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Abstract

The convergence of iterative methods for solving nonlinear operator equations in Banach spaces is established from the convergence
of majorizing sequences. An alternative approach is developed to establish this convergence by using recurrence relations. For
example, the recurrence relations are used in establishing the convergence of Newton’s method [L.B. Rall, Computational Solution
of Nonlinear Operator Equations, Robert E. Krieger, New York, 1979] and the third order methods such as Halley’s, Chebyshev’s
and super Halley’s [V. Candela, A. Marquina, Recurrence relations for rational cubic methods I: the Halley method, Computing 44
(1990) 169-184; V. Candela, A. Marquina, Recurrence relations for rational cubic methods II: the Halley method, Computing 45
(1990) 355-367; J.A. Ezquerro, M.A. Herndndez, Recurrence relations for Chebyshev-type methods, Appl. Math. Optim. 41 (2000)
227-236; J.M. Gutiérrez, M.A. Herndndez, Third-order iterative methods for operators with bounded second derivative, J. Comput.
Appl. Math. 82 (1997) 171-183; J.M. Gutiérrez, M.A. Hernandez, Recurrence relations for the Super—Halley method, Comput.
Math. Appl. 7(36) (1998) 1-8; M.A. Hernandez, Chebyshev’s approximation algorithms and applications, Comput. Math. Appl. 41
(2001) 433445 [10]].

In this paper, an attempt is made to use recurrence relations to establish the convergence of a third order Newton-like method used
for solving a nonlinear operator equation F(x) =0, where F' : Q € X — Y be a nonlinear operator on an open convex subset Q2
of a Banach space X with values in a Banach space Y. Here, first we derive the recurrence relations based on two constants which
depend on the operator F. Then, based on this recurrence relations a priori error bounds are obtained for the said iterative method.
Finally, some numerical examples are worked out for demonstrating our approach.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The well-known Newton’s method and it’s variants are used to solve nonlinear operator equations F (x) = 0. These
methods are of second order and their convergence established by Kantorovich theorem [11,13], provide sufficient
conditions to ensure convergence through a system of error bounds for the distance to the solution from each iterate.
The convergence of the sequences obtained by these methods in Banach spaces are derived from the convergence of
majorizing sequences. In [14], a new approach is used for the convergence of these methods by recurrence relations to
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get a priori error bounds for them. This paper is concerned with convergence of third order methods for F(x) =0 in
Banach spaces. For many applications, third order methods are used inspite of high computational cost in evaluating the
involved second order derivatives. They can also be used in stiff systems [12], where a quick convergence is required.
Moreover, they are important from the theoretical standpoint as they provide results on existence and uniqueness of
solutions that improve the results obtained from Newton’s method [1,7]. Some of the well-known third order methods
are Chebyshev’s method, Halley’s method and super Halley’s method. Candela and Marquina [2,3] proposed recurrence
relations to study the convergence of Halley’s method and Chebyshev’s method. Also Gutuérrez and Herndndez [8,9]
and Ezquerro and Herndndez [4] used recurrence relations to study the convergence of Super Halley and Chebyshev-type
methods.

In this paper, we shall use recurrence relations to establish the convergence of a third order Newton-like method for
solving a nonlinear operator equation F'(x) = 0, where F : Q € X — Y be a nonlinear operator on an open convex
subset (2 of a Banach space X with values in a Banach space Y. The recurrence relations based on two constants which
depend on the operator F are derived. Then, based on this recurrence relations a priori error bounds are obtained for
the said iterative method. Finally, some numerical examples are worked out for demonstrating our work.

The paper is organized as follows. Section 1 is the introduction. In Section 2, recurrence relations for a Newton-
like third order method are derived. The convergence analysis based on recurrence relations of the method derived in
Section 2 is given in Section 3. In Section 4, some numerical examples are worked out. Finally, conclusions form the
Section 5.

