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Abstract

In spite of their remarkable success in signal processing applications, it is now widely acknowledged that traditional wavelets
are not very effective in dealing multidimensional signals containing distributed discontinuities such as edges. To overcome this
limitation, one has to use basis elements with much higher directional sensitivity and of various shapes, to be able to capture
the intrinsic geometrical features of multidimensional phenomena. This paper introduces a new discrete multiscale directional
representation called the discrete shearlet transform. This approach, which is based on the shearlet transform, combines the power of
multiscale methods with a unique ability to capture the geometry of multidimensional data and is optimally efficient in representing
images containing edges. We describe two different methods of implementing the shearlet transform. The numerical experiments
presented in this paper demonstrate that the discrete shearlet transform is very competitive in denoising applications both in terms
of performance and computational efficiency.
Published by Elsevier Inc.
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1. Introduction

One of the most useful features of wavelets is their ability to efficiently approximate signals containing pointwise
singularities. Consider a one-dimensional signal s(t) which is smooth away from point discontinuities. If s(t) is
approximated using the best M-term wavelet expansion, then the rate of decay of the approximation error, as a function
of M , is optimal. In particular, it is significantly better than the corresponding Fourier approximation error [14,32].

However, it is now widely acknowledged that traditional wavelet methods do not perform as well with multidimen-
sional data. Indeed wavelets are very efficient in dealing with pointwise singularities only. In higher dimensions, other
types of singularities are usually present or even dominant, and wavelets are unable to handle them very efficiently.
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Images, for example, typically contain sharp transitions such as edges, and these interact extensively with the elements
of the wavelet basis. As a result, “many” terms in the wavelet representation are needed to accurately represent these
objects. In order to overcome this limitation of traditional wavelets, one has to increase their directional sensitivity
and a variety of methods for addressing this task have been proposed in recent years. They include several schemes
of “directional wavelets” (such as [1,3]), contourlets [12,31], complex wavelets [25,34], brushlets [9], ridgelets [6],
curvelets [7], bandelets [29] and shearlets [18,20], introduced by the authors and their collaborators.

To make this discussion more rigorous, it will be useful to examine this problem from the point of view of approx-
imation theory. If F = {ψμ: μ ∈ I } is a basis or, more generally, a tight frame for L2(R2), then an image f can be
(non-linearly) approximated by the partial sums

fM =
∑

μ∈IM

〈f,ψμ〉ψμ,

where IM is the index set of the M largest inner products |〈f,ψμ〉|. The resulting approximation error is

εM = ‖f − fM‖2 =
∑

μ/∈IM

∣∣〈f,ψμ〉∣∣2
,

and this quantity approaches asymptotically zero as M increases. For many signal processing applications, the goal
is to design the representation system F that achieves the best asymptotic decay rate for this error. For example, for
compression applications it has been shown that the distortion rate is proportional εM [17]. Similarly, the efficiency
of noise removal algorithms that use thresholding estimators have been shown to depend upon εM [15].

Let C2 be the space of functions that are twice continuously differentiable. If the image f is C2, then the approxi-
mation fM obtained from the M largest wavelet coefficients satisfies

εM � CM−2.

However, images typically contain edges. If f is C2 everywhere away from edge curves that are piecewise C2,
then the discontinuity creates many wavelet coefficients of large amplitude. As a result (see [32]), the asymptotic
approximation error obtained using wavelets only decays as

εM � CM−1.

This is better than Fourier approximations (in which case the error decays as M−1/2), but far from the theoretical
optimal approximation, where εM decays as M−2 [13].

This shows that one can improve upon the wavelet representation by appropriately exploiting the geometric regu-
larity of the edges. Indeed, Candès and Donoho have recently introduced the curvelet representation, a tight frame of
elongated oscillatory functions at various scales, that produce an essentially optimal approximation rate [7]. Namely,
it satisfies

εM � C(logM)3M−2. (1.1)

However, curvelets are not generated from the action of a finite family of operators on a single function, as is the
case with wavelets. This means their construction is not associated with a multiresolution analysis. This and other
issues make the discrete implementation of curvelets very challenging as is evident by the fact that two different
implementations of it have been suggested by the originators (see [35] and [5]). In an attempt to provide a better
discrete implementation of the curvelets, the contourlet representation has been recently introduced [11,31,33]. This
is a discrete time-domain construction, which is designed to achieve essentially the same frequency tiling as the
curvelet representation (observe however that the contourlets are not a ‘discretization’ of curvelets).

The authors of this paper and their collaborators have recently introduced the shearlet representation [18–22],
which yields the same optimal approximation properties (1.1). This new representation is based on a simple and rigor-
ous mathematical framework which not only provides a more flexible theoretical tool for the geometric representation
of multidimensional data, but is also more natural for implementation. In addition, the shearlet approach can be as-
sociated to a multiresolution analysis [22,27]. In this paper, we will develop discrete implementations of the shearlet
transform to obtain the discrete shearlet transform. We will show that the mathematical framework of the shearlet
transform allows us to develop a simple and faithful transition from the continuous to the discrete representation. It
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will become clear from our constructions that the shearlet approach can be viewed as a simplifying theoretical justifi-
cation for the contourlet transform. The shearlet transform, however, offers a much more flexible approach, and allows
one to develop a variety of alternative implementations, with complete control over the mathematical properties of the
transform, and features that can be adapted to specific applications.

The paper is organized as follows. In Section 2 we describe the mathematical theory of shearlets and its connection
with the theory of affine systems with composite dilations. In Section 3 we introduce the discrete shearlet trans-
form. Finally, in Section 4, we present several demonstrations of the discrete shearlet transform for noise removal
applications. Concluding remarks are made in Section 5.

2. Shearlets

The theory of composite wavelets, recently introduced by the authors and their collaborators [20–22], provides an
especially effective approach for combining geometry and multiscale analysis by taking advantage of the classical
theory of affine systems. In dimension n = 2, the affine systems with composite dilations are the collections of the
form:

AAB(ψ) = {
ψj,�,k(x) = |detA|j/2ψ

(
B�Ajx − k

)
: j, � ∈ Z, k ∈ Z

2}, (2.2)

where ψ ∈ L2(R2), A,B are 2 × 2 invertible matrices and |detB| = 1. The elements of this system are called com-
posite wavelets if AAB(ψ) forms a Parseval frame (also called tight frame) for L2(R2); that is,∑

j,�,k

∣∣〈f,ψj,�,k〉
∣∣2 = ‖f ‖2,

for all f ∈ L2(R2). In this approach, the dilations matrices Aj are associated with scale transformations, while
the matrices B� are associated to area-preserving geometrical transformations, such as rotations and shear. This
framework allows one to construct Parseval frames whose elements range not only at various scales and locations,
like wavelets, but also at various orientations.

