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Some inequalities for the ratios J,.+,(x)/J,(x) and I,+,(x)/I,(s) of Bessel and 
modified Bessel functions of the first kind and order v > - 1 are given. The 
inequalities are found easily from a different definition of the ratios and improve 
many results obtained recently by several authors. r; 1990 Academic Press. Inc 

1. INTRODUCTION 

The function 

2(v+ 1) J”,,(X) CD,(x)=-.- 
X J,,(x) ’ 

(1.1) 

where J,(x) is the Bessel function of the first kind and order v > - 1 may 
be defined in terms of a scalar product in a separable Hilbert space. In this 
definition of a,(x) a self-adjoint and compact operator S,, is involved. 
Many lower and upper bounds for a,(x) and @,(ix) (i” = - 1) can be 
found easily by several operator techniques and lead obviously to lower 
and upper bounds for the ratios J, + 1 (x)/J,(x) and Iv+ ,(x)/Z,(x). (Zy(x) is 
the modified Bessel function of the first kind.) We use these bounds in this 
article to improve some inequalities, involving Bessel functions which have 
been found recently by several authors. More precisely: For 0 < x < j, i, 
where j, i is the first positive zero of J,(x), the lower bound 

G”(X) > 1 + 
X2 

4(v + l)(v + 2)’ 
V> -1, (1.2) 
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consisting of the first two terms of a lower bound for Q,,(x), improves the 
inequalities 

J”+,(x)> x 
J,(x) qv + 1)’ 0 < x < j, I (1.3) 

O<x<j,,, O<t<l, (1.4) 

which were proved in [ 1 l] only for v > 0. Some other results consist of 
some lower and upper bounds of the ratios J,(xt)/J,(x) t”, 0 < t < 1, which 
are sharper than those given in [9, 11, and 143. 

Also the inequality 

J,+,(x) ,’ x I x3jZ,l 
J,(x) 2(v+l) 8(~+1)~(2+v)(j$--x2)’ 

O<x<j,,,, v> - 1 

(1.5) 
resulting from an upper bound of Q,(x) is more stringent than the 
inequality 

J”+dx)< x 
J,,(x) 2v+l’ 

v>o, o<xg; 

given in [15, p. 6701. 
The inequality 

X2 X4 
-~- 

4(v+ 1) 32(v+ l)‘(v+2) 
O<x<j,,,, v> -1 

derived from a lower bound of a,(x) is sharper than the inequality 

‘I-(v+ l)-‘e?2’4(v+1), x>o, v>o 

(1.6) 

(1.7) 

(1.8) 

given in [ 16, p. 163. Moreover this inequality for v = a - i improves the 
inequality 

O.O65dcr< 1, x>O (1.9) 

given recently in [2]. 



216 IFANTIS AND SIAFARIKAS 

Finally a lower bound for the ratio I,,, r(x)/Z,,(x), which follows from the 
expansion of Q,,(x) in terms of the eigenelements and eigenvalues of S,,, 
leads to the inequality 

~<(~)‘(:~,:++:22)1?l’4(i+“, L’>x>o, v> -1, (1.10) 

which is an improvement of the inequality 

- 0 

Z,,(x) < x y 
Z,,(x) Y ’ 

y>x>o, v> -; (1.11) 

given in [14]. The inequality 

r(v+l)(~)~z”(y,>(l+~~)‘~~~‘4(~+“, Y>O, v> -1, (1.12) 

which follows from (1.10) for x + 0, is more stringent then the inequality 

“I,,(?;)> 
1 

z-(v+ 1) 0 f 1, Y > 0, v> --) 
2 

given in [12, p. 291. 
All these improvements are given in Section 3. In Section 2 we give the 

definition of the function q,(x) in its abstract form, prove Eq. (l.l), and 
present the bounds that we use. 

2. THE FUNCTION (p”(x) 

In the following e,, n = 1, 2, . . . . is used to denote an orthonormal basis 
in an abstract Hilbert space X. By V we mean the shift operator 
(Ven=e n+ r), by V* its adjoint and by L,, the diagonal operator 
Len = (Mv + n))e,, which for v > - 1 is nonnegative. The self-adjoint and 
compact operator 

s, = L;‘*( v+ v*)Ly, v> -1, (2.1) 

has been used in many papers for the study of the zeros of Bessel functions 
J,(x), v > - 1 [4-61. The eigenvalues of S, are precisely the values +2/j,,., 
where j,,, is the n th positive zero of J,(x). The function q,(x) is defined for 
every x # L-j,,, as 

