NOTE

A CONSTRUCTION OF CYCLIC STEINER TRIPLE SYSTEMS OF ORDER p^n

K.T. PHELPS

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A.

Received 4 March 1986 Revised 11 December 1986

1. Introduction

A Steiner triple system of order *n* is a pair (Z_n, B) where Z_n is the set of integers modulo *n* and *B* is a collection of triples of Z_n such that every pair of elements of Z_n is contained in exactly one triple of *B*. The triple system is said to be cyclic if the cyclic group $\langle Z_n, + \rangle$ is a subgroup of the automorphism group of (Z_n, B) . Steiner triple systems of order *n* (briefly STS(n)) exist for all $n \equiv 1$ or 3 (mod 6) and cyclic STS(n) (briefly CSTS(n)) exist for all $n \equiv 1$ or 3 (mod 6) except n = 9 (Peltesohn [8]). A multiplier, $a \in Z_n$, is a unit in the ring of integers modulo *n*. A multiplier automorphism (isomorphism) of a CSTS(n) is an automorphism (isomorphism) of the form $f(x) \equiv ax \pmod{n}$.

In this note we present constructions for cyclic $STS(p^n)$, for primes $p \equiv 1 \pmod{6}$, which have a number of interesting properties. The first and foremost of these is that they have isomorphic mates which are also $CSTS(p^n)$ but for which there is no multiplier isomorphism. The existence of such systems was first proved by N. Brand [1], thereby disproving a long-standing conjecture of Bays-Lambossy (cf. [3]). Our construction and proof is simpler and more general than Brand's [1], although it is similar in a number of respects.

Similar constructions give $CSTS(p^n)$ that have other interesting properties: they can be cyclically nested and they contain sub- $CSTS(p^m)$ for $1 \le m \le n$.

Briefly a CSTS(n) can be cyclically nested if and only if $n \equiv 1 \pmod{6}$ and there exists a collection of base blocks (or orbit representatives) such that every non-zero difference modulo n occurs exactly once in some base blocks. All CSTS(n), $n \leq 31$, $(n \equiv 1 \pmod{6})$ are known to have a cyclic nesting (Novak [7]). Also the standard finite field construction for triple systems will produce a cyclically nested CSTS(p) when p is a prime (but not when p is a prime power) (for reference see [5, 6, 4]).

2. Nested $CSTS(p^n)$

First, the group of units in the ring of integers modulo p^n is cyclic and has order $p^{n-1}(p-1) = 6t$, for p a prime $p \equiv 1 \pmod{6}$. Let α be the generator of this cyclic group of units; then α^{2t} satisfies

 $x^{3}-1=(x-1)(x^{2}+x+1)\equiv 0 \pmod{p^{n}},$

and thus we can conclude that $\alpha^0 + \alpha^{2t} + \alpha^{4t} \equiv 0 \pmod{p^n}$ since $\alpha^{2t} - 1$ is not a zero divisor.

CSTS(n) can be represented by difference triples or orbit representatives (base blocks). The following construction works for either representation.

Construction 2.1. Let B_{n-1} be a collection of triples which represent a $CSTS(p^{n-1})$; let α be the generator of the cyclic group of units of the integers modulo p^n , where $p \equiv 1 \pmod{6}$ is a prime and α has order 6t. Define $pB_{n-1} = \{\{px, py, pz\} \mid \{x, y, z\} \in B_{n-1}\},\$

$$U = \{\{\alpha^{i}, \alpha^{i+2t}, \alpha^{i+4t}\} \mid i = 0, 1, \ldots, t-1\},\$$

then, $B_n = pB_{n-1} \cup U$, is a set of representatives for a $CSTS(p^n)$.

Proof. By assumption on B_{n-1} , if $x - y \equiv 0 \pmod{p}$ then the pair x, y will occur exactly once in one orbit represented by pB_{n-1} . If $x - y \not\equiv 0 \pmod{p}$, then x - y is a unit. U contains 3t of the 6t units; moreover, since $\alpha^{3t} \equiv -1 \pmod{p^n}$ we do not have both x and -x occurring in a triple of U. Note if $x = \alpha^i$ and $i \in [0, t-1] \cup [2t, 3t-1] \cup [4t, 5t-1]$, then x is in some triple of U but $-x = \alpha^{i+3t}$ is not.

Since $\alpha^{i}(\alpha^{0} + \alpha^{2t} + \alpha^{4t}) \equiv 0 \pmod{p^{n}}$, then U can be thought of as difference triples. Alternately since $\{\alpha^{0}, \alpha^{2t}, \alpha^{4t}\}$ has differences $(\alpha^{2t} - 1), (\alpha^{2t} - 1)\alpha^{2t}, (\alpha^{2t} - 1)\alpha^{4t}$ and $\alpha^{2t} - 1$ is a multiplier (unit mod p^{n}), then U can also be considered as a set of orbit representatives (base blocks).

Corollary 2.2. There exists a cyclically nexted $CSTS(p^n)$ for all $n \ge 1$, p a prime $p \equiv 1 \pmod{6}$.

Proof. When n = 1, $B_{n-1} = \emptyset$. By induction on *n*, if B_{n-1} is a collection of orbit representatives for a cyclic nesting of a $CSTS(p^{n-1})$, then so is B_n by the previous arguments. \Box

Corollary 2.3. For all primes $p \equiv 1 \pmod{6}$ and $n \ge 1$, there exist $CSTS(p^n)$ will cyclic sub-CSTS (p^m) .