In this paper, we will consider a special example of composite wavelets in L2(R2), called shearlets. These are
collections of the form (2.2) where A = A0 is the anisotropic dilation matrix and B = B0 is the shear matrix, which
are given by

A0 =
(

4 0
0 2

)
, B0 =

(
1 1
0 1

)
.

For any ξ = (ξ1, ξ2) ∈ R̂
2, ξ1 �= 0, let ψ(0) be given by

ψ̂(0)(ξ) = ψ̂(0)(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2

(
ξ2

ξ1

)
, (2.3)

where ψ̂1, ψ̂2 ∈ C∞(R̂), supp ψ̂1 ⊂ [− 1
2 ,− 1

16

] ∪ [ 1
16 , 1

2

]
and supp ψ̂2 ⊂ [−1,1]. This implies that ψ̂(0) is C∞ and

compactly supported with supp ψ̂(0) ⊂ [− 1
2 , 1

2

]2. In addition, we assume that

∑
j�0

∣∣ψ̂1
(
2−2jω

)∣∣2 = 1 for |ω| � 1

8
, (2.4)

and, for each j � 0,

2j −1∑
�=−2j

∣∣ψ̂2
(
2jω − �

)∣∣2 = 1 for |ω| � 1. (2.5)

From the conditions on the support of ψ̂1 and ψ̂2 one can easily observe that the functions ψj,�,k have frequency
support:

supp ψ̂
(0)
j,�,k ⊂

{
(ξ1, ξ2): ξ1 ∈ [−22j−1,−22j−4] ∪ [

22j−4,22j−1], ∣∣∣∣ξ2 + �2−j

∣∣∣∣ � 2−j

}
.

ξ1
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(a) (b)

Fig. 1. (a) The tiling of the frequency plane R̂2 induced by the shearlets. The tiling of D0 is illustrated in solid line, the tiling of D1 is in dashed
line. (b) The frequency support of a shearlet ψj,�,k satisfies parabolic scaling. The figure shows only the support for ξ1 > 0; the other half of the
support, for ξ1 < 0, is symmetrical.

That is, each element ψ̂j,�,k is supported on a pair of trapezoids, of approximate size 22j × 2j , oriented along lines of
slope �2−j (see Fig. 1b).

There are several examples of functions ψ1, ψ2 satisfying the properties described above (see Appendix A). Equa-
tions (2.4) and (2.5) imply that

∑
j�0

2j −1∑
�=−2j

∣∣ψ̂(0)
(
ξA

−j

0 B−�
0

)∣∣2 =
∑
j�0

2j −1∑
�=−2j

∣∣ψ̂1
(
2−2j ξ1

)∣∣2
∣∣∣∣ψ̂2

(
2j ξ2

ξ1
− �

)∣∣∣∣
2

= 1

for (ξ1, ξ2) ∈ D0, where D0 = {(ξ1, ξ2) ∈ R̂
2: |ξ1| � 1

8 ,
∣∣ ξ2
ξ1

∣∣ � 1}. That is, the functions {ψ̂(0)(ξA
−j

0 B−�
0 )} form a

tiling of D0. This is illustrated in Fig. 1a.
This property, together with the fact that ψ̂(0) is supported inside

[− 1
2 , 1

2

]2, implies that the collection:{
ψ

(0)
j,�,k(x) = 2

3j
2 ψ(0)

(
B�

0A
j

0x − k
)
: j � 0, −2j � � � 2j − 1, k ∈ Z

2}, (2.6)

is a Parseval frame for L2(D0)
∨ = {f ∈ L2(R2): supp f̂ ⊂ D0}. Details about this can be found in [22].

Similarly we can construct a Parseval frame for L2(D1)
∨, where D1 is the vertical cone D1 = {(ξ1, ξ2) ∈ R̂

2: |ξ2| �
1
8 ,

∣∣ ξ1
ξ2

∣∣ � 1}. Let

A1 =
(

2 0
0 4

)
, B1 =

(
1 0
1 1

)
,

and ψ(1) be given by

ψ̂(1)(ξ) = ψ̂(1)(ξ1, ξ2) = ψ̂1(ξ2)ψ̂2

(
ξ1

ξ2

)
,

where ψ̂1, ψ̂2 are defined as above. Then the collection{
ψ

(1)
j,�,k(x) = 2

3j
2 ψ(1)

(
B�

1A
j

1x − k
)
: j � 0, −2j � � � 2j − 1, k ∈ Z

2} (2.7)

is a Parseval frame for L2(D1)
∨. Finally, let ϕ̂ ∈ C∞

0 (R2) be chosen to satisfy

G(ξ) = ∣∣ϕ̂(ξ)
∣∣2 +

∑
j�0

2j −1∑
�=−2j

∣∣ψ̂(0)
(
ξA

−j

0 B−�
0

)∣∣2
χD0(ξ) +

∑
j�0

2j −1∑
�=−2j

∣∣ψ̂(1)
(
ξA

−j

1 B−�
1

)∣∣2
χD1(ξ) = 1

for ξ ∈ R̂
2,
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where χD denotes the indicator function of the set D. This implies that supp ϕ̂ ⊂ [− 1
8 , 1

8

]2, with |ϕ̂(ξ)| = 1 for

ξ ∈ [− 1
16 , 1

16

]2, and the set {ϕ(x−k): k ∈ Z
2} is a Parseval frame for L2

([− 1
16 , 1

16

]2)∨. Observe that, by the properties
of ψ(d), d = 0,1, it follows that the function G(ξ) = G(ξ1, ξ2) is continuous and regular along the lines ξ2/ξ1 = ±1
(as well as for any other ξ ∈ R̂

2).
Thus, we have the following:

Theorem 2.1. Let ϕk(x) = ϕ(x − k) and ψ
(d)
j,�,k(x) = 2

3j
2 ψ(d)(B�

dA
j
dx − k), where ϕ, ψ are given as above. Then the

collection of shearlets:{
ϕk: k ∈ Z

2} ∪ {
ψ

(d)
j,�,k(x): j � 0, −2j + 1 � � � 2j − 2, k ∈ Z

2, d = 0,1
}

∪{
ψ̃

(d)
j,�,k(x): j � 0, � = −2j ,2j − 1, k ∈ Z

2, d = 0,1
}
,

where ˆ̃
ψ

(d)

j,�,k(ξ) = ψ̂
(d)
j,�,k(ξ)χDd

(ξ), is a Parseval frame for L2(R2).

As shown above, the “corner” elements ψ̃
(d)
j,�,k(x), � = −2j ,2j − 1, are simply obtained by truncation on the cones

χDd
in the frequency domain. As mentioned above, the corner elements in the horizontal cone D0 match nicely with

those in the vertical cone D1.
For d = 0,1, the shearlet transform is mapping f ∈ L2(R2) into the elements 〈f,ψ

(d)
j,�,k〉, where j � 0,−2j � � �

2j − 1, k ∈ Z2.
Let us summarize the mathematical properties of shearlets:

• Shearlets are well localized. In fact, they are compactly supported in the frequency domain and have fast decay in
the spatial domain.