(2.2) 
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where the symbol ( , ) means scalar product in H and (I- (x/2)S,)-’ 
means the inverse of I- (x/2)S,,. This function has been used in [7] for the 
study of the zeros of mixed Bessel functions and it can be expressed as 

cp,ix)=2 f & I<e,,x,(v)>12, x +j,,., (2.3) 
n= 1 I”,, 

where 

x,(v) = a, If Jv+k Jv+k(jv,n)ek, n = 1, 2, . . . (2.4) 
k=l 

are the eigenvectors of S, normalized by Ilx,(v)ll = 1 which correspond to 
the positive eigenvalues 2/j,,. and 

%= 
C 

f (V+k) Jt+k(jv,n) -“* 1 (2.5) 
k=l 

are the normalization factors [6]. 
In particular [7, p. 953, for 0 < x < j, I the function (p”(x) takes the form 

m II~“e,ll’ 2n 
(P”(x)= l+ 1 -+7 9 0~.<<“,], v> -1. (2.6) 

n=l 

It can be proved 18, lo] that the normalization factor ~1, has the simple 
form 

un=Ji Cj,,,,J,+,(j,,,)l-“‘, n = 1, 2, . . . . (2.7) 

Consequently from (2.4) it follows that 

2(v + 1) 
I(el,X.(v)>1*=j2~ n = 1, 2, . . . (2.8) 

v,n 

.!, I( 
e,, x,(v))l’=~ (2.8a) 

and the relationship (1.1) follows from (2.3) and the well-known [ 16, 
p. 4973 Mittag-Leffler expansion 

J,, I(X) ----=2x f- 
1 

J”(X) ]pJ-p xZ.~,,~. 
n=l , 

(2.9) 

We give below an alternative proof of (1.1) and (2.8) from which (2.9) and 
(2.7) follow immediately. In fact we prove the following: 
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THEOREM 2.1. The function q,,(x) given by (2.2) is equal to the function 
G,,(x) given by (1.1). 

Proo& Consider the function 

H,,,.(z) = aJ,(z) -I- zJL(z). (2.10) 

We know from a general result [7, Theorems 3.1 and 4.11 that p is a zero 
of (2.10) if and only if it is a zero of the equation 

z2 
“+@=2(“+1) ___ cp,&), v> -1 

On the other hand, from (2.10) and the well-known [16] relation 

zJh(z) = - zJ,,+ ,(z) + “J,(Z) 

it follows immediately that p is a zero of (2.10) if and only if it satisfies the 
equation 

So the function 

N(z)=~(P”(Z)-z-- Jv, I(Z) 
2(” + 1) J,(z) 

vanishes for all the positive zeros of H,.(z). 
We can choose a sequence elk + a, k + + co, such that the sequence of 

the first positive zeros pk of H,,,.P(z) converges to p #j,,,. So, N(z) vanishes 
for a sequence which converges in its domain of analyticity. This implies 
that N(z) = 0 for every z # +_ j,,., n = 1, 2, . . . . and 

w.(z) J,+,(z) -=- 
2(v+ 1) J,(z) ’ 

v> -1, z Zj,,, 

This proves the theorem. 

Remark 2.1. From (2.11) and (2.3) we obtain 

(2.11) 

(2.12) 

Integration of (2.12) on a closed rectifiable curve which contains only the 
positive zeroj,, for some n gives 

2ni Res Jv+ I(Z) = zxij;,, 
‘<e13 

Xn(“)>12 
J,,(z) i=,v.n v+l 

(2.13) 
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Since 

Jv+ I(Z) Res ___ 
Jv(z) : =j,,. 

J”,,(Z) = lim (z-j,,,).? 
; + ,r.n J&) 

zJ,,+,(~~,~). lim Z--jv,nJJv+l(Jv-n)= -1, 
: -jv.” J,(Z) JXL) 

we obtain from (2.13) the relation (2.8). 
Note that (2.8) together with (2.3) and (1.1) prove the Mittag-Leffler 

expansion (2.9) and (2.8) together with (2.4) prove relation (2.7). 
Using the relation J,,(ix) = j”Z”(x) we find from (1.1) 

xcp,,(ix) Iv+ l(X) -=- 
2(v + 1) Iv(x) ’ 

v> -1, 

where, by (2.9), 

v>-1 

Since 

1 1 

Ste1=(l+v)(2+v)e1+(2+v)J~e3T 

Sic, = 
2 

(1+v)(3+v),/(l+v)oeZ 
1 

+ 
(2+v)(3+v)Jme4’ 

we find from (2.6) 

(P”(X) ’ 1+ 
1 

4(1+~)(2+v)~‘+ 
1 

8(1+~)~(2+~)(3+v)~~ 

(2.14) 

(2.15) 

5v+ 11 
+ 

64( 1 + v)~ (2 + v)~ (3 + v)(4 + v) X6, O<X<j,,,, v> -1 
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which by (1.1) gives the lower bound 

Jv, I(X) X3 X5 ___ ~ 
J,(x) >2(v:1)+8(1+v)‘(2+~)+16(1+v)~(?+v)(3+v) 

(5v+ 11) X7 
+ 

128(1 + v)~ (2 + v)* (3 + v) (4 + v)’ 
O<x<j,,,,, v> - 1. 

