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Forest inventory and monitoring programs are needed to provide timely, spatially complete (i.e. mapped), and
verifiable information to support forest management, policy formulation, and reporting obligations. Satellite
images, in particular data from the Landsat Thematic Mapper and Enhanced Thematic Mapper (TM/ETM+)
sensors, are often integrated with field plots from forest inventory programs, leveraging the complete spatial
coverage of imagery with detailed ecological information from a sample of plots to spatially model forest
conditions and resources. However, in remote and unmanaged areas such as Canada's northern forests, financial
and logistic constraints can severely limit the availability of inventory plot data. Additionally, Landsat spectral
information has known limitations for characterizing vertical vegetation structure and biomass; while clouds,
snow, and short growing seasons can limit development of large area image mosaics that are spectrally and
phenologically consistent across space and time. In this study we predict and map forest structure and
aboveground biomass over 37 million ha of forestland in Saskatchewan, Canada. We utilize lidar
plots—observations of forest structure collected from airborne discrete-return lidar transects acquired in
2010—as a surrogate for traditional field and photo plots.Mapped explanatory data included Tasseled Cap indices
and multi-temporal change metrics derived from Landsat TM/ETM+ pixel-based image composites. Maps of
forest structure and total aboveground biomass were created using a Random Forest (RF) implementation of
Nearest Neighbor (NN) imputation. The imputation model had moderate to high plot-level accuracy across all
forest attributes (R2 values of 0.42–0.69), as well as reasonable attribute predictions and error estimates (for
example, canopy cover above 2 m on validation plots averaged 35.77%, with an RMSE of 13.45%, while
unsystematic and systematic agreement coefficients (ACuns and ACsys) had values of 0.63 and 0.97 respectively).
Additionally, forest attributes displayed consistent trends in relation to the time since andmagnitude ofwildfires,
indicating model predictions captured the dominant ecological patterns and processes in these forests.
Acknowledging methodological and conceptual challenges based upon the use of lidar plots from transects,
this study demonstrates that using lidar plots and pixel compositing in imputation mapping can provide forest
inventory and monitoring information for regions lacking ongoing or up-to-date field data collection programs.
Crown Copyright © 2016 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Forests cover approximately 31% of global land surface area (FAO,
2010), providing critical ecosystem services such as wood products,
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wildlife habitat, biodiversity, and regulation of the earth's biogeochem-
ical cycles (Daily, 1997; Millennium Ecosystem Assessment, 2005). In
Canada, forests cover over 400 million ha, representing more than 53%
of Canada's land area and accounting for approximately 10% of global
forest cover (Natural Resources Canada, 2014). Canada's forests make
significant contributions to global bio-geochemical cycles and provide
a wide array of other ecosystem services (Natural Resources Canada,
2014). Sustainablemanagement and conservation of forests tomaintain
these services requires consideration of a wide array of ecological,
economic, and societal values. To inform these needs, comprehensive
inventory and monitoring systems are required to provide timely,
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spatially complete (i.e. mapped), and verifiable information on forest
structure (i.e. canopy cover, stand height, and stem volume), biomass,
and carbon pools.

Inventory andmonitoring of forest conditions (i.e. structure, compo-
sition, biomass, and carbon) are often conducted by National Forest In-
ventory programs that rely upon plot-based field sampling (Tomppo
et al., 2010). Measurements from field inventory plots include highly
detailed information about forest vegetation composition and structure,
fromwhich sample-based estimates of forest conditions can be calculat-
ed. Information from inventory plots and other long-termplot networks
can be used to develop and calibrate growth and yield equations (Smith,
Bell, Herman, & See, 1984; Lessard, McRoberts, & Holdaway, 2001;
Lacerte, Larocque, Woods, Parton, & Penner, 2006), and facilitate the
calibration and validation of remotely sensed estimates of forest inven-
tory attributes (Smith, 2002; Wulder, Kurz, & Gillis, 2004). The re-
measurement of permanent sample plots in a forest inventory cycle
can also provide critical information for change monitoring (Poso,
2006; Woodbury, Smith, & Heath, 2007; Herold et al., 2011; Moeur
et al., 2011). Despite their widespread use, lack of spatial coverage and
lengthy re-measurement intervals can limit the effectiveness of field
plots in quantifying forest change, especially in remote and/or unman-
aged forests that often have greatly reduced or non-existentfield inven-
tory data (Wulder et al., 2004). To accommodate the difficulty and
expense in collecting ground plots, photo plots are often used as a sub-
stitute forfield plots, aswell as for stratification purposes inmulti-phase
plot-based inventory programs (Bechtold & Patterson, 2005; Gillis,
Omule, & Brierley, 2005). Photo plots provide an opportunity for imple-
mentation of a sample-based inventory upon similar statistical under-
pinnings as plot-based programs. Large area representation is
possible with photo plots (Nielsen, Aldred, & MacLeod, 1979;
Magnussen & Russo, 2012); however complete spatial coverage is
lacking. Furthermore, establishing and measuring photo plots typi-
cally requires purpose collected imagery, which in combination
with expert interpretation and the need for some level of supporting
field plot data, can substantially increase costs in remote and unman-
aged forests.