2. Recurrence relations for a third order method

In this section, we shall discuss a third order Newton-like method for solving the nonlinear operator equation
F(x)=0, ey

where F : Q € X — Y be a nonlinear operator on a open convex subset £ of a Banach space X with values in a
Banach space Y. Recently, Frontini and Sormani [6,5] developed a family of third order iterative methods for solving
(1). This family involves only the vue of F and it’s first derivative F’. One of the most well-known member of this
family is

Yn = Xn — F'(xy) 7 F (x),
/ / —1 (2)
Xn+1 = Xn — (w) F(xn).

Let F be a twice Fréchet differentiable operator in 2 and BL (Y, X) be the set of bounded linear operators from Y into
X. It is assumed that ['g = F’(x())_1 e BL(Y, X) exists at some point xg € 2 and let the following conditions hold
on F:

1 F (xo) " HI<B,
2. | F'(x0) " F(xo) Il <1,

(3)
3NF"(0I<M, x € Q,
4 IF"(x) = F"WI<Nllx =yl Vx,y € Q.
Now takinga = MByand b= Npn?>, ap=1,by =1, co = a/2, dy =2/(2 — a), we define forn =0, 1, . ..
Al =17 aa,d,’
a 5b
bus1 = ayy1d> [5(2@% —Ten +6) + (1 = cn)3dn] :
(4)
c _ aay1bpyy
n+1 = —2 s
b
duy1 = _Ontl
I —cuy1
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In these conditions, for n >0, we prove the following inequalities:

M) Tl = I1F' ()~ I < an B,
D) | T0 F )l = I1F () ™V F () | < b,

F/(Yn) + F/(xn)

2 gcl’la (5)

A |LF ()| = HI —TI,

(V) |lxnt1 — xnll <dpn,
V) xn41 — yull < (bn + dp)n.

The proof of the above inequalities will require the following Lemma 1.

Lemma 1. Ler F : Q C X — Y be a twice Fréchet differentiable nonlinear operator in an open convex domain
of a Banach space X with values in a Banach space Y. Let the sequences {x,} and {y,} are generated by (2). Then
Vn € N, we have

1
F(xps1) = /O F" (yn + 1 Gtngt — y)) (1 = 1) dt (a1 — yn)?
1 1
+ 5/0 F"(n 1 (yn = x2)) d vy = %) (Xnt1 = Yn)
1! 2
— 5/0 F" (xp + t(yn — x)) dt (yn — xn)

1
+f F//(xn +1(yn — xx))(A = 1) dt (yn — xn)z- (6)
0

Proof. Using (2), we get

1 1
F/(yn)(xn+l — V) = E(F/(Yn) - F/(xn))(xn—i-l —yu) + E(F/(Yn) + F/(xn))(xn+l — Yn)

1 1
=§f0 F//(Xn+t(yn — X)) dt (yn — X0) (Xn+1 — Yn)
F/ n F/ n _ F/ " F/ . _1
" M [F/(xn) "F(x) — (M) F(xn):|
1 1
ZE/(; F//(Xn+t(yn — X)) dt (v — x0) (Xn+1 — Yn)
* w F/(xn)_lF(Xn) - F(xn)

1 1
= 5/0 F//(xn +t(yn — X)) At (Y — Xp) (X1 — Yn)

4 I:F/(Yn) '; F'(xp)

—FmﬂFvwlnm)
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1
_5'/0 F//(xn + 1 (yn — X)) dt (Yn — X)) (X1 — Yn)

. F/(yn) - F/(xn)

) n — Xn)

1
= 5/ F//(xn + 1 (yn — X)) At (Y — X)) (Xn11 — Yn)
0

1 1
-3 / F/ (xp 4t (Yn — x)) dt (v — x0)*.
0

Again reusing (2), we get

F(yn) = F(yn) — F(xp) — F/(xn)()’n — Xp)
1
= / F" (i + (v — x))(1 — 1) dt (v — xn)%.
0

This yields
F(xpy1) = F(xpe1) — F(y) — F/(Yn)(xn-i-l — yn) + F/(yn)(xn+l —yn) + F(yn)

1
= /0 F"(yn 4 t g1 — y)) (1 — 1) dr (g1 — yn)?

1 1
+ 5 [) F//(xn + 1ty — X)) dt (Y — X)) (Xng1 — Yn)

1 1
- Efo F"(xp 4t (yp — x)) dt (y — x,)?