• Shearlets satisfy parabolic scaling. Each element ψ̂j,�,k is supported on a pair of trapezoids, each one contained
in a box of size approximately 2j × 22j (see Fig. 1b). Because the shearlets are well localized, in the spatial
domain each ψj,�,k is essentially supported on a box of size 2−j × 2−2j . Their supports become increasingly thin
as j → ∞.

• Shearlets exhibit highly directional sensitivity. The elements ψ̂j,�,k are oriented along lines with slope given
by −�2−j . As a consequence, the corresponding elements ψj,�,k are oriented along lines with slope �2−j . The
number of orientations doubles at each finer scale.

• Shearlets are spatially localized. For any fixed scale and orientation, the shearlets are obtained by translations on
the lattice Z

2.
• Shearlets are optimally sparse. The following is proved in [19, Theorem 1.1]):

Theorem. Let f be C2 away from piecewise C2 curves, and f S
N be the approximation to f obtained using the N

largest coefficients in the shearlet expansion. Then we have∥∥f − f S
N

∥∥2
2 � CN−2(logN)3.

Thus the shearlets form a tight frame of well-localized waveforms, at various scales and directions, and are opti-
mally sparse in representing images with edges. Only the curvelets of Candès and Donoho are known to satisfy similar
sparsity properties.2 With respect to the curvelets, however, our construction has some fundamental differences. In-
deed, the shearlets are generated from the action of a family of operators on a single function, while this is not true
for the curvelets (they are not of the form (2.2)). In particular, unlike the shearlets, the curvelets are not associated
with a fixed translation lattice. Concerning the directional sensitivity, the number of orientations in our construction
doubles at each scale, while in the curvelet case it doubles at each other scale. This is consistent with the fact that our

2 Also the contourlets are claimed in [12] to satisfy the same sparsity property. The argument used in [12] assumes that there exist smooth
compactly supported functions approximating a frequency partition similar to Fig. 1. However, the existence of functions with such properties is
an open and non-trivial problem.
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dilations factors in the dilation matrix A are 4 and 2 rather than 2 and
√

2, as in the case of curvelets. In addition,
the shearlets are defined on the Cartesian domain and the various directions are obtained from the action of shearing
transformations. By contrast, the curvelets are constructed in the polar domain and the orientations are obtained by
applying rotations. Finally, thanks to their mathematical structure, the shearlets are associated to a multiresolution
analysis (see [27,30]).

Also the discrete construction of the contourlets introduced by Do and Vetterli [12] has the intent to provide a
partition of the frequency plane very similar to the one represented in Fig. 1. In this sense, the theory of shearlets can
be seen as a theoretical justification for the contourlets. Observe, however, that the shearlets are band-limited func-
tions, while the contourlets are a discrete-time construction implemented using filter banks. Indeed, the framework of
composite wavelets from which the shearlets are derived allows one to consider directional multiscale representations
with compact support [26]. It is an open problem whether one can construct a directional multiscale Parseval frame of
functions that are both compactly supported and smooth.

3. The discrete shearlet transform

It will be convenient to describe the collection of shearlets presented above in a way which is more suitable to
derive its numerical implementation. For ξ = (ξ1, ξ2) ∈ R̂

2, j � 0, and � = −2j , . . . ,2j − 1, let

W
(0)
j,� (ξ) =

⎧⎪⎨
⎪⎩

ψ̂2(2j ξ2
ξ1

− �)χD0(ξ) + ψ̂2(2j ξ1
ξ2

− � + 1)χD1(ξ) if � = −2j ,

ψ̂2(2j ξ2
ξ1

− �)χD0(ξ) + ψ̂2(2j ξ1
ξ2

− � − 1)χD1(ξ) if � = 2j − 1,

ψ̂2(2j ξ2
ξ1

− �) otherwise,

and

W
(1)
j,� (ξ) =

⎧⎪⎨
⎪⎩

ψ̂2(2j ξ2
ξ1

− � + 1)χD0(ξ) + ψ̂2(2j ξ1
ξ2

− �)χD1(ξ) if � = −2j ,

ψ̂2(2j ξ2
ξ1

− � − 1)χD0(ξ) + ψ̂2(2j ξ1
ξ2

− �)χD1(ξ) if � = 2j − 1,

ψ̂2(2j ξ1
ξ2

− �) otherwise,

where ψ2,D0,D1 are defined in Section 2. For 1−2j � � � 2j −2, each term W
(d)
j,� (ξ) is a window function localized

on a pair of trapezoids, as illustrated in Fig. 1a. When � = −2j or � = 2j − 1, at the junction of the horizontal cone
D0 and the vertical cone D1, W

(d)
j,� (ξ) is the superposition of two such functions.

Using this notation, for j � 0, −2j � � � 2j − 1, k ∈ Z
2, d = 0,1, we can write the Fourier transform of the

shearlets in the compact form

ψ̂
(d)
j,�,k(ξ) = 2

3j
2 V

(
2−2j ξ

)
W

(d)
j,� (ξ)e−2πiξA

−j
d B−�

d k,

where V (ξ1, ξ2) = ψ̂1(ξ1)χD0(ξ1, ξ2) + ψ̂1(ξ2)χD1(ξ1, ξ2). The shearlet transform of f ∈ L2(R2) can be computed
by

〈
f,ψ

(d)
j,�,k

〉 = 2
3j
2

∫
R2

f̂ (ξ)V
(
2−2j ξ

)
W

(d)
j,� (ξ)e2πiξA

−j
d B−�

d k dξ. (3.8)

Indeed, one can easily verify that

1∑
d=0

2j −1∑
�=−2j

∣∣W(d)
j,� (ξ1, ξ2)

∣∣2 = 1,

and from this it follows that

∣∣ϕ̂(ξ1, ξ2)
∣∣2 +

1∑
d=0

∑
j�0

2j −1∑
�=−2j

∣∣V (
22j ξ1,22j ξ2

)∣∣∣∣W(d)
j,� (ξ1, ξ2)

∣∣2 = 1 for (ξ1, ξ2) ∈ R̂
2.
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3.1. A frequency-domain implementation

We will now derive an algorithmic procedure for computing (3.8) in frequency domain which is faithful to the
mathematical transformation described above.

An N ×N image consists of a finite sequence of values, {x[n1, n2]}N−1,N−1
n1,n2=0 where N ∈ N. Identifying the domain

with the finite group Z
2
N , the inner product of images x, y : Z2

N → C is defined as

〈x, y〉 =
N−1∑
u=0

N−1∑
v=0

x(u, v)y(u, v).

Thus the discrete analog of L2(R2) is �2(Z2
N).

Given an image f ∈ �2(Z2
N), let f̂ [k1, k2] denote its 2D discrete Fourier transform (DFT):

f̂ [k1, k2] = 1

N

N−1∑
n1,n2=0

f [n1, n2]e−2πi(
n1
N

k1+ n1
N

k2), −N

2
� k1, k2 <

N

2
.