As a complementary approach to field and photo-based inventories,
satellite imagery can provide spatially complete information about for-
ests across large areas. Regional and global maps of forest cover and
change over time have long been derived from multispectral satellite
imagery (Woodcock et al., 1994; Cohen, Maiersperger, Spies, & Oetter,
2001; Hansen et al., 2003, 2013. Hermosilla, Wulder, White, Coops, &
Hobart, 2015a). In particular, Landsat TM/ETM+ imagery is widely
used for forest mapping because of its free and open data policy, global
coverage, long temporal record, large scene-sizes, and spectral and spa-
tial resolutions compatible with characterizing vegetation conditions
and dynamics (Cohen & Goward, 2004; Woodcock et al., 2008;
Wulder, Masek, Cohen, Loveland, & Woodcock, 2012a; Kennedy et al.,
2014). Regional and national forest inventory programs increasingly in-
tegrate satellite imagery with inventory plots, leveraging the detailed
forest conditions provided by sampled field or photo plots with com-
plete spatial coverage provided by satellite imagery to generate spatial
predictions (e.g. maps) of forest conditions (Ohmann & Gregory,
2002; Tomppo et al., 2008; Wilson, Woodall, & Griffith, 2013;
Beaudoin et al., 2014). As one possible approach, nearest neighbor
(NN) imputation methods are widely used in plot/imagery integration.
Imputation methods fill in observations that are missing for some re-
cords (Y-variables), using related variables that are available for all re-
cords (X-variables). In forest mapping applications, Y-variables are
usuallymeasures of forest composition or structure derived froma sam-
ple of field or photo plots, while mapped X-variables can includemulti-
spectral satellite imagery and other spatially complete datasets (i.e.
climate, topography). Regression approaches predict new Y-variables
when they are missing, but can distort marginal distributions and co-
variation between Y-variables. In contrast, imputation is a method for
filling in missing data by substituting values from donor observations
with the underlying assumption that two locations with similar values
of X-variables should be similar with respect to Y-variables. A major
strength of imputation approaches is these donor-based methods are
multivariate, non-parametric, and distribution-free (Eskelson et al.,
2009).

Common across large scale imputation mapping projects is the use
of satellite imagery as explanatory variables (X-variables). The recent
availability of cost-free Landsat images in a consistent, analysis-ready,
and easy-to-use format has facilitated a conceptual shift in how Landsat
imagery is used in ecosystem inventory, mapping, monitoring (Wulder
et al., 2012a; Kennedy et al., 2014). Advances in pixel-based image
composting and change detection using the Landsat time series (LTS)
can be especially important for improving the accuracy of forest maps
and partially overcoming passive optical imagery limitations. Pixel-
based image compositing methods are applied to the Landsat archive
to generate cloud-free, radiometrically and phenologically consistent
image composites that are spatially contiguous over large areas (Roy
et al., 2010; Hansen & Loveland, 2012; Griffiths, van der Linden,
Kuemmerle, & Hostert, 2013; White et al., 2014). LTS change detection
methods provide pixel-level characterization of forest disturbance,
recovery, and other trends (Masek et al., 2008; Huang et al., 2010;
Kennedy, Yang, & Cohen, 2010; Hermosilla et al., 2015a). Pixel-based
image composites are invaluable for image/plot integration when min-
imization of year-to-year spectral variability and seamless multi-scene
image mosaics are needed to relate to plot data collected across large
spatial extents or multiple years (Ohmann et al., 2012). By quantifying
disturbance, recovery, and trends, LTS change metrics can improve
and partially overcome Landsat limitations in predicting forest vege-
tation structure (Lu, 2006), because they characterize temporal
changes associated with forest processes of mortality, succession,
and growth (Pflugmacher, Cohen, & Kennedy, 2012; Zald et al.,
2014), and facilitate predictions of forest biomass dynamics over
time (Powell et al., 2010; Main-Knorn et al., 2013; Pflugmacher,
Cohen, Kennedy, & Yang, 2014).