1
+/PWM+WWﬂwm—0mm—mf. O
0

Now the conditions (I)-(V) can be proved by induction. For n = 0, (I) and (I) follow from the assumptions. Here
the existence of I'g = F’ (xo)_1 implies the existence of yg. This gives us

| F'(x0) — F'(yo)

1 F'(vo) + F'(x0)
2

I — F'(x0)~
H (x0) 7

= | Fo0-

1 _
<3 MIF'(xo) "ixo — yoll

M
g#zgzcod. %
Hence by Banach’s theorem [11],
F/ F/ —1
( (yo) + (XO)> F(xo)
2
exists and
F' F' - 2
(yo) + F'(x0) Flao < _ '
2 1—a/2 2-—a
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Now we have

F’ F’
1 — xoll = H( (o) - (x0) ) F(xo>||
F’ F’
( (Yo) - (x0) ) F' o) | 11F' (o)™ F(xo)|
2
< m dOVI (8)
and
llx1 — yoll <llx1 — xoll + llxo — yoll
2
<540 =0 +don. ©)
—da

Thus, for n = 0, the existence of the conditions (III)—(V) follow from (7)-(9), respectively. Assume that the conditions
(D-(V)hold forn =1, 2, ..., k and consider x; € Q, cy4+1 < | and aaydy < 1. We now have

|1 — Tk F' Gyl = 1Tk (F (k) — F' (1)l
KMk (Mxre — Xkl
<May fdn

<Laapd, < 1.
Hence by Banach’s theorem [11],

g1 =F (en) ™!

exists and
11kl
I k11l < p -
L= [Tk F' (xx) — F' (- Dl
ag
é—ﬁ = ag41p. (10)

1 —aayd;

Also

1 1 1
H /0 F (o 10k = 1) (1= 0 i = xp)? = 5 /0 F" G+ 1O — x0) di G — x0)°

1 1
< /O F/ G+ 100 = x0)(1 = 0 dt O = 10% = 5 F' () 0 = 30)°

1 ! ” 2 1 " 2
+ = ; F7 (e + t (ke — xx)) dt (v — xx)” — 3 F7 o) e — xk)

2
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2
< e — xll

1
/0 [F" (v + 1 (v — x0)) — F"(e0)](1 — 1) d

+ llyve — xill?

1 1
; fo [F" (e + 1 (v — x0)) — F" ()] dt

1 1
N
<Nf (r—ﬂ)dt||yk—xk||3+3f tdtllyx — xel?
0 0

N 3
= Eﬂyk —xll”.
Hence,
M , M SN 3
I F (DI < ?”Xk—&—l = yll”+ 7||)’k = Xl xe+1 — yell + E”}’k — x|

M 22, M 2
< 2(bk+dk) N+ 2bk(bk +dn +

5_Nb33
12 K

From this, we get

I k1 F G DI < Wk HF Gege )|l
M M 5N
<ars1p (?(bk +d)*n* + 5 by (bx 4 di)n® + 0 b/%’f)
M M 5N fn?
= qp41 ﬂ(bk +di)*n + ﬂ by (br + di)n + ﬂ biﬂ
2 2 12
a a 5b
= a1 (= b + di)®n + = br(by + didn + = bin
2 2 12
a 5b
= a1 (5(219,% +di +3bkdo) + 3 b}i) n

a 5b
= ap41 (5(2(1 —c)?d +dE +3(1 — cpdf) + - ck)3d,§> n

2( 452 Sb 3
= ag+1d} E(ZC" —Tcr +6) + 5(1 —c)’dr | n

= bi411.
As Iy = F’()ck_s_l)*1 exists, SO yg+1 exists.
Hence,
1 F'Oks1) + F'(xre1) 1 F'Gag1) = F'(ier)
HI — F'(e) ™! u o= | F o™ = -
2 2
1 / -1
< 3 M F (xk+1) " I xXk+1 — Y11l
1 aaji1briy
<z app1 PMbpy i = —— = — gy <1,
2 2
Thus, by Banach’s theorem [11],
F'(i) + F'ae) | !
( a 5 + F'(xk41)

(11)

12)