Here and in the following we adopt the convention that brackets [·,·] denote arrays of indices, and parentheses (·,·)
denote function evaluations. We shall interpret the numbers f̂ [k1, k2] as samples f̂ [k1, k2] = f̂ (k1, k2) from the
trigonometric polynomial

f̂ (ξ1, ξ2) =
N−1∑

n1,n2=0

f [n1, n2]e−2πi(
n1
N

ξ1+ n1
N

ξ2).

First, to compute

f̂ (ξ1, ξ2)V
(
2−2j ξ1,2−2j ξ2

)
(3.9)

in the discrete domain, at the resolution level j , we apply the Laplacian pyramid algorithm [4], which is implemented
in the time-domain. This will accomplish the multiscale partition illustrated in Fig. 1, by decomposing f

j−1
a [n1, n2],

0 � n1, n2 < Nj−1, into a low-pass filtered image f
j
a [n1, n2], a quarter of the size of f

j−1
a [n1, n2], and a high-pass

filtered image f
j
d [n1, n2]. Observe that the matrix f

j
a [n1, n2] has size Nj ×Nj , where Nj = 2−2jN , and f 0

a [n1, n2] =
f [n1, n2] has size N × N . In particular, we have that

f̂
j
d (ξ1, ξ2) = f̂ (ξ1, ξ2)V

(
2−2j ξ1,2−2j ξ2

)
and thus, f

j
d [n1, n2] are the discrete samples of a function f

j
d (x1, x2), whose Fourier transform is f̂

j
d (ξ1, ξ2).

In order to obtain the directional localization illustrated in Fig. 1, we will compute the DFT on the pseudo-polar
grid, and then apply a one-dimensional band-pass filter to the components of the signal with respect to this grid. More
precisely, let us define the pseudo-polar coordinates (u, v) ∈ R

2 as follows:

(u, v) =
(

ξ1,
ξ2

ξ1

)
if (ξ1, ξ2) ∈D0,

(u, v) =
(

ξ2,
ξ1

ξ2

)
if (ξ1, ξ2) ∈D1.

After performing this change of coordinates, we obtain gj (u, v) = f̂
j
d (ξ1, ξ2), and, for � = 1 − 2j , . . . ,2j − 1, we

have:

f̂ (ξ1, ξ2)V
(
2−2j ξ1,2−2j ξ2

)
W

(d)
j� (ξ1, ξ2) = gj (u, v)W

(
2j v − �

)
. (3.10)

This expression shows that the different directional components are obtained by simply translating the window func-
tion W . The discrete samples gj [n1, n2] = gj (n1, n2) are the values of the DFT of f

j
d [n1, n2] on a pseudo-polar grid.

That is, the samples in the frequency domain are taken not on a Cartesian grid, but along lines across the origin at
various slopes. This has been recently referred to as the pseudo-polar grid. One may obtain the discrete frequency
values of f

j
d on the pseudo-polar grid by direct extraction using the fast Fourier transform (FFT) with complexity

O(N2 logN) or by using the pseudo-polar DFT (PDFT).
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Definition 3.1. For a given N × N signal f [n1, n2], the pseudo-polar DFT is given by Pf = [f̂1, f̂2]T , where f̂1, f̂2
are given by

f̂1[k1, k2] =
N/2−1∑

n1=−N/2

N/2−1∑
n2=−N/2

f [n1, n2]e−in1
πk1
N e−in2

πk1
N

2k2
N ,

for −N � k1 < N,−N/2 � k2 < N/2, and

f̂2[k1, k2] =
N/2−1∑

n1=−N/2

N/2−1∑
n2=−N/2

f [n1, n2]e−in2
πk2
N ein1

πk2
N

2k1
N ,

for −N/2 � k1 < N/2,−N � k2 < N .

It is known that the operator P can be preconditioned so that it provides a nearly tight frame (when using a direct
extraction routine the operator is a tight frame [10]). Furthermore, both the forward and inverse PDFT can be imple-
mented with complexity O(N2 logN) using the pseudo-polar FFT (see [2], where this is referred to as the fast slant
stack algorithm).

Now let {wj,�[n]: n ∈ Z} be the sequence whose discrete Fourier transform gives the discrete samples of the

window function W(2j k − �), that is, ŵj,�[k] = W(2j k − �). Then, for fixed n1 ∈ Z, we have

F1
(
F−1

1

(
gj [n1, n2]

) ∗ wj�[n2]
) = gj [n1, n2]F1

(
wj�[n2]

)
, (3.11)

where ∗ denotes the one-dimensional convolution along the n2 axis. Here, F1 is the one-dimensional discrete Fourier
transform defined by

F1(q)[k1] = 1√
N

N/2−1∑
n1=−N/2

q[n1]e
−2πik1n1

N

for a given 1-D signal q with length N . Thus (3.11) gives the algorithmic implementation for computing the discrete
samples of gj (u, v)W(2j v − �).

Using the notation we have introduced, the shearlet coefficients 〈f,ψ
(0)
j,�,k〉, given by (3.8), are now simply∫ ∫

2− 3
2 j gj (u, v)W

(
2j v − �

)
exp

(
2πi

(
n1 + �n2

4j
ξ1 + n2

2j
ξ2

))
dξ1 dξ2. (3.12)

Thus, to compute (3.12) in the discrete domain, it suffices to compute the inverse PDFT or directly re-assemble the
Cartesian sampled values and apply the inverse two-dimensional FFT. For d = 1, the shearlet coefficients 〈f,ψ

(1)
j,�,k〉

are computed in similar way.
Observe that, in this implementation, we have a large flexibility in the choice of the frequency window function W .

As we mentioned in Section 2 there are plenty of choices in the construction of the function ψ2 (recall that W is
defined in terms of the function ψ2). In Section 3.3 we will implement the windowing in the time-domain. This way
we will be able to create the windowing using wavelet filters by combining the decomposition and synthesis filters
appropriately.

Let us summarize the procedure described above at fixed resolution level j . This is illustrated by the scheme of
Fig. 2. Suppose f ∈ �2(Z2

N).

(1) Apply the Laplacian pyramid scheme to decompose f
j−1
a into a low-

pass image f
j
a and a high-pass image f

j
d . For f

j−1
a ∈ �2(Z2

Nj−1
), the

matrix f
j
a ∈ �2(Z2

Nj
), where Nj = Nj−1/4 and f

j
d ∈ �2(Z2

Nj−1
).

(2) Compute f̂
j
d on a pseudo-polar grid. This gives the matrix Pf

j
d .

(3) Apply a band-pass filtering to the matrix Pf
j
d (this performs (3.11)).

(4) Directly re-assemble the Cartesian sampled values and apply the in-
verse two-dimensional FFT or use the inverse PDFT from the previous

step.
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Fig. 2. The figure illustrates the succession of Laplacian pyramid and directional filtering.