A more practical approach for large scale inventory in remote
areas may be to improve maps of forest attributes using remotely
sensed information on vegetation structure. Airborne light detection
and ranging (lidar) can provide detailed three-dimensional structure
of forest canopies, and has been widely used to characterize forest
cover and structure (see reviews by Dubayah & Drake, 2000;
Lefsky, Cohen, Parker, & Harding, 2002; Reutebuch, Andersen, &
McGaughey, 2005), been integrated with plot-based samples of for-
est conditions to accurately map forest structure (Hudak, Crookston,
Evans, Hall, & Falkowski, 2008; Falkowski et al., 2010; Zald et al.,
2014), and used to update forest inventory data (Hilker, Wulder, &
Coops, 2008). Declining costs have made lidar acquisitions possible
for increasingly large areas; yet complete, single-year wall-to-wall
lidar coverage for large areas is still costly and logistically prohibitive
for many regional and national forest inventory programs. As a re-
sult, the use of lidar in mapping forest conditions is often constrained
to sub regional extents (Hudak et al., 2008; Falkowski et al., 2010;
Zald et al., 2014), or as a component of multi-phase sampling proce-
dures in larger landscapes (Andersen, Strunk, Temesgen, Atwood, &
Winterberger, 2012; Strunk, Temesgen, Andersen, & Packalen,
2014). Alternatively, sample based “lidar plots” may provide de-
tailed, spatially discrete information about vegetation structure,
similar to field plots in areas without sufficient field inventory data
(Wulder et al., 2012b).

In this paper, we build upon the potential synergies of the Landsat
times series and lidar observations to predictively map forest structure
(i.e. canopy cover, stand height, basal area, etc.) and aboveground bio-
mass, bringing together national lidar transect information and wall-
to-wall surface reflectance composites developed from LTS imagery
within the context of Canada's forest inventory and monitoring
needs. Canada's National Forest Inventory (NFI) is a sample-based
inventory designed to support many inventory and monitoring
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needs (Gillis et al., 2005). Extending inventory information to pro-
vide spatially explicit and complete information would allow for
more accurate assessments, yet financial and logistical constraints
limit the number of field and photo plots, particularly in northern
forests (Wulder et al., 2004; Falkowski, Wulder, White, & Gillis,
2009). For example, establishing and measuring field inventory
plots may be prohibitively expensive and logistically difficult in re-
mote, unmanaged, forests that often lack road access. For unman-
aged forest areas, photo plots will typically require purpose
collected imagery that are outside of regular forest inventory re-
sponsibilities. The collection of aerial photography over remote re-
gions, coupled with needs for expert delineation and interpretation
can lead to substantial costs. Our primary objective was to demon-
strate the integration of lidar plot data and image composites to pre-
dictively map forest structure and aboveground biomass in Canada's
forests, using the Province of Saskatchewan as an example. We used
detailed lidar plots— sampled observations of forest structure col-
lected from lidar transects—as a surrogate for traditional field and
photo plots (Wulder et al., 2012b). We then relate forest conditions
from lidar plots to spectral conditions and multi-temporal change
metrics from pixel-based image composites recently developed
from Landsat TM/ETM+ imagery for Saskatchewan (White et al.,
2014; Hermosilla et al., 2015a), and use nearest neighbor imputation
to generate wall-to-wall maps of forest structure and aboveground
biomass.
Fig. 1. Study area of Saskatchewan depicting dominant land cover types, ecozones, and lidar tran
Forest cover comes from a generalization of Landsat-derived land cover data from the Earth Obs
available at http://tree.pfc.forestry.ca/. Lidar transect names are associated with national lidar d
2. Methods