(13)
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exists and
F' F' -1 1
< (Vky1) + (Xk+1)> Foa| < .
2 I — cr41
This implies
F'(ykg1) + F' )\ '
lxXk42 — Xp41ll = > F(xp+1)
F'(yer1) + F D)\ ! _
< ( * 5 x F' () | 1F (s ) ™ F Qi) |
< br+1n
I — ¢t
=dj+11. (14)
Also,

lxks2 — yerrll <lxrg2 — Xkt + IxXkr1 — yes1ll
<dpr1n + beyan = (dit1 + by 1)1 (15)

From Egs. (10), (12)—(15), we conclude that the conditions (I)-(V) hold for k + 1, respectively. Hence, by induction it
holds for all n.

3. Convergence analysis

In this section, we shall establish the convergence of our third order Newton-like method discussed in Section 2.
This can be done by establishing the convergence of {x,}. In order to prove the convergence of {x,}, from (IV) of (5)
it is sufficient to prove that the sequence {d, } is a Cauchy sequence and the following assumptions hold:

<1, neN,
x, €Q, nelN,
aayd, <1, neN.

For this purpose, we will use the following lemmas.

Lemma 2. Let ro = 0.0952980448 . .. be the smallest positive root of p(x) =0, where p(x) =1 — 12x + 16x% — 2x3.
Define the functions

3 (1—12x + 16x2 — 2x3
oy = 2 L1020
5 (1 —x)
5b
X,y)=——"8H— 2x2—7x—|—6+—1—x2x),
g(x,y) (1_3x)2< 3a2y( )
2 5b
hix, = 2x2—7x+6+—1—x2x),
(x, ) (1_3x)2( 32y
ho(x) =h(x, 1), (16)

then

(1) D(x) is a decreasing function in [0, ro],
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(ii) g(x,y) and h(x, y) are increasing functions of x in [0, ro], for y > 1,
(i) g(x,y) and h(x, y) are decreasing functions of y,

@iv) ho(x) and hf)(x) are increasing functions in [0, ro].

Proof. Since

. 3
¢(x)=§(

—12 4 32x — 6x2 N 2(1 — 12x + 16x% — 2x3)>
(1—x)* (1—x)°
<0, Vx €0, 7]

this implies @(x) is a decreasing function. The proof of others follow from similar reasonings as given for @(x). [

Lemma 3. The following recurrence relations hold for the sequences {a,} and {c,}.

n

2ck
- 1 i 17
g 1"[( +1_36k) (17)

k=0

o c2(2c2 —Tc, +6) | 50 (1—cp)en s)
b (1= 3cn)? 3a%ay 22 —Ten 4+ 6) )
Proof. As
b 2
= 44nIn = b, = Cn .
2 aay,
We get
b, 2¢n
" 1—c¢, aa,(1—cy) (19)
As ap = 1, this gives
a _ An _ dn . a, (1 —cy,)
T T —aad, - 1-3q,
2c " 2ck
= 1 ") = 1 ) 20
a"<+1—3cn> ]E)(+l—3ck) 20)
Also
aap41bp41
Cn+1 = 5

a a 5b
= E ar21+1d3 (E(zcg —Tcy +6) + E(l - Cn)3dn>

_a a, (1 —cy) 2 2¢y, 2 /a 5 5b 3 2¢y,
_§< 1— 3¢, ) (aa,,(l—cn)> (E(ZC"_7C"+6)+E(1_C”) (aan(l—cn)>>

2 c? a,. 5 5b 2 Cn
29 (202 Te,46)+ 201 -
a (1 —3cy)? (2( G = Ten + O+ 6( ‘n) aay

_ c2(2c2 —Tc, +6) 56 (1 —cp)’cn
(1 —3c,)? 3a2a, (2¢2 —Tc, +6) ]

Hence the lemma is proved. [
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Lemma 4. Let 0 <a <2ry and 0<b <4<15(%). Then {a,} and {c,} are increasing and decreasing sequences, respec-

tively. We also have ¢, <1, a, > 1, and aa,d, <1 ¥Yn € N.

Proof. The proof follows by induction.