The algorithm runs in O(N2 logN) operations.
Figure 3 illustrates the two level shearlet decomposition of the Peppers image. The first level decomposition gener-

ates 4 subbands, and the second level decomposition generates 8 subbands, corresponding to the different directional
bands illustrated by the scheme in Fig. 2.

Figure 4 displays examples of the basis functions for the frequency-domain based shearlet transform. The first level
decomposition is separated into 16 directional subbands and the second level decomposition is separated into 8 direc-
tional subbands.

3.2. Correlation with the theory

The above frequency-based implementation yields the spatial-frequency tiling determined by the shearlet trans-
form. Recall that each element ψ̂j,�,k is supported on a pair of trapezoids, each one contained in a box of size
approximately 2j × 22j . Thus, the non-linear approximation error rate is expected to be what the theory predicts.
Note that, in this implementation, the downsampling is only applied in the vertical and horizontal directions with no
anisotropic subsampling. Thus the decomposition is highly redundant. For example, given an image of size N × N ,
a three-level decomposition would contain 2jN2 + 2j−1(N/4)2 + (N/16)2 coefficients when 2j directional subbands
are chosen at the first decomposition level. The incorporation of anisotropic subsampling is a non-trivial matter that
will be investigated in a follow-up paper.

We now demonstrate that the approximation properties predicted by the theory of shearlets are very closely corre-
lated to the corresponding properties of its discrete implementation.

Figure 5b shows the non-linear approximation error ‖f − fM‖/‖f ‖ where fM is the partial reconstruction of
f using the M-largest coefficients in the shearlet (or wavelet) representation. In order to compensate for the redun-
dancy of the shearlet transform and display a fair comparison, we multiply the number of wavelet coefficients by the
redundancy factor of the shearlet transform so that the number of shearlet and wavelet coefficients is identical.

Our second test image shown in Fig. 6a is singular along smooth circles and is otherwise smooth. Our theory (1.1)
tells us that in this case we have

‖f − fM‖ � CpM−1+p

for any p > 0 so that the decay rate of the non-linear approximation curve is at least arbitrarily close to 1. Our
numerical experiment (see Fig. 6b) shows that the decay rate of the non-linear approximation curve for the shearlet
transform is close to 1 for our test image shown in Fig. 5a. In this numerical experiment, we compare the non-linear
approximation curve for our shearlet representation and the numerically estimated curve of the form CM−α . For this
estimated curve, we obtained α � 0.9634 which is close to 1.

Although there is a redundancy in the number of retained coefficients, the asymptotic decay rate demonstrated
above indicates that this discrete implementation should perform well as a denoising routine. An analogous situation
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Fig. 3. An illustration of the shearlet transform. The top image is the original Peppers image. The image below the top image contains the approxi-
mate shearlet coefficients. Images of the detail shearlet coefficients are shown below this with an inverted grayscale for better presentation.

occurs for the wavelet transform and its implementation. The success of the wavelet transform for denoising is based
on its non-linear approximation error rate and yet their most successful implementations for estimation purposes are
typically done by using the highly redundant non-subsampled version (see, for example, [8,28]).

3.3. A time-domain implementation

In order to improve the algorithm performance for applications such as denoising, we need to implement a local
variant of the shearlet transform. This will reduce the Gibbs type ringing present when filters of large support sizes
are used. Note that the concept of localizing the transform is not new. For example, a localization has been applied to
the ridgelet transform in order to implement the discrete curvelet transform [35].

In order to obtain a local variant similar to the one used for ridgelets, we would need to apply the shearlet transforms
to small sized image blocks (e.g., blocks of sizes 8 by 8, or 16 by 16). In order to avoid blocking artifacts, we would
need to introduce an overcomplete decomposition of the image and then synthesize by a lapped window scheme such
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Fig. 4. Examples of basis functions of the frequency-domain implemented shearlet transform. The top row corresponds to the basis functions of the
first decomposition level. The bottom row corresponds to the basis functions of the second decomposition level.

(a) (b)

Fig. 5. Non-linear approximation curve of the shearlet and wavelet representations. (a) Original image. (b) Partial reconstruction error
‖f − fM‖/‖f ‖.

(a) (b)

Fig. 6. (a) Original image. (b) Partial reconstruction error ‖f − fM‖/‖f ‖ and the numerically estimated curve.

as in [35]. Indeed, the added redundancy in the number of shearlet coefficients makes this a cumbersome approach.
But a much simpler, faster, and time-domain solution is possible.

Recall that in the implementation there is a large flexibility in the choice of windowing to be applied. Consider a

frequency-based window function W̃ such that
∑2j −1

�=−2j W̃ [2j n2 − �] = 1. Denote by ϕP the mapping function from
the Cartesian grid to the pseudo-polar grid. The shearlet coefficients in the discrete Fourier domain were earlier cal-
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Fig. 7. Examples of the shearing filters ŵs
j,�

constructed using a Meyer wavelet as the window function W .

culated as ϕ−1
P (gj [n1, n2]W̃ [2j n2 − �]), where gj represents f̂

j
d in the pseudo-polar domain. We suggest to calculate

the shearlet coefficients in the frequency domain as

ϕ−1
P

(
gj [n1, n2]

)
ϕ−1

P

(
δ̂P [n1, n2]W̃

[
2j n2 − �

])
,

where δ̂P represents the discrete Fourier transform of the delta function in the pseudo-polar grid. This is possible
because the map ϕP can be described as a selection matrix S with the property that its elements si,j satisfy the
property s2

i,j = si,j (see [10] for more details). In this way, we can calculate the shearlet coefficients in the discrete

Fourier domain as f̂
j
d [n1, n2]ŵs

j,�[n1, n2] where

ŵs
j,�[n1, n2] = ϕ−1

P

(
δ̂P [n1, n2]W̃

[
2j n2 − �

])
.

The subtle but very important point here is that the new form of the filters are not found by a simple change of
variables. They are found by applying the specific discrete re-sampling transformation converting from the pseudo-
polar to Cartesian coordinate system. This discrete transformation requires a re-sampling, where many points in the
pseudo-polar coordinate systems may be mapped into a single point in the Cartesian system.

An illustration of such filters ŵs
j,� found by using a Meyer window are shown in Fig. 7.

As a result of this conversion we now have filters ŵs
j,� such that

2j −1∑
�=−2j

ŵs
j,�(ξ1, ξ2) = 1.

Because this construction is independent of the image f , we can now construct shearing filters for any size coordinate
system. By taking the inverse discrete Fourier transform, we thus have the following theorem.

Theorem 3.1. Let ws
� denote the shearing filter ws

0,� with support size L × L. Given any function f ∈ �2(Z2
N),

2j −1∑
�=−2j

f ∗ ws
� = f.

Although these filters are not compactly supported in the traditional sense, they can be implemented with a matrix
representation that is smaller in size than the given image.