2.1. Study area

The study area spans 37,881,800 ha of forest and represents 58% of
the total area of Saskatchewan (Fig. 1). The study area can be divided
into the Taiga Shield, Boreal Shield, Boreal Plains, and Prairies ecozones
(Ecological Stratification Working Group, 1996); with the latter being
largely unforested. Vegetation in the northern areas is composed pri-
marily of black spruce (Picea mariana) and jack pine (Pinus banksiana),
while forests to the south are characterized by quaking aspen (Populus
tremuloides), white spruce (Picea glauca), and eastern larch (Larix
laricina). Fire is the primary natural disturbance agent (Kurz & Apps,
1999; Bond-Lamberty, Peckham, Ahl, & Gower, 2007), and in Saskatch-
ewan follows a latitudinal gradient with a higher percentage of annual
area burned in the largely unmanaged northern forests (Stocks et al.,
2002). In the southern portions of the study area, fires are smaller and
less frequent in part due to suppression efforts, while timber harvesting
is ongoing in these managed areas (Wulder et al., 2004).

2.2. Lidar data and lidar plot sampling

Lidar data for Saskatchewan was collected in the summer of 2010
along three survey transects with a total length of approximately
1560 km (Fig. 1). These transects are part of a larger national lidar
sects flown in2010. Areas depicted as forest (green) also includewetlands and shrublands.
ervation for Sustainable Development of Forestsmapdescribed inWulder et al. (2008) and
ata acquisition (Wulder et al., 2012b).

http://tree.pfc.forestry.ca/
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data acquisition of 34 survey transects ofmore than 25,000 km (Wulder
et al., 2012b). Due to the remoteness of Canada's northern forests, sur-
vey flights were made between airports with suitable runways, fuel
availability, and maintenance facilities. Discrete return lidar data was
collected by fixed wing aircraft equipped with an Optech ALTM 3100
laser scanner. Desired survey specifications included a flying height of
1200 m above ground level, 70 kHz pulse rate, scan angle of ±15°
from nadir, and a nominal pulse density of 2.8 returns per m2. A variety
of conditions (adverse weather, extreme terrain, smoke from wildfires,
and restricted airspace) required deviations from desired survey speci-
fications (see Wulder et al., 2012b for details).

Lidar survey plots were created by overlaying a 25 × 25 m grid over
the lidar transect swaths (~800 m wide), generating over 1.2 million
plots, of which 879,482 were forested based on the Landsat-derived
land cover data from the Earth Observation for Sustainable Develop-
ment of Forests map (Wulder et al., 2008, available online at http://
tree.pfc.forestry.ca/). The 25 m grid for lidar plots was chosen to con-
form to best practices in application of lidar in support of forest inv-
entory (White et al., 2013). Gridded vegetation metrics (Table 1)
characterizing vegetation height, cover, and vertical distribution were
calculated for each grid cell from classified lidar point cloud files using
the publicly available software FUSION (McGaughey, 2013). In addition
to these gridded metrics, additional forest structure variables and total
aboveground biomass were predicted for each 25 m cell (Table 1).
These predictions were calculated by applying existing and published
regression models developed between lidar metrics, forest structure,
and aboveground biomass on 201 plots located across Quebec, Ontario,
and the Northwest Territories (Wulder et al., 2012b). Application of
these regression models resulted in variable predictions, but no error
terms or uncertainty in the regression models associated with each
prediction.