From
c2(2¢2 —Tcy +6) 50 (1 —cp)’en
Cnt+1 = 2 T3z 2 ’
(1 —3cy,) 3aca, (2c; —Tc, +6)
we get ¢, 1 < ¢y if
c,,(2c% - 7cn2—i— 6) 14 52b (i —cn)len o
(1 —3cy,) 3aca, (2c; —Tc, +6)
or, if
5b (1—cp)en (1 —3cp)?
3ala, (2c2 —Tcy +6) ) ~ cu(2c2 —Te, + 6)
1 —12¢, + 16¢; — 2c,
cn(2c2 —Tcy + 6)
or, if
b <§ (1 — 12¢, + 16¢2 —2¢3)
a’a, 5 (1 —cp)’c?
_ D(cn)
= e

From our assumption
b _ £<4@(%) _ 40(co) _ Q’(Co)_
a’lay a? a? 40(2) C(z)
Hence ¢y <cp. We also get 0<c1 <cp=a/2<0.5=1/1 - (a/2)) <2 and

b, _ 2¢,

aa,d, = aay, =
1—c¢c, 1—c,

Hence
a

2
c <1.

d = =
a0t = T T =
Therefore, a; = aog/(1 — aapdy) > ag = 1. Also as ¢ <0.5, so aad; < 1, this implies ap > aj > 1.

a
2

Let the lemma holds forn =1, 2, ... k.
Now ¢ <cr—1<a/2 <0.5. This gives us aayd; < 1 and hence
a =—>q>--->ap= 1.
k=T aards k 0

Also
AP(5) _49() _ ).

b
2
Ci

b
<5X
alay a2 a2 = 4c?
So ck4+1<cr<a/2 < 1. Hence the lemma is proved foralln e N. [

ey
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Lemma 5. Under the assumptions of Lemma 4, let us define y = c2/c1, then
1 <y* ey VneN. (22)

Hence the sequence {c,} converges to 0. Also Y 2 cp < 00.

Proof. From Lemmas 2-4, we have
c2 =h(cy,ar) <h(ct, 1) <h(co, 1) = h(co, ap) = c1.

So we have ¢y = ycy, where y < 1. Suppose c; <ycr—1. Since g(x, y) increases as a function of x and decreases as
function of y, so we get

c2(2c? —Tex +6) L ck)’ex
(1 = 3¢p)? 3a’ay (2¢} —Tex + 6)

Ck+1 =

= cpg(cr. ax)

<yci8(ck. ar)

<o g(ck—1, ax),

<y*ci_18(ck—1, k1),
2 _ 2k+l

=V =7 co.

n+1 . .
Hence ¢, 1 <)? N co Yn € N. This gives ¢, — 0, as y < 1.
Again hé)(x) >0 as ho(x) increases in [0, rg]. Also as hé)(x) is continuous in [0, rg] and ¢, — O, there exists a
positive integer ng and « € [0, 1), such that

ho(cp)<o<1 VnZ=no.
By using the Mean value theorem, we get
Cnotk+1 = h(Cngtks Ang+k) <h(Cngtk, a0) = ho(Cny+k)
= ho(Cngtk) — ho(0) <h((Cng+k)Cno+k < ACnotk-

Using recurrence relation ¢, 4+« < ok Ccny- This gives,

00 no—1 00 no—1 00
E ch = E cn + E cn < E Cn +F Cny E o' T < 0.
n=0 n=0 n=ng n=0 n=ny

Hence lemma is proved. [
Lemma 6. The sequence {a,} is bounded above, that is there exist a constant K| > 0 such that a, < K1, Yn € N.

Proof. From Eq. (20), we have

n 2ck
an+1=1_[ 1+1_3Ck .

k=0

For 0 < ¢ <0.25 we get

n n
[T +2e0<ann <] +8e). (23)
k=0 k=0
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Taking logarithm of (23), we get

n n

In ]_[(1 +2¢x) < In(any1) <In ]_[(1 + 8¢)
k=0 k=0

This reduces to

n n n
Zln(l +2¢0) < In(apy1) < Z In(1 + 8cx) <8 Z cr<oo. O
k=0 k=0 k=0

Lemma 7. The sequence {d,} is a Cauchy sequence, as it satisfies the condition d, < (8/3a)y*" co. Also Yool o dn < 00.