These observations show that we can perform the shearing filtering “directly” in the time-domain using a convolu-
tion. In our implementation, we will restrict the convolution to be of the same size as the given image. In addition, the
small support sizes of the filters reduce the Gibbs-type ringing phenomenon and improve the computational efficiency
of the algorithm. In fact, the small sized filters allows us to use a fast overlap-add method to compute the convolu-
tions [32]. The gain in speed for the directional filtering combined with the performance of the Laplacian pyramid
algorithm used in our routine yields an overall performance of O(N2 logN) operations.

Another benefit of this implementation is that we can apply a non-subsampled Laplacian pyramid decomposition
which has been shown to be very effective in denoising applications [11]. Although this is a highly redundant decom-
position (e.g., the number of retained coefficients for a three-level decomposition would be (2j + 2j−1 + 1)N2 when
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Fig. 8. Examples of basis functions of the time-domain implemented shearlet transform. The top row corresponds to the basis functions of the
second decomposition level. The bottom row corresponds to the basis functions of the third decomposition level.

2j directional subbands are chosen at the first decomposition level when applied to an N × N image), this version
will be shown to be highly effective for the purpose of denoising.

On the other hand, it is useful to observe that the frequency-domain implementation discussed in the previous
section allows for a much broader class of wavelet filtering (windowing) to be implemented. This can be useful for
other types of applications.

Displays of various basis functions for the time-domain implemented shearlet transform are shown in Fig. 8. The
second level decomposition was divided into 16 directional subbands and the third level decomposition was divided
into 8 directional subbands.

3.3.1. Comparison with the contourlets
The time-domain shearlet transform that we described above has similarities with the contourlet transform [11,31,

33]. Recall that the contourlet transform consists of an application of the Laplacian pyramid followed by directional
filtering. However the directional filtering is obtained using a different approach from the shearlets. Indeed, the direc-
tional filtering of the contourlet transform is achieved by introducing a directional filter bank that combines critically
sampled fan filter banks and pre/post re-sampling operations.

An important advantage of the shearlet transform over the contourlet transform is that there are no restrictions on
the number of directions for the shearing. That is, we could express the formulation of the windowing W with a non-
dyadic spacing as well. This flexibility is not possible using a fan filter implementation. In addition, in the shearlet
approach, there are no constraints on the size of the supports for the shearing, unlike the construction of the directional
filter banks in [33]. Finally, we wish to point out that the inversion of this discrete shearlet transform only requires a
summation of the shearing filters rather than inverting a directional filter bank. This results in an implementation that
is most efficient computationally. In addition, this efficient inversion may have advantages for applications such as
compression routines where the complexity of the decompression algorithm needs to be minimal.

3.4. Computational efficiency and accuracy

To give an indication of how computationally efficient the shearlet transform is, we have compared CPU times
for computing the shear filtered coefficients (SFC) and its inversion processes (iSFC) to those of the non-subsampled
directional filter bank (DFB) and its inversion process (iDFB) used as part of the non-subsampled contourlet transform.

Our test was based on using a laptop with a 1.73 GHz Centrino processor and 1 GB of RAM. The routines were
tested in MATLAB with only one routine of the DFB codes compiled from C. The DFB codes were provided by the
authors of the non-subsampled contourlet transform papers. The sizes of the shearing filters used were 16 × 16. We
measured the following CPU times averaged over 10 iterations.
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Directions Image size CPU time

SFC 8 512 1.4641 × 100 s

iSFC 8 512 2.9687 × 10−2 s

SFC 16 512 2.9266 × 100 s

iSFC 16 512 1.0938 × 10−1 s

DFB 8 512 1.0850 × 102 s

iDFB 8 512 1.0867 × 102 s

DFB 16 512 2.7685 × 102 s

iDFB 16 512 2.7865 × 102 s

Notice that doubling the number of directions for the shearing processes only marginally increases the computa-
tional time, whereas it more than doubles the time for the directional filter bank process. Also, it can be seen that the
time to invert the shearing is practically negligible for an image of size 512 × 512.

Below are the results for the frequency-domain shearing.

Directions Image size CPU time

Freq-SFC 8 512 3.8898 × 101 s

Freq-iSFC 8 512 2.8125 × 10−1 s

Freq-SFC 16 512 1.2950 × 102 s

Freq-iSFC 16 512 5.8203 × 10−1 s

The average CPU time to decompose an image of size 512 via the LP algorithm used in the frequency-domain im-
plementation for the shearlet transform was 3.2656×10−1. The average CPU time to recompose via the LP algorithm
was 3.2969 × 10−1. For the non-subsampled LP algorithm used in the time-domain shearlet transform, the average
CPU time was 4.7656 × 10−1. The average CPU time to recompose was 4.8281 × 10−1.

The relative error in the reconstruction of the frequency-domain implementation for an image of size 512 (Lena)
was 3.8842×10−13. For the non-subsampled time-domain shearlet transform, the relative errors were 7.8228×10−16

using a Meyer wavelet-based window and 7.8249×10−16 using a characteristic function based window. These results
are acceptable and expected when implemented in a finite precision machine. The frequency-domain implementation
only suffers from a slight performance degradation due to the limits on the discretization of the one-dimensional
Meyer wavelet being used. The degradation is more visible when used on a signal of length 1024 than for a signal of
length 32 or 64. Alternative discretizations of the Meyer wavelet could be used to mitigate this issue.

4. Numerical experiments

The highly directional sensitivity of the shearlet transform and its optimal approximation properties will lead to
improvements in many image processing applications. To illustrate one of its potential uses, we have used the shearlet
transform to remove noise from images. Specifically, suppose that for a given image f , we have

u = f + ε, (4.13)

where ε is Gaussian white noise with zero mean and standard deviation σ ; that is, ε ∈ N(0, σ 2). We attempt to recover
the image f from the noisy data u by computing an approximation f̃ of f obtained by applying a thresholding scheme
in the subbands of the shearlet decomposition.

First, we demonstrate the performance in estimation by applying hard thresholding to the subbands of the shearlet
decomposition using the frequency-based routine. The decomposition tested is the same as that shown in Fig. 3. The
result is shown in Fig. 9. The performance measure used was the peak signal-to-noise ratio (PSNR) in decibels (dB)
defined as

PSNR = 20 log10
255N

‖f − f̃ ‖F

,

where ‖ · ‖F is the Frobenius norm, the given image f is of size N ×N , and f̃ denotes the estimated image. Included
in this experiment are the estimates found by applying hard thresholding to the discrete wavelet transform defined
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. (a) The original cameraman image. (b) The noisy image (PSNR = 22.09 dB). (c) The result of wavelet denoising using the 7/9 fil-
ters (PSNR = 26.18 dB). (d) The result of contourlet denoising (PSNR = 25.82 dB). (e) The result of the frequency-based shearlet denoising
(PSNR = 27.21 dB). (f) The result of the time-domain shearlet denoising (PSNR = 28.01 dB).

in terms of the Daubechies–Antonini 7/9 filters and the contourlet transform using a decomposition compatible with
the shearlet decomposition. We also include the performance when hard thresholding is applied to the time-domain
based shearlet transform. The decomposition is the same as for the frequency-based transform but with the shearing
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Fig. 10. Test images. From top left, clockwise: Lena, Peppers, Elaine, and Goldhill.

filters used to obtain the 8 and 4 directional subbands constructed using filters of size 16 and 32, respectively. This
experiment suggests a better performance in using the time-domain shearlet transform for denoising and hence we
provide a more complete set of comparisons using this implementation.