The 25 m lidar survey plots were sub-sampled to develop training
and validation plots for model development, imputation mapping, and
accuracy assessment. Sampling occurred as amulti-step process tomin-
imize fine-scale spatial autocorrelation, and avoid potential error and
bias associated with higher scan angles at transect edges, small plot
sizes, forest edge effects, and mixed structural conditions. A 250 m
hexagon lattice was overlain on the lidar transects, and the central
25 m cell within each hexagon was selected as a plot center (Electronic
Supplemental Fig. S1). Plot centers were then excluded if they were
within 100mof a lidar transect edge. Lidar plots were then summarized
using a 3 × 3 window of 25 m cells (0.5625 ha.), because simulations
and empirical research indicate relationships between lidar, field
plots, and Landsat imagery declinewhen plots are smaller than 25m ra-
dius (Frazer, Magnussen, Wulder, & Niemann, 2011; Zald et al., 2014).
Lidar plots were excluded if they contained both disturbed and undis-
turbed conditions or were within 75 m of a disturbance edge, as deter-
mined from the 1984–2012 disturbance history for Saskatchewan
(Hermosilla, Wulder, White, Coops, & Hobart, 2015b). Lastly, hetero-
geneous plots with multiple forest conditions were excluded if the
Table 1
Response variables directly measured or derived from lidar.

Source Variable Desc

Directly measured from lidar elev_mean Mea
elev_sd Stan
elev_cv Coef
elev_p95 95th
cover_2m Perc
cover_mean Perc

Derived from lidar lorey_height Lore
basal_area Basa
stem_volume Gros
total_biomass Tota

Note: Derived lidar attributes calculated from equations described byWulder et al. (2012b) tha
stem volume were calculated for trees at 1.3 m above ground level. Total aboveground biomas
coefficient of variation of vegetation height within plots was greater
than 50%. These plots were removed because for heterogeneous plots,
explanatory variables are an average of values representing often very
different forest attributes, resulting in nearest neighbor predictions
closer to the central tendency of the overall sample, over predicting
for lowvalues and under predicting for high values. These steps resulted
in 4340 lidar plots, of which 75% were randomly sampled for use in
model training, and the remaining 25% reserved for model validation.
Themean, range, and standard deviation of all lidarmetrics and derived
structural attributes are presented in Electronic Supplemental Table S1.
Summary statistics and frequency distributions were compared be-
tween all 879,482 25 m forested cells within the lidar transects and
the 4340 lidar plots to ensure sampled lidar plots encompassed the
full range of forest structural variability present in the original lidar
transects (Electronic Supplemental Table S1, Electronic Supplemental
Figs. S2–S3).

2.3. Mapped predictor variables and plot-level variable extraction

The primary predictor variables were spectral indices and change
metrics derived from Landsat TM/ETM+ imagery, aswell as topograph-
ic variables (Table 2). Cloud-free, radiometrically and phenologically
consistent, and spatially contiguous annual best available pixel (BAP)
image composites (White et al., 2014;Hermosilla et al., 2015a) provided
surface reflectance data across the province. The forestland in Sas-
katchewan was represented by 50 scenes (path/rows) of the Landsat
Worldwide Referencing System-2 (WRS-2). Candidate images from
1984 to 2012 were identified and downloaded from the USGS
Landsat archive as Level-1 Terrain Corrected (L1T) products if they
were acquired ±30 days of August 1 (Julian day 213) and had less
than 70% cloud cover. L1T images were pre-processed to remove
clouds, cloud shadows, clear land, and water using Fmask version
2.1 (Zhu & Woodcock, 2012). Surface reflectance and opacity values
were generated using LEDAPS 1.3.0 (Schmidt, Jenkerson, Masek,
Vermote, & Gao, 2013). Each pixel in every candidate image was
given a score based on the 1) sensor type, 2) day of year, 3) distance
to cloud or cloud shadow, and 4) opacity. The scoring system origi-
nally used by White et al. (2014) was modified by downgrading the
sensor score for Landsat 7 ETM+ SLC-off images (from 0.5 to
−0.7), because geometric fidelity of the Landsat 7 instrument result-
ed in persistent gaps in the BAP composite if SLC-off data was used in
the same area for consecutive years (Hermosilla et al., 2015a). Pixel
scores were summed for all L1T candidate images to determine the
image with the maximum score at each pixel, BAPs were identified
and assigned, and annual BAP composites generated for 1984 to
2012.