Proof. From Eq. (19), we have
a4, = b, . 2¢y,

T l—g¢, _aan(l—cn)'

Again as a, > 1, and 0 < ¢,, <rg < 0.25, we get

4 2¢, _ 8cy, 8cp

d, < - = < .
3 aa, 3aa, 3a

Therefore,
o 8 o
Z d, < i Z Cp < 0Q.
n=0 n=0

So the lemma is proved. [J

The theorem given below will establish the convergence of the sequence {x,} and give a priori error bounds for it.
Let us denote r = Y 7 dy, and B(xo, rn) = {x € X : ||x — xo|| <rn} and B(xo, ri) = {x € X : [lx — xo[| <rn}.

Theorem 1. Let F : Q € X — Y be a nonlinear twice Fréchet differentiable operator in an open convex subset 2
of a Banach space X with values in a Banach space Y and BL(Y, X) is the set of bounded linear operators from Y
into X. For Ty = F'(xo)~! € BL(Y, X) defined at some point xo € , assume that the conditions (3), 0 <a <2rg
and 0< b <4®(a/2) hold, where ®(x) is the function defined by Eq. (16). If B(xo, rn) C Q, then starting from xo, the
sequence {x,} defined by method (2) converges to a solution x* of the equation F (x) =0 with x,,, y, and x* belonging
to B(xq, ryy) and x* is the unique solution of (1) in B(xq, 2/(MB) — ry) N Q.

Furthermore, the error bounds on x* depend on the sequence {d,} given by

o
Ix* = xaal < Y din<rn. (24)
k=n-+1

Proof. Let0 < a < 2ry. Now using Lemma 7, it is easy to show that {d, } is Cauchy sequence. This makes the sequence
{x,} a Cauchy sequence.
Also when a = 2ry, b = ®(a/2) = @(rg) = 0. This implies ¢, = cp = a/2, forn >0.

Now
2¢ 2c¢o 2co
Ani1 = ay (1 + . _;Cn) =a, (1 + 1—3CO> =wa, =", where =1+ e > 1.
Again,
2¢n 2¢co 1 do

"= aa, (1 —cp) - aa, (1 — cg) - (1 — ¢p) - o’

hence {d,} is a cauchy sequence.
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Also, aa,d, =ady=2a/(2 —a) < 1. Hence all the conditions on the sequences {a, }, {b,}, {c,} and {d,,} hold true.
Thus, in both cases {d,} is a Cauchy sequence, and hence the sequence {x,} is convergent.

Hence, there exists a x* such that, lim,,_, o x,, = x™*.

Now from Eq. (11), we get
M M 5N

|F G )< - (bn + dn)n® o+ = b+ do)® + - b’
[
=3 d>

Since the sequence {d,} converges to 0, {c,} is bounded and F is continuous, we get

a, o 5b 3
5(2cn —Tep +6) + ﬁ(l —cp)’dy ) n.

1 a 5b
N[ — 13 . 2 g 2 e T 3 _
17 (x )||—nhl%o<n1520[ﬁdn (2(2cn Ten +6) + 15 (1 —cn) dn) n]—O.

Also

lxn+1 — xoll <lxp+1 — Xnll + llxn — Xp—1ll + -+ + llx1 — xoll
n
< Z din<rn,
k=0

From this, we conclude that x,,_lies in B(xo, rn) and similarly one can easily prove that y, lies in B (x0, rn). Now taking
limit as n — oo we get x™ € B(xg, rn).
Again, foreverym>n + 1,

lxm — Xp 1l <Nxm — Xpm—1ll + xm—1 — X2l + -+ + IxXn42 — Xpp1 |l

m—1
< Y dm

k=n-+1

o0
< Z din <rn,
k=n+1

By taking m — oo we get

o0
Ix* = xaall < Y din<rn,
k=n+1

Now for the uniqueness of x*, let y* is another zero of Eq. (1). Then
1
0=FO" = Fah = [ G107 = x) a0
0
To show y* = x™*, we have to show that fol F'(x* + t(y* — x*)) dz is invertible. Now for