Taking note of the great performance of the non-subsampled contourlet transform for image denoising [11], we use
a time-domain shearlet transform and choose the threshold parameters

τi,j = σ 2
εi,j

/σ 2
i,j,n (4.14)

as in [11] where σ 2
i,j,n denotes the variance of the nth coefficient at the ith shearing direction subband in the j th scale,

and σ 2
εi,j

is the noise variance at scale j and shearing direction i. Various experiments indicate the shearlet coefficients
can be modeled by generalized Gaussian distributions so that these thresholds should yield a risk close to the optimal
Bayes risk, specifically within 5 percent of it. To estimate the signal variances in each subband locally, the neighboring
coefficients contained in a square window and a maximum likelihood estimator are used. The variances σ 2

εi,j
are

estimated by using a Monte Carlo technique in which the variances are computed for several normalized noise images
and then the estimates are averaged.

The particular form of the time-domain based shearlet transform we tested was to use the non-subsampled Lapla-
cian pyramid transform with several different combinations of the shearing filters. This will be simply referred to
as the non-subsampled shearlet transform (NSST). We use the abbreviation of NSST1(L1,L2) and NSST2(L1,L2) to
indicate the type of windowing used and the support sizes of the shearing filters ws

� . In particular, we implemented the
shearing on 4 of the 5 scales of the Laplacian pyramid transform decomposition. The shearing filters of sizes L1 ×L1,
L1 × L1, L2 × L2, and L2 × L2 from finer to coarser were used with the number of shearing directions chosen to be
16, 16, 8, and 8. Note that the only restriction on the construction of the shearing filters is that the maximum number
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Table 1
Comparison of the perfomances of the shearlet denoising algorithm NSST1 to other algorithms

Noisy BivShrink DDWT Curvelet NSCT NSST1(16,32)

Lena
σ = 10 28.14 dB 34.36 dB 35.36 dB 33.71 dB 35.29 dB 35.38 dB
σ = 15 24.61 dB 32.48 dB 33.63 dB 32.52 dB 33.57 dB 33.71 dB
σ = 20 22.12 dB 31.16 dB 32.37 dB 31.54 dB 32.33 dB 32.47 dB
σ = 25 20.18 dB 30.16 dB 31.38 dB 30.66 dB 31.33 dB 31.46 dB

Peppers
σ = 10 28.14 dB 33.51 dB 34.20 dB 32.81 dB 34.22 dB 34.35 dB
σ = 15 24.61 dB 31.98 dB 32.74 dB 31.72 dB 32.78 dB 32.97 dB
σ = 20 22.12 dB 30.80 dB 31.64 dB 30.84 dB 31.67 dB 31.90 dB
σ = 25 20.18 dB 29.87 dB 30.74 dB 30.01 dB 30.75 dB 30.99 dB

Goldhill
σ = 10 28.14 dB 32.28 dB 32.86 dB 30.98 dB 32.87 dB 32.91 dB
σ = 15 24.61 dB 30.46 dB 31.17 dB 29.90 dB 31.14 dB 31.21 dB
σ = 20 22.12 dB 29.24 dB 30.00 dB 29.08 dB 29.97 dB 30.05 dB
σ = 25 20.18 dB 28.35 dB 29.13 dB 28.41 dB 29.09 dB 29.17 dB

Elaine
σ = 10 28.14 dB 31.91 dB 32.83 dB 32.11 dB 32.86 dB 33.06 dB
σ = 15 24.61 dB 31.50 dB 31.79 dB 31.43 dB 31.84 dB 31.93 dB
σ = 20 22.12 dB 30.38 dB 31.09 dB 30.81 dB 31.15 dB 31.20 dB
σ = 25 20.18 dB 29.79 dB 30.51 dB 30.24 dB 30.55 dB 30.59 dB

of directional subbands is less than or equal to the size of the filter. NSST1 refers to the case where the shearing was
done by using a Meyer wavelet window and NSST2 to the case where the shearing was done with a simple charac-
teristic window function. For example, NSST1(16,32) indicates that a Meyer-based shearing filter of size 16 with 16
directions was applied to the first and second decomposition level and a Meyer-based shearing filter of size 32 with 8
directions was applied to the third and fourth decomposition level.

We tested the denoising schemes using the images shown in Fig. 10 for various standard deviation values of the
noise. For a baseline comparison, we tested the performance of the standard discrete wavelet transform (DWT) and
the stationary wavelet transform (SWT) both defined in terms of the Daubechies–Antonini 7/9 filters using hard
thresholding. For brevity, the performance of these transforms using soft thresholding are not presented since they
performed significantly less than the results obtained by hard thresholding. For more competitive comparisons, we
tested the bivariate shrinkage algorithm (BivShrink), a thresholding technique based on taking into account the statis-
tical dependencies among wavelet coefficients, using the discrete wavelet transform and using the dual-tree discrete
wavelet transform (DDWT) [34]. We also compared the scheme against the curvelet based denoising scheme of [35]
and the non-subsampled contourlet transform (NSCT) denoising scheme of [11] using 16, 16, 8, and 8 directions from
finer to coarser scales.

The performance of the shearlet approach relative to other transforms is shown in Tables 1 and 2. It shows that the
shearlet algorithm consistently outperforms all the algorithms mentioned above. NSST1(16,32) shows a fraction of
a dB in improvement in terms of PSNR over the BivShrink and NSCT algorithms. The improvement over curvelets
and wavelets is in many cases 1 dB or more. The improvement over close-ups of some of the best performing estimates
are shown in Figs. 11 and 12 where it can be seen that these slight improvements are visually noticeable. The shearlet
transform results exhibits less Gibbs-type residual artifacts than the other denoising methods. We attribute this to the
small support sizes of the shearing filters.