High specificity in user-defined rules can result in data gaps in
BAP composites (White et al., 2014). To fill these gaps in a manner
that does not confound detection and quantification of changes over
time, we used proxy BAP image composites (Hermosilla et al., 2015a)
ription Units

n vegetation height m
dard deviation of vegetation height m
ficient of variation of vegetation height %
percentile of vegetation height m
entage of first returns above 2 m %
entage of first returns above mean vegetation height %
y's tree height m
l area m2 ha−1

s stem volume m3 ha−1

l aboveground biomass kg−1 ha−1

t describe relationships between NFI field plot data and lidar metrics. Basal area and gross
s includes estimates of foliage, branches, crown, bark, wood, and stem biomass.

http://tree.pfc.forestry.ca
http://tree.pfc.forestry.ca


Table 2
Mapped predictor variables from Landsat spectral indices, change metrics, and topography.

Type Variable Description

Spectral indices TCB Tasseled cap brightness
TCG Tasseled cap greenness
TCW Tasseled cap wetness
TCA Tasseled cap angle, following Powell, Cohen, Yang, Pierce, and Alberti (2008)
TCD Tasseled cap distance, following Duane et al. (2010)

Change metrics Prechange magnitude variation Difference in normalized burn ration (NBR) values between breakpoints B and A
Prechange persistence Number of years between breakpoints B and A
Prechange evolution Ratio of prechange magnitude variation to prechange persistence
Years since greatest change Year in which great change breakpoint occurs, subtracted from imputation map year (2010)
Change persistence Number of years between breakpoints B and C
Change magnitude variation Difference in NBR values between breakpoints B and C
Change rate Ratio of change magnitude variation to change persistence
Postchange magnitude variation Difference in NBR values between breakpoints D and C
Postchange persistence Number of years between breakpoints D and C
Postchange evolution Ratio of postchange magnitude variation to postchange persistence

Topography Elevation Elevation in meters
Slope Slope in degrees
TSRI Topographic solar radiation index, following Roberts and Cooper (1989)
TWI Topogrpahic wetness index, following Beven and Kirkby (1979)

Note: See Electronic Supplemental Fig. S4 for visual depiction of breakpoints used to generate change metrics.
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developed in conjunctionwithmulti-temporal changemetrics. Initially,
outliers from the temporal trajectories for each pixel through the time
series were removed using the filtering method described by Kennedy
et al. (2010). Then, changes were detected using the Normalized Burn
Ratio (NBR, Key & Benson, 2006) as the spectral index, and a variation
of the bottom-up breakpoint detection algorithm (Keogh, Chu, Hart, &
Pazzani, 2001; Hermosilla et al., 2015a), which divided the time series
into temporal trends. Following the generation of breakpoints, a contex-
tual analysis was conducted to improve the consistency and spatial ho-
mogeneity of change events, while change events smaller than 0.5 ha
were removed. Breakpoints and trends were used to derive metrics
that characterize the year, temporal persistence, and spectral magni-
tude of disturbances (as the difference in NBR values between
breakpoints), as well as pre- and post-change conditions (Table 2, Elec-
tronic Supplemental Fig. S4). Finally, data gaps were filled with proxy
spectral values computed using a piecewise linear interpolation guided
by the temporal trends, resulting in seamless proxy BAP composites.
From the proxy BAP composites for 2010,we calculated Tasseled Cap in-
dices of brightness (TCB), greenness (TCG), andwetness (TCW) (Crist &
Cicone, 1984; Kauth & Thomas, 1976). We also calculated Tasseled Cap
angle (TCA) as described by Powell et al. (2008) where TCA=
arctan(TCG/TCB), and Tasseled Cap distance (TCD) as described by

Duane et al. (2010), where TCD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TCG2 þ TCB2

p
. TCA describes the

gradient of percent vegetation cover, whereas TCD is associated with
vegetation composition and structure.