1
I ol <Mﬂ/ 6 £ — x*) — xo dr
0

1
‘/0 [F'(x* +1(y" —x™) = F'(x0)]drt

1
<Mﬂf (1= D)llx* = xoll +1lly* — xol dr
0

MB(. 2 1
<—|m+-—-rp)=1,
> "My
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it follows from Banach’s theorem [11], the operator f()l F’(x* +t(y* — x™)) dt is invertible and hence y* = x*. Hence
the theorem is proved. [J

4. Numerical examples

In this section, numerical examples are given for demonstrating the convergence of our third order Newton-like
method based on recurrence relations.

Example 1. Let X=CJO0, 1] be the space of continuous functions on [0, 1] and consider the integral equation F (x) =0,
where

s
s+t

1
F(x)(s)=—1+x(s) + 2x(s) / x(t)dt, 25)
0
with s € [0, 1], x € CJ[0, 1] and 0 < A<2. Integral equations of this kind called Chandrasekhar equations arise in
elasticity or neutron transport problems [12]. The norm is taken as sup-norm.
Now it is easy to find the first derivative of F as

1 1
F'()uls) = us) +/1u(s)/ * () dt —i—/lx(s)/ " uydt, ue@
0 S+ 0o S+t
and the second derivative as
" ! N 1 s
F =1 A Q.
(x)(uv)(s) Au(s)/o . v(t)dr + v(s)/o p u(t)de, ve

The second derivative F” satisfies the Lipschitz condition as,
IF"(x) = F"(M1@v)[| =0lx =y ¥x,y € Q.

Now one can easily compute

1
S
| F(xo0)|l = ‘—1 +xo(S)+ixo(S)/ xo(t) dt
0o S+t
1
<lxo— Ul + 141 max | —— de| xol)?
o<s<1|Jo s+t
<llxo — 1]l + 4] log 2|1 xoll?
and
1 S
|F”(x)|| <2|4] max / ——dt| =2|A|log 2.
o<s<l1|Jg s+t

Also notice that

1 1
s s
I —F'(xo)|= |4 xo(2) dt + Axo(s —dt
I (xo) |l /os+t o(r)dr + 0()/0 T
Loy
<2]A] max —dr| ||x
<2 |0<s<1 st llxoll

<24 log 2]|xo]| (26)



886

PK. Parida, D.K. Gupta / Journal of Computational and Applied Mathematics 206 (2007) 873—-887

Table 1

n a)l b)l C)l dﬂ Zd)l (Zdn) * ;1

0 1 1 7.829572e — 003 1.007891 1.007891 8.929102e — 02
1 1.016036 4.804513e — 002 3.822051e — 004 4.806350e — 002 1.055955 9.354906e — 02
2 1.016813 1.102980e — 004 8.781060e — 007 1.102981e — 004 1.056065 9.355883e — 02
3 1.016815 5.811215e — 010 4.626441e — 012 5.811215e — 010 1.056065 9.355883e — 02
4 1.016815 1.613115e¢ — 020 1.284237¢ — 022 1.613115e — 020 1.056065 9.355883e — 02
5 1.016815 1.242973e — 041 9.895592¢ — 044 1.242973e — 041 1.056065 9.355883e — 02
6 1.016815 7.379973e — 084 5.875364¢ — 086 7.379973e — 084 1.056065 9.355883e — 02
7 1.016815 2.601602¢ — 168 2.071194e — 170 2.601602e — 168 1.056065 9.355883e — 02
8 1.016815 0 0 0 1.056065 9.355883e — 02

and, if 2|A| log 2||xo|| < 1, then by Banach’s theorem [11], we obtain

1
ITol = I F' (x0) "I < . :
1 — 2| 4| log 2]|xo]|
Hence
lxo — 11l + | 4] log 2l xoI?
10 F (x0)|| <

1 —2]2]log 2||xo]|

Now for A = 1/4, and the initial point xo = xo(s) = 1, we obtain

IToll <P =1.17718382, | T'oF (x0)|| <1 = 0.08859191, | F”(x)|| <M = 0.150514997, N = 0.

