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1. Introduction 

A Steiner triple system of order n is a pair (Zn, B)  where Zn is the set of 
integers modulo n and B is a collection of triples of Z~ such that every pair of 
elements of Zn is contained in exactly one triple of B. The triple system is said to 
be cyclic if the cyclic group (Zn, + ) is a subgroup of the automorphism group of 
(Zn, B). Steiner triple systems of order n (briefly STS(n)) exist for all n -  1 or 
3 (mod 6) and cyclic STS(n) (briefly CSTS(n)) exist for all n ~ 1 or 3 (mod 6) 
except n = 9 (Peltesohn [8]). A multiplier, a ~ Zn, is a unit in the ring of integers 
modulo n. A multiplier automorphism (isomorphism) of a CSTS(n) is an 
automorphism (isomorphism) of the form f ( x )  - ax (mod n). 

In this note we present constructions for cyclic STS(pn), for primes p-= 1 
(mod 6), which have a number of interesting properties. The first and foremost of 
these is that they have isomorphic mates which are also CSTS(p n) but for which 
there is no multiplier isomorphism. The existence of such systems was first proved 
by N. Brand [1], thereby disproving a long-standing conjecture of Bays- 
Lambossy (cf. [3]). Our construction and proof is simpler and more general than 
Brand's [1], although it is similar in a number of respects. 

Similar constructions give CSTS(p") that have other interesting properties: 
they can be cyclically nested and they contain sub-CSTS(p m) for 1 ~< m ~ n. 

Briefly a CSTS(n) can be cyclically nested if and only if n -- 1 (mod 6) and there 
exists a collection of base blocks (or orbit representatives) such that every 
non-zero difference modulo n occurs exactly once in some base blocks. All 
CSTS(n), n <~ 31, (n - 1 (rood 6)) are known to have a cyclic nesting (Novak [7]). 
Also the standard finite field construction for triple systems will produce a 
cyclically nested CSTS(p) when p is a prime (but not when p is a prime power) 
(for reference see [5, 6, 4]). 
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2. Nested CSTS(p") 

First, the group of units in the ring of integers modulo p" is cyclic and has order 
p, , - l (p  _ 1) = 6t, for p a prime p -- 1 (mod 6). Let tr be the generator of this 
cyclic group of units; then a "2' satisfies 

x a - l = ( x - 1 ) ( x 2 + x  + l ) - O  (modp") ,  

and thus we can conclude that tr ° + a ,2' + a¢ 4' --- 0 (modp n) since ( ~ . 2 t  - -  1 is not a 

zero divisor. 
CSTS(n) can be represented by difference triples or orbit representatives (base 

blocks). The following construction works for either representation. 

Constrnetion 2.1. Let B,,_~ be a collection of triples which represent a 
CSTS(p"-~); let tr be the generator of the cyclic group of units of the integers 
modulo p", where p-= 1 (mod6) is a prime and te has order 6t. Define 

p B , , - I = { { p x ,  pY, p z }  I { x , Y , z } e B , , - 1 } ,  

U = ((0{ i, OL i+2t, Ofl+4'}[i--0, 1 , . . . ,  t - -  1}, 

then, B, = pB, -x  t.J U, is a set of representatives for a CSTS(p"). 

Proof. By assumption on B,_I, if x - y - 0  (modp)  then the pair x, y will occur 
exactly once in one orbit represented by pB,_a. If x - y ~ 0 (modp) ,  then x - y 
is a unit. U contains 3t of the 6t units; moreover, since c~ 3t -= - 1  (modp")  we do 
not have both x and - x  occurring in a triple of U. Note if x = a /  and 
i ~ [0, t - 1] t.J [2t, 3t - 1] t.J [4t, 5t - 1], then x is in some triple of U but - x  = 
tr i+3' is not. 

Since a/(a~ ° + a~ 2t + a~ 4t) --- 0 (modp") ,  then U can be thought of as difference 
triples. Alternately since {a~ °, aft ~, a~ 4t} has differences (a ' 2 ' -  1), (tr 2 ' -  1)~ 2/, 
(~2t_ 1)~4t and a~ 2~- 1 is a multiplier (unit modp") ,  then U can also be 

considered as a set of orbit representatives (base blocks). 

Corollary 2.2. There exists a cyclically nexted CSTS(p") for all n >I 1, p a prime 
p --- 1 (mod 6). 