5. Conclusion

We have developed both a frequency and time-domain based implementation of the discrete shearlet transform.
These two different versions (although there is some commonality between them) were created for greater flexibility
with future applications in mind. The frequency-based implementation gives much greater flexibility in the type of
windowing that can be utilized and allows for the possibility of incorporating subsampling. This can be useful for
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Table 2
Additional comparison of the perfomances of the shearlet denoising algorithms NSST1 and NSST2 to other algorithms

DWT SWT NSST1(8,16) NSST2(16,32) NSST2(8,16)

Lena
σ = 10 31.91 dB 33.73 dB 35.22 dB 35.23 dB 35.08 dB
σ = 15 30.10 dB 31.90 dB 33.56 dB 33.60 dB 33.47 dB
σ = 20 28.79 dB 30.55 dB 32.34 dB 32.39 dB 32.26 dB
σ = 25 27.79 dB 29.51 dB 31.35 dB 31.41 dB 31.28 dB

Peppers
σ = 10 31.73 dB 33.30 dB 34.21 dB 34.24 dB 34.13 dB
σ = 15 29.96 dB 31.76 dB 32.83 dB 32.91 dB 32.77 dB
σ = 20 28.70 dB 30.57 dB 31.76 dB 31.86 dB 31.72 dB
σ = 25 27.70 dB 29.53 dB 30.87 dB 30.97 dB 30.83 dB

Goldhill
σ = 10 29.67 dB 31.26 dB 32.76 dB 32.69 dB 32.56 dB
σ = 15 28.01 dB 29.53 dB 31.09 dB 31.08 dB 30.92 dB
σ = 20 26.95 dB 28.35 dB 29.94 dB 29.95 dB 29.81 dB
σ = 25 26.18 dB 27.48 dB 29.08 dB 29.10 dB 28.97 dB

Elaine
σ = 10 30.72 dB 31.75 dB 32.67 dB 32.67 dB 32.56 dB
σ = 15 29.66 dB 30.75 dB 31.76 dB 31.79 dB 31.73 dB
σ = 20 28.78 dB 29.96 dB 31.11 dB 31.15 dB 31.09 dB
σ = 25 28.08 dB 29.30 dB 30.53 dB 30.58 dB 30.52 dB

Fig. 11. Close-up of images. From top left, clockwise: Noisy image (PSNR = 22.12 dB), BivShrink DDWT (PSNR = 31.09 dB), NSST1(16,32)

(PSNR = 31.20 dB), and NSCT (PSNR = 31.15 dB).
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Fig. 12. Close-up of images. From top left, clockwise: Noisy image (PSNR = 22.12 dB), BivShrink DDWT (PSNR = 31.64 dB), NSST1(16,32)

(PSNR = 31.90 dB), and NSCT (PSNR = 31.67 dB).

compression-type applications. For the time-domain based or finitely supported filtering implementation, the discrete
shearlet transform becomes suitable for applications requiring translation invariance such as denoising and computa-
tional efficiency.

These discrete shearlet implementations are related to the discrete curvelet and contourlet transforms. All of these
have a similar idealized frequency decomposition but differ in their implementation and construction. In fact, we
noticed in various denoising experiments that the residual artifacts after reconstructions are very similar in nature.
The features of each particular representation will have various advantages for specific applications. Take, for exam-
ple, the use of the curvelet transform for image deconvolution to reduce computational complexity as demonstrated
in [16].

In this paper, we have succeeded in demonstrating that the shearlet transform can be very competitive in perfor-
mance for denoising images. The main advantages are that the shearing filters can have smaller support sizes than
the directional filters used in the contourlet transform and can be implemented much more efficiently. We believe
the small support sizes of the shearing filters may have been the reason for the slight improvement over the con-
tourlet transform for the results tested as can be seen in the close up of the images shown. An additional appealing
point to make in favor of the shearlets approach is that theoretically they transition very nicely from a continuous
perspective to a discrete perspective. In addition, the proposed framework is suitable to many variations and general-
izations.

In light of our developments in this work, other image and multidimensional data applications will benefit greatly
with the use of the discrete shearlet transform. We intend to study some of these uses in future research endeav-
ors.
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Appendix A. Construction of ψ1,ψ2

In this appendix we show how to construct examples of functions ψ1, ψ2 satisfying the properties described in
Section 2. Some ideas of these constructions are adapted from [19].

In order to construct ψ1, let h(t) be an even C∞
0 function, with support in

(− 1
6 , 1

6

)
, satisfying

∫
R

h(t)dt = π
2 , and

define θ(ω) = ∫ ω

−∞ h(t)dt . Then one can construct a smooth bell function as

b(ω) =
⎧⎨
⎩

sin(θ(|ω| − 1
2 )) if 1

3 � |ω| � 2
3 ,

sin
(

π
2 − θ

( |ω|
2 − 1

2

))
if 2

3 < |ω| � 4
3 ,

0 otherwise.

It follows from the assumptions we made (cf. [23, Section 1.4]) that

∞∑
j=−1

b2(2−jω
) = 1 for |ω| � 1

3
.

Now letting u2(ω) = b2(2ω) + b2(ω), it follows that

∞∑
j�0

u2(2−2jω
) =

∞∑
j=−1

b2(2−jω
) = 1 for |ω| � 1

3
.

Finally, let ψ1 be defined by ψ̂1(ω) = u( 8
3ω). Then supp ψ̂1 ⊂ [− 1

2 ,− 1
16

] ∪ [ 1
16 , 1

2

]
and Eq. (2.4) is satisfied. This

construction is illustrated in Fig. 13a.
For the construction of ψ2, we start by considering a smooth bump function f1 ∈ C∞

0 (−2,2) such that 0 � f1 � 1

on (−2,2) and f1 = 1 on [−1,1] (cf. [24, Section 1.4]). Next, let f2(t) = √
1 − e1/t . Then (in the left-limit sense)

f2(0) = 1, f
(k)
2 (0) = 0, for k � 1 and 0 < f2 < 1 on (−1,0). Define f (t) = f1(t − 1)f2(t − 1), for t ∈ [−1,1]. It is

(a) (b)

Fig. 13. (a) The function |ψ̂1(ω)|2 (solid line), for ω > 0; the negative side is symmetrical. This function is obtained, after rescaling, from the sum
of the window functions b2(ω) + b2(2ω) (dashed lines). (b) The function ψ̂2(ω).
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then easy to see that f (k)(−1) = 0 for k � 0, f (1) = 1, and f (k)(1) = 0 for k � 1. Let g(t) = √
1 − f 2(t − 2). Since

g(t) = e
1

2(t−3) , for t ∈ (2,3), it follows that limt→3− g(k)(t) = 0, for k � 0. Finally, we define

ψ̂2(ω) =
{

f (ω) if ω ∈ [−1,1),

g(ω) if ω ∈ [1,3],
0 otherwise.

Then ψ̂2 ∈ C∞
0 (R), with supp ψ̂2 ⊂ [−1,3], and

ψ̂2
2 (ω) + ψ̂2

2 (ω + 1) = 1, ω ∈ [−1,1]. (A.1)

From (A.1), it follows that, for any j � 0,

2j −1∑
�=−2j

∣∣ψ̂2
(
2jω − �

)∣∣2 = 1 for |ω| � 1.

The function ψ̂2 is illustrated in Fig. 13a.
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