(2.16) 

The upper bound 

.2 
J 

4%(x) < -7 O<X<j,.,j, v> - 1 (2.17) 
J I’, I 

can be obtained directly from (2.3), by the inequality jt,,/(jf,,, - x2) < 
.it.,/(jt,l -x2) and the equality (2.8~). 

Another upper bound better than (2.17) can be found as follows: Since 
Svel = [( 1 + v)(2 + v)] -‘I2 e2 and /\S,,jl =2/j,,,, [6] we obtain from (2.6) 

X2 

cpv(x)= l+2*(1 + v)(2 + v) i 

1 + ll&e2/12 ,y2 + llSZe2112 x4 + . . 

22 24 I 

X2 

<1+2*(1 +v)(2+v) ,,,l ,,,1 ( 
1 +Jg+J$+ ... 

> 

which for 0 < x < j,, , gives 

cp”(X) < 1 + x’jt,, 
4( 1 + v)(2 + v)(j$ - 2) 

or 

J,+I@) x X’j:, 
-~2(1+v)+8(1+v)2(2+v)(j~,,-x2)’ J,,(x) 

O<x<j,,, v> -1. 

(2.18) 

This inequality improves the inequality J, + I(x)/J,(x) < x/(2v + l), v > 0, 
O<x,<rc/2 given in [15, p. 6701, with respect to v and for all x such that 

[ 

(v+ l)(v+2) 
I 

112 

x<2’v31 (2v+ l)jz,, +4(v+ l)(v+2) . 

Now we give some inequalities which follow easily from the expansion of 
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q,,(x) in terms of the eigenelements and eigenvalues of S,. So, from (2.3) 
and (2.11) we have 

Applying the inequality j?,,/( j$ + x2) > j$/(jt,, +x2), for j,, >j,,n, 
hence by (2.8~) we find 

Z”,,(X) jz 1 X 
->a.- 

Z,ix) 2(v + 1) jt,, +x2’ 
x > 0, v> -1. (2.19) 

Also 

2(v + 1) z;+($L2x 5 -jt. .I(e1, -%10J)>12 
Y n=l J.,,1-x 

=2x f I(e,,X,(V)))*-2X3 f 
Ice,, xn(v)>12 

n=l ?7=1 A,, + x2 

On using (2.8~) we obtain 

I”+ 1(x) x-2(v+ 1)---z 2x3 f ‘( e,, xnW>12 

I”(X) j%n+x2 ’ 
(2.20) 

n=l 

From (2.20) it follows that 

z”+,(x) x 
Z”(X) <2(v+ 

x > 0, v> -1. (2.21) 

The inequality (2.21) was proved also by 1. Nasell in [13], with a different 
method and improves an inequality given by D. K. Ross [15]. 

Also from (2.20) it follows that 

I,,+ 1(.x) cn 1 x-2(v+ l)--- x2 I”, 1(x) 
Z”(X) 

<x3 1 yj----=-- 
n=lJv,n +x2 2 Z”(X) 

or 

Z”f l(X) 2x 
I,(x)’ 4(v+l)+x2’ 

x > 0, v> -1. (2.22) 
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Many lower bounds for the ratio I,,, I (x)/Z,(x) are given in [13] with a 
different method. Among them the most simple is 

I”, I(X) x 

I,.(x)’ 2(v+ 1)+x’ 
x > 0, V>-1: 

which for 0 <x < 2 is weaker than (2.22). More sophisticated bounds for 
Z,,+,(x)/Z,(x) can be found in [l]. 

3. IMPROVEMENTS 

1. In [11] the inequalities (1.3) and (1.4) have been proved both for 
v>O. Obviously (2.16) is an essential improvement of (1.3). In particular 
we obtain from (2.16) the inequality 

J”,,(X) x X3 

--‘2(~+1)+8(v+l)~(v+2)’ J,(x) 

Integration of the well-known recurrence relation [ 161 

J;,(x) v Jv, I(X) -=--~ 
J,,(x) x J,(x) 

between xt and X, 0 < t < 1, gives 

(3.1) 

(3.2) 

(3.3) 

Inequality (1.4) follows from (3.3), (1.3) and holds not only for v > 0 but 
for v> - 1. 