Topographic variables used as predictors included elevation,
slope, topographic wetness index (TWI), and topographic solar radi-
ation index (TSRI). The digital elevation model comes from the Cana-
dian Digital Elevation Data (CDED, Natural Resources Canada, 1995).
The CDED is based on the National Topographic Database (NTDB)
digital files with scales ranging from 1:50,000 to 1:250,000. CDED
grid spacing is based on geographic coordinates at a maximum and
minimum resolution of 0.75 and 3 arc sec for the 1:50,000 scale,
and 3 and 12 arc sec for the 1:250,000 scale respectively, depending
on latitude. Slope (percent), TWI, and TSRI were calculated from the
CDED. The TWI is a model of potential surface moisture, determined
by topographic position as described by Beven and Kirkby (1979),
where TWI= ln(specific catchment area/ tan (slope in radians)).
TSRI is a transformed measure of aspect, calculated as described by
Roberts and Cooper (1989), where TSRI=1- cos((pi/180)(aspect -
30))/2. TSRI values range from 0 to 1, with a value of 0 indicating
cool NE slopes, and 1 indicating warm SW slopes. Elevation, slope,
TWI, and TSRI were reprojected and resampled to match the
projection and finer 30 m resolution of Landsat pixel composites
and change metrics. Mean values for all predictor variables (spectral
indices, change metrics, and topographic variables) were extracted
for each lidar plot using weightedmean values to account for the dif-
ferent sizes of LiDAR plots and Landsat pixels (Electronic Supple-
mental Fig. S1).

2.4. Random forest model and imputation mapping

Sampled response variables of forest structure were related to
mapped predictor variables of spectral conditions, disturbance history,
and topography using the random forest machine learning algorithm
(RF), and predictions then were mapped across the study area using
nearest neighbor (NN) imputation. RF builds on the functionality of sin-
gle classification trees (or regression trees for continuous predictions)
by extracting a single prediction from an ensemble of tree models (in
this casewe used 500 trees as a compromise between adequate number
of trees while minimizing excessive computational time required for
the large number of pixels to be mapped). Each individual classification
treewithin a RFmodel is built froma randomsubset of observations and
explanatory variables (Breiman, 2001). There are many statistical
methods for relating response and predictor variables in the context of
multi-variate imputation mapping, including canonical correlation
analysis (Moeur & Stage, 1995), canonical correspondence analysis
(Ohmann & Gregory, 2002), and ensemble machine learning methods
such as RF (Hudak et al., 2008; Henderson, Ohmann, Gregory, Roberts,
& Zald, 2014). One advantage of using RF is its efficiency for high-
dimensional data (Prasad, Iverson, & Liaw, 2006), which may be espe-
cially important for the hierarchical structure of predictor variables
resulting from forest change occurring at different times, magnitudes,
directions, and recovery rates.

We built RF models using the R-package ‘yaImpute’ (Crookston &
Finley, 2008). Themethod implemented in this R-package amalgamates
multiple random forestmodels, each tuned to a single response variable
directly measured from lidar (mean, standard deviation, 95th percen-
tile, and coefficient of variation of vegetation height, percent of first
returns above 2 m, and percent of first returns above mean). Derived
lidar metrics of forest structure and biomass were attached as ancillary
variables to the pixel-level imputation predictions after mapping,
meaning these variables are not modeled in RF, but rather joined to
the map after plot ids are predicted for each pixel (sensu Zald et al.,
2014). We evaluated the relative importance of each predictor variable
in the RF model by calculating variable importance scores. For each RF



Fig. 2. Scaled importance values of predictor variables from the random forest model of
the six lidar metrics of vegetation structure from 3255 training plots in relation to
mapped explanatory variables.
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tree the prediction error on the out-of-bag portion of the data is record-
ed. Then the same is done after permuting each predictor variable. The
difference between the two are then averaged over all trees, and nor-
malized by the standarddeviation of thedifferences to generate variable
importance scores. To generate spatial predictions (maps), RF chooses
neighbor plots based on a non-Euclidean distance measure built from
the nodes matrix of the amalgamated RF models. This nodes matrix
holds a plot identifier for each terminus (or ‘leaf’) of each classification
tree in the RF models. For new locations (map pixels), the terminal
nodes where the pixel falls in the RF models are recorded. The
nearest-neighbor (kNN=1) plot for the new pixel is themost frequent
plot within its set of nodes. Pixel predictions were made using the RF
model and the predict function in the R-package ‘raster’ (Hijmans,
2014).