Proof. When n = 1, B,,-1 = I~. By induction on n, if B,-1 is a collection of orbit 
representatives for a cyclic nesting of a CSTS(p"-I) ,  then so is B,, by the previous 
arguments. [] 

Corollary 2.3. For all primes p - 1 (mod 6) and n >i 1, there exist CSTS(p") will 
cyclic sub-CSTS(pm).  
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3. Isomorphic CSTS(p ~) 

A similar approach can be used to construct isomorphic CSTS(pn), n/>2,  
for which there is no multiplier isomorphism. Brand [2] proves the isomorphism 
must have a particular form. For our purposes we choose a quadratic map 
f ( x ) - p " - S x  2 + x (modp'~). Clearly if x - y  -=0 (modp),  then f ( x ) - f ( y )=- -x  - y  
(modp")  and thus such a map would fix the sub-CSTS(pn-1), pBn-1.  Moreover, 
the inverse map is f--X(y) my__p,,--ly2 (modp").  Finally, the map f (x )  will 
produce an isomorphic CSTS(p n) if and only if f - l ( f ( x )  + 1) - ((p - 2)p ~-1 + 
1)x + 1 _ p ~ - i  (modpn) is an automorphism of the CSTS(pn). To ensure this we 

need to construct a CSTS(p ~) having multiplier automorphisms fl(x)=-mx 
(modp")  for all m - 1 (modpn-1). These multipliers clearly form a multiplicative 
subgroup. If we assume that B,, =pB,,_~ tA U is our collection of orbit repre- 
sentatives of a CSTS(p n) containing a sub-CSTS(pn-1), then any multiplier 
automorphism B(x)= mx (modp ~) of the CSTS(p ~) must also be a multiplier 
automorphism of the sub-CSTS(p~-X). Since m -  1 (modp ~-~) and thus is a 
multiplier automorphism (modp n-I) of the sub-system we need to concentrate on 
the orbits represented by U. 

For a prime p - 7 (mod 12), choose 

V = {{c[ ~2/, ol 2i*2t, [ i--- 0, 1 , . . . ,  t -  1}. 

Since the even powers of o~ form a multiplicative subgroup which includes all 
m = 1 (modp) ,  any such multiplier will be a multiplier automorphism of U. 
Moreover, if a unit x is an even power of o~, then - x  will be an odd power and 
thus B~ = pB~_~ t.J U will again be a set of orbit representatives for a CSTS(p~), 
where B~-I is a set of orbit representatives for a CSTS(p~-I). For p --- 1 (mod 12) 
one must be more careful in choosing U. 

Suppose 6 t = p ' - ~ ( p - 1 ) = 6 k p  n-1 and, again, c~ is the generator for the 
multiplicative group of units (modp~) .  Note o~ p-1 is the generator for the 
subgroup of units {m I m -= 1 (modp)}. Let fl = c~ p-1. Choose 

U= {{~ioffj, ~i~j+2t, ~ioffj+4t } [i = 0 , . . . ,  p ~ - ~ -  1, j=O, 1 , . . . ,  k} (3.1) 

All we need to do is prove that the triples {tr j, tr j+2t, cr j+4t} evaluated modulo p 
will be representative orbits of a CSTS(p). But tr (modp)  must be a generator for 
the multiplicative group of units in Zp and our claim then follows from the proof 
of Construction 2.1. 

Theorem 3.2 (Brand [1]). There exists CSTS(p ~) that are isomorphic but not 
multiplier isomorphic. 

Assume 6t = pn-l(p _ 1) and oc is the generator of the group of units in Zpn. 
We first choose Bn-1, a set of representatives for CSTS (pn-1) for which 
{a~ °, o~ 2t, a~ 4t} are the only multiplier automorphisms (modp~-l) .  Construction 
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2.1 will produce such a collection for each n - 1/> 1. Choose U as in (3.1) above, 
then B,, =pBn-1 U U is a set of representatives for a CSTS(p"). Since every 
multiplier m =-1 (modp n'l) is an automorphism of this system f(x)=p"-lx2 +x 
will be an isomorphism from B,, to another CSTS(p~), B~. Since f(x) fixes the 
orbits in pBn_~, pB~_t will be a form sub-CSTS(p "-~) in B" and thus any 
multiplier isomorphism from B~ to B" must first be a multiplier automorphism 
(modp  "-1) of Bn-1. By choice of B,,_~, the multiplier m must be congruent to 1, 
a m, or tr 4' (modp "-x) but then the multiplier will be a multiplier automorphism 
for B~. 
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