2. Since v < j,, , , for v > 0 we can take from (3.1) for x = v and from 
(3.3) that 

J,(vt) v2( 1 - t2) v”( 1 - t4) 
J,(v)~“~~~ 4(v + 1) + 32(1+ v)’ (2 + v) 

v>o, o<t<1 (3.4) 

which is sharper than the inequality 

$$$>exp{1;4):;:;)). v>O, O<t< 1 

given in [9, 11, 141. 
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3. Let pv,+ be the first positive zero of the mixed Bessel function 
aJ,(x) + xJ:(x), a e R, v > - 1. Since py, r,+ < j, I for v > max{ -a, - 1) [7] 
we can take from (3.1) for x=~,,r,~ and from (3.3) that 

J”(P”, 1,a t) J”h, 1.J t” ’ exp d,,,,u - t2) + d,l,,U - t4) 
4(v+ 1) 32(v+ 1)2 (v+2) 

o<t<1, v>max{-a, -1). (3.5) 

In particular for a = 0, where py, 1,0 = j:,, is the first positive zero of J:(x), 
we have 

J”Kl t) 
J”(j~.l)t”‘eXP 

j’:,(l - t4) 
32(v+ l)* (v+2) ’ 

o<t<1, v>o, 

(3.6) 
which is more stringent than the inequality 

J”(j:,l t) 
J”(L,,)f” 

given in [ll]. 

4. From (3.3) and (2.18), after some calculations we get 

JAxt) < (i;i~~~:‘)l:,,i’“‘““““+” 

J”(x) t” 
x2( 1 - t2) jZ,,( 1 - t2)x2 
4(v+l) -16(~+1)~(v+2) 

0 < x < j,. 1, o<t<1, v> -1. (3.8) 

Replacing x by v in (3.8) we find 

(3.9) 

Numerical calculations indicate that this inequality is more stringent than 
the inequality 



224 IFANTIS AND SIAFARIKAS 

given in [9]. Note again that numerical evidence indicates that (3.10) is 
sharper than the inequality 

$$<exp{v(1 -t)>, v>o, o<t<1, (3.11) 

given in [14]. 
For example for v = 4, t = $ we have respectively by (3.9), (3.10), and 

(3.11) the upper bounds, 1.0330146, 1.0792831, and 1.2840252. 

5. Since 

J,(x)= f 
( - I )” (x/2)” + 2n 

n=J(v+l)T(v+n+l)T 

we find from (3.3) for t + 0 that 

J,,(x)= x” 11 
“J,..lWdw 

2’r(v+I)exp - ” J,,(o) I 
(3.12) 

and using (2.18) we obtain 

xexp -x2 { ( 4(v+ l)(v+2)-j;,r 
16(v+ 1)2(v+2) ’ 

O<X<j,~,, v> - 1. 

Since v < j,,, r the above inequality leads to 

’ 
v > 0. (3.13) 

Numerical calculations show that the bound (3.13) is sharper in the 
interval (0, 5) than the bound 

J,(v) 2 m 
22i331/6n(v + ao)‘/3’ 

u. = 0.0943498 (3.14) 

given in [3]. 
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Also, from (3.12) and the inequality (3.1) for x E (0, jY,i) we obtain the 
upper bound 

X4 

4(v+ 1) 32(v+ l)‘(v+2) 

O<x<j,,J, v> -1, (3.15) 

which is more stringent than the upper bound 

J”(X) < xy 
2”T(v + 1) exp{--&I. x>O, ~30 

given in [16, p. 163. 
For v = c1- 4, in (3.15) we obtain the inequality 

cc> -i, 0-cx-c jr-,,2,, (3.16) 

It can be readily proved that the inequality (3.16) is more stringent than 
the inequality 

O.O65<a< 1, x>O 

given recently by A. K. Common in [2]. 
Also numerical evidence shows that the upper bound which follows from 

(3.15) for x = v is better than the upper bound 

J,,(v) < a, 
221331bn . v1/3’ v>o 

given in [ 16, p. 2591, in the interval (0,4). 

6. In Ref. [14] among others it was proved that 

Z”(X) x ” 
r,(v)< Y ’ 0 

y>x>o, v> -f, (3.17) 

which improves an inequality given in [ 151. Integration of the well-known 
recurrence relation [16], p. 793 

I:(x) v + I”, I(X) 
I,(x)=; Z,,(x) ’ 
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between x and y gives 

(3.18) 

From (3.18) and the inequality (2.19) it follows 

or 

$$(;J (pJ’i4~u+‘~, y>x>o, v> - 1. (3.19) 

This inequality is an improvement of (3.17) not only with respect to the 
bound but also with respect to the validity of v. Finally from (3.19) for 
x -+ 0, we obtain the inequality 

~(~+l)(;)“Z,(y)>(l+~)i~“‘~(~+‘), y>O, v> -1 (3.20) 

which is more stringent than the inequality 

0 ; 
y 
Z,,(y)> 1, 0, 

1 
T(v+ 1) .v > v> -- 

2 

given by Y. L. Luke in [12, p. 291. 
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