 nut fullerenes for n <70 and only 41 in the 10,190,782 fullerene isomers on up to 120 vertices. Nut
graphs are quite common amongst small trivalent polyhedra; they constitute about 35% of the 177,758 non-bipartite
polyhedra on up to 24 vertices.

There are also fullerenes of nullity more than one, such as the dodecahedron and Csz¢ : 15, both of which are core
graphs. There exist other singular fullerenes, of nullity more than one, which are not core graphs, such as Czg : 13,
and which have vertices corresponding to zero-entries in each possible kernel eigenvector, since these vertices do not
belong to any core. To such vertices there correspond zero angles relative to the eigenspace &g and therefore no charge
contribution from the NBO electron(s).

In the chemically realizable bare, empty fullerenes known to date, the pentagons do not share common edges. The
smallest isolated-pentagon (IP) fullerene is the icosahedrally symmetric Cg¢o (buckminsterfullerene), which has no
NBO. Among the large number of fullerene isomers for up to n = 120, there are only nine singular IP fullerenes of
which Cgs : 24 has three NBOs whereas the other eight have one NBO. None of them are nut graphs. Some larger
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fullerenes, e.g. isomers of Cjog and Cj14, as examples of ‘sporadic’ closed shell fullerenes [6], approach ‘nut graph’
status as they each have an eigenvalue very close to but not exactly zero.
The uniform nut fullerenes have a (1, 1, —2) NBO. By Proposition 4.5, we deduce:

Proposition 5.3. In a uniform nut fullerene C,, there is a cover by n/6 disjoint motifs M.

Remark 5.4. Equidistributivity for the eigenvectors associated with a multiple (degenerate) eigenvalue /4 fails but the
total charge density of the A-eigenspace is conserved. Thus if, for instance, a transitive graph G, of order n, has an
eigenvalue of multiplicity two, with orthogonal normalized eigenvectors (a;) and (b;), then for all j, (a j)2 + (b j)2 =
2/n, so that the charge is the same on every atom. Since there cannot be two linearly independent real eigenvectors in
which equivalent vertices have the same fixed entry, when a degenerate set of eigenvectors is only partially occupied, the
inability to maintain total symmetry on equivalent vertices can give rise to symmetry breaking. This relation between
degenerate eigenvalues and the inability to preserve symmetry in the separate orbitals, explains phenomena such as the
Jahn-Teller effect [3] in molecular physics and the Peierls effect [2] in solid state physics.

In [4], it is shown that extensions to domains, other than the real field, are necessary to represent eigenvectors that
reflect symmetry preservation. Different bases of the A-eigenspace vectors in complex, and quaternionic domains are
shown to represent total symmetry of charge distributions even at the level of the individual eigenvectors. In the case
of the two-fold multiplicity, the complex realizations, X1 = (x1;)1 <; <» = ((ax) +1(br))/ V2 and xp = (iici<n=
((ax) — i(b))/~/2 in the complex field, yield |x1 ;| = |x2;| = ((ax;)* + (bx;)?)/2 = 1/n for all j, as required. This
representation of the eigenvectors can be justified experimentally: the two orbitals are those isolated in the presence of
external magnetic fields for certain molecules with twofold eigenvalue multiplicity. For multiplicities of higher order,
quantum mechanics acting in extended Hilbert spaces is conceivable mathematically but to date has not been linked to
physical phenomena.
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