Hence a = M i = 0.015697052 and b = N > = 0.

As a<2rp=0.19059609 and 0 = b <4P(a/2) =2.210893861, so the hypotheses of Theorem 1 is satisfied. Hence
the recurrence relations for our method is given in Table 1.

From Table 1, we have r = Xd, = 1.056065. Hence a solution of Eq. (25) exists in B(1, 0.09355883) C Q and this
solution is unique in B(1, 11.22148) N Q.

Butin[15], K=M[1+5N /3M?B]=M=0.150514997. Hence h=K f=0.015697052. So t*=((1—~/1 — 2h)/ h)n=
0.089298359 and t** = ((1 + «/1 — 2h)/ h)n = 11.19841477. Hence by the convergence method given in [15], the
solution of Eq. (25) exists in B(1, 0.089298359) C Q, and the unique solution exists in the ball B(1, 11.19841477)NQ2
both of which are inferior to our result.

Example 2. Consider the root of the equation

F(x)=x>—-2x—-5=0 (27)
on [1, 3]. Now for the initial point xo = 2, it is very easy to get

B=IF(x0)"" =01, n=|F(x) ' F(xo)|=0.1, M=18, N=6.

Therefore, a = MpPy = 0.18 <2rp = 0.19059609 and b = Npy*> = 0.006<4P(a/2) = 0.139525178.
Hence the hypotheses of the Theorem 1 holds true. Hence the recurrence relations for our method is given
in Table 2.

Hence from Table 2 we have r = 2d,, =2.702070. So a solution of Eq. (25) exists in B(1,0.2702070)  Q and this
solution is unique in B(1, 0.8409041) N Q.

But by [15], K =M[1+5N /3M?B]=23.55555556. Hence h = K fij=0.235555556. So t*=((1 —+/1 — 2h)/ h)n=
0.115791166 and t** = ((1 + /1 —2h)/h)n = 0.733265437. Hence by the convergence method given in [15], the
solution of Eq. (27) exists in B(1,0.115791166) C @, and the unique solution exists in the ball B(1, 0.733265437) N Q2
both of which are inferior to our result.
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Table 2
n an by Cn dy 2d, (2dn) xn
0 1 1 9.000000e — 002 1.098901 1.098901 1.098901e — 01
1 1.246575 7.328440e — 001 8.221907e — 002 7.984955¢ — 001 1.897397 1.897397e — 01
2 1.518675 4.753985e — 001 6.497783e — 002 5.084355e — 001 2.405832 2.405832¢ — 01
3 1.763823 2.283736e — 001 3.625295¢e — 002 2.369642¢ — 001 2.642796 2.642796e — 01
4 1.907317 5.546990e — 002 9.521882e — 003 5.600315e — 002 2.698800 2.698800e — 01
5 1.944708 3.257958e — 003 5.702198e — 004 3.259817e — 003 2.702059 2.70205% — 01
6 1.946929 1.116472e — 005 1.956323e — 006 1.116474e — 005 2.702070 2.702070e — 01
7 1.946937 1.310515e — 010 2.296342e — 011 1.310515¢ — 010 2.702070 2.702070e — 01
8 1.946937 1.805635e — 020 3.163911e — 021 1.805635e — 020 2.702070 2.702070e — 01
9 1.946937 3.427721e — 040 6.006201e — 041 3.427721e — 040 2.702070 2.702070e — 01
10 1.946937 1.235255e — 079 2.164467¢ — 080 1.235255e — 079 2.702070 2.702070e — 01
11 1.946937 1.604201e — 158 2.810951e — 159 1.604201e — 158 2.702070 2.702070e — 01
12 1.946937 2.705599¢ — 316 4.740867e — 317 2.705599%¢ — 316 2.702070 2.702070e — 01

5. Conclusions

In this paper, recurrence relations are developed for establishing the convergence of a third order Newton-like method
for solving F (x) =0 in Banach spaces. Based on this recurrence relations an existence-uniqueness theorem and a priori
error bounds are established for this method. This approach is simple and efficient in comparison with the usual approach

used for this purpose. Numerical examples are worked out to demonstrate our approach.
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