3. Isomorphic $CSTS(p^n)$

A similar approach can be used to construct isomorphic $CSTS(p^n)$, $n \ge 2$, for which there is no multiplier isomorphism. Brand [2] proves the isomorphism must have a particular form. For our purposes we choose a quadratic map $f(x) \equiv p^{n-1}x^2 + x \pmod{p^n}$. Clearly if $x - y \equiv 0 \pmod{p}$, then $f(x) - f(y) \equiv x - y$ $(\mod p^n)$ and thus such a map would fix the sub-CSTS (p^{n-1}) , pB_{n-1} . Moreover, the inverse map is $f^{-1}(y) \equiv y - p^{n-1}y^2 \pmod{p^n}$. Finally, the map f(x) will produce an isomorphic $CSTS(p^n)$ if and only if $f^{-1}(f(x)+1) \equiv ((p-2)p^{n-1}+1)$ 1) $x + 1 - p^{n-1} \pmod{p^n}$ is an automorphism of the CSTS (p^n) . To ensure this we need to construct a $CSTS(p^n)$ having multiplier automorphisms $\beta(x) \equiv mx$ $(\mod p^n)$ for all $m \equiv 1 \pmod{p^{n-1}}$. These multipliers clearly form a multiplicative subgroup. If we assume that $B_n = pB_{n-1} \cup U$ is our collection of orbit representatives of a $CSTS(p^n)$ containing a sub- $CSTS(p^{n-1})$, then any multiplier automorphism $B(x) = mx \pmod{p^n}$ of the $CSTS(p^n)$ must also be a multiplier automorphism of the sub-CSTS (p^{n-1}) . Since $m \equiv 1 \pmod{p^{n-1}}$ and thus is a multiplier automorphism (mod p^{n-1}) of the sub-system we need to concentrate on the orbits represented by U.

For a prime $p \equiv 7 \pmod{12}$, choose

$$U = \{\{\alpha^{2i}, \alpha^{2i+2t}, \alpha^{2i+4t}\} \mid i = 0, 1, \ldots, t-1\}.$$

Since the even powers of α form a multiplicative subgroup which includes all $m \equiv 1 \pmod{p}$, any such multiplier will be a multiplier automorphism of U. Moreover, if a unit x is an even power of α , then -x will be an odd power and thus $B_n = pB_{n-1} \cup U$ will again be a set of orbit representatives for a $\text{CSTS}(p^n)$, where B_{n-1} is a set of orbit representatives for a $\text{CSTS}(p^{n-1})$. For $p \equiv 1 \pmod{12}$ one must be more careful in choosing U.

Suppose $6t = p^{n-1}(p-1) = 6kp^{n-1}$ and, again, α is the generator for the multiplicative group of units $(\mod p^n)$. Note α^{p-1} is the generator for the subgroup of units $\{m \mid m \equiv 1 \pmod{p}\}$. Let $\beta = \alpha^{p-1}$. Choose

$$U = \{\{\beta^{i}\alpha^{j}, \beta^{i}\alpha^{j+2t}, \beta^{i}\alpha^{j+4t}\} \mid i = 0, \dots, p^{n-1} - 1, j = 0, 1, \dots, k\}$$
(3.1)

All we need to do is prove that the triples $\{\alpha^{j}, \alpha^{j+2t}, \alpha^{j+4t}\}$ evaluated modulo p will be representative orbits of a CSTS(p). But $\alpha \pmod{p}$ must be a generator for the multiplicative group of units in Z_p and our claim then follows from the proof of Construction 2.1.

Theorem 3.2 (Brand [1]). There exists $CSTS(p^n)$ that are isomorphic but not multiplier isomorphic.

Assume $6t = p^{n-1}(p-1)$ and α is the generator of the group of units in Z_{p^n} . We first choose B_{n-1} , a set of representatives for CSTS (p^{n-1}) for which $\{\alpha^0, \alpha^{2t}, \alpha^{4t}\}$ are the only multiplier automorphisms (mod p^{n-1}). Construction 2.1 will produce such a collection for each $n-1 \ge 1$. Choose U as in (3.1) above, then $B_n = pB_{n-1} \cup U$ is a set of representatives for a $\text{CSTS}(p^n)$. Since every multiplier $m \equiv 1 \pmod{p^{n-1}}$ is an automorphism of this system $f(x) = p^{n-1}x^2 + x$ will be an isomorphism from B_n to another $\text{CSTS}(p^n)$, B'_n . Since f(x) fixes the orbits in pB_{n-1} , pB_{n-1} will be a form sub- $\text{CSTS}(p^{n-1})$ in B'_n and thus any multiplier isomorphism from B_n to B'_n must first be a multiplier automorphism (mod p^{n-1}) of B_{n-1} . By choice of B_{n-1} , the multiplier m must be congruent to 1, α^{2t} , or $\alpha^{4t} \pmod{p^{n-1}}$ but then the multiplier will be a multiplier automorphism for B_n .

References

- [1] N. Brand, On the Bays-Lambossy theorem, preprint.
- [2] N. Brand, Some combinatorial isomorphism theorems, preprint.
- [3] M.J. Colbourn and R.A. Mathon, On cyclic Steiner 2-designs, Ann. Discrete Math. 7 (1980) 215-251.
- [4] M.J. Colbourn, Algorithmic aspects of combinatorial designs: a survey, Ann. Discrete Math. 26 (1985) 67-136.
- [5] C.J. Colbourn and M.J. Colbourn, Nested triple systems, Ars Combin. 16 (1983) 27-34.
- [6] C.C. Lindner and D. Stinson, The spectrum for conjugate invariant subgroups of perpendicular arrays, Ars Combin. 18 (1984) 51-60.
- [7] J. Novak, A Note on Disjoint Cyclic Steiner Triple Systems, Recent Advances in Graph Theory, Proc. Symp. Prague 1974 (Academia, Praha, 1975) 439-440.
- [8] R. Peltesohn, Eine Losüng der beiden heffterschen differenzen Probleme, Compositio Math. 6 (1939) 251-257.