2.5. Map validation

From the imputationmap, predictions of vegetationmetrics and for-
est structure attributes were extracted for map pixels associated with
the validation plots using the same methods used to extract values of
mapped explanatory variables for training plots. Predictions were
compared to observed values using a variety of accuracy measures.
We calculated R2, root mean squared error (RMSE), and the normalized
root mean squared error (nRMSE, RMSE divided by the range of ob-
served values) for each response variable.We also quantified prediction
bias and random error using the systematic and unsystematic agree-
ment coefficients (ACsys and ACuns) following Ji and Gallo (2006).
ACsys represents the difference between observed and predicted values
that can be predicted by a simple linear model (bias from the 1:1 line),
and ACuns represents differences which appear to be random. In cal-
culating ACsys and ACuns, geometric mean functional relationships
(GMFR) regression lineswere used to describe the relationship between
the observed and predicted datasets. Unlike ordinary least squares
(OLS) regression, GMFR is a symmetric regression model that assumes
both X and Y are subject to error.

We assessed the ability of the model to predict ecologically impor-
tant gradients in forest structure (canopy cover and total aboveground
biomass) associated with the magnitude of recent wildfires, as well as
themagnitude and years since past wildfires. First, we used the Canadi-
an National Fire Database (CNFDB, Canadian Forest Service, 2013a) to
select five large fires (each N30,000 ha, 177,238 ha total) that burned
across Saskatchewan in 2008 (no large fires burned in 2009), and had
little evidence (b10% of area) of prior fire activity in the preceding cen-
tury (Electronic Supplemental Fig. S4). Sample points within these se-
lected fire perimeters were generated using a hexagon lattice with
500 m spacing using the function spsample in the R package ‘sp’
(Bivand, Pebesma, & Gomez-Rubio, 2013). From these sample points,
90 ∗ 90 m polygons were created corresponding to 3 ∗ 3 cell windows
in the imputation map. Polygons were excluded if they contained
non-forest land cover or positive change magnitude variation values,
because non-forest land cover is beyond the study scope of inference,
and positive change polygons are indicative of spatial errors in the fire
perimeter database and/or unburned patches within the fire perime-
ters. Polygon exclusion resulted in 6403 polygons across the five fires.
Boxplots were then generated to visualize trends and variation of pre-
dicted canopy cover and total aboveground biomass in relation to
change magnitude variation.

We also assessed patterns of predicted canopy cover and total
aboveground biomass in relation to change magnitude variation and
years since fire (0–26 years, corresponding to fires from 1985–2010).
Using the CNFDB, we selected all fires (N500 ha.) that burned between
1985–2010, resulting in 873fires totaling over 1.5million ha (Electronic
Supplemental Fig. S6). Using the samemethods as described above, we
sampled points within selected fire perimeters (although with larger
1000 m hexagon spacing), generated 90 ∗ 90 m sample polygons, and
excluded polygons containing non-forest land cover and positive
change magnitude variation values. We then binned sample polygons
by year of fire (26 bins) and change magnitude variation (6 bins of
values ranging from 0 to−1.5 in 0.25 increments), calculated the aver-
age predicted cover and biomass values within each bin, and removed
bins with fewer than 50 plots, resulting in 16,415 total plots. We then
visualized trends in predicted canopy cover and biomass in relation to
the years since fire and change magnitude variation using adjacency
plots (Wickham, 2009).

3. Results

3.1. Importance of explanatory variables in random forest model

Overall, Tasseled Cap indices (including TC angle and TC distance)
and elevation were the most important predictor variables related to
our response variables (Fig. 2). The most important change metrics
were change magnitude, post-change magnitude, years since greatest
change, and post change evolution rate. The topographic variables
slope and TWI were also moderately important in the model. Change
persistence, pre-change evolution rate, pre-change magnitude, and
TSRI had the lowest importance in the model.

3.2. Summary statistics and prediction accuracy on validation plots

Mean predicted values for all forest attributes closely followedmean
observed values on validation plots, while the predicted range and
standard deviation were slightly but consistently less than observed
(Table 3). R2 values ranged from 0.42 to 0.69, with the highest values
for canopy cover (percentage of first returns above 2m andmean eleva-
tion), and the lowest values for vertical variability of vegetation height
(elev_stddev and elev_cv). Values for nRMSE were consistently low,
ranging from 0.08 to 0.14. ACsys values were consistently high (indicat-
ing low bias), ranging from 0.86 to 0.97, while ACuns values were more
variable, ranging from 0.18 to 0.63, with less random error for predic-
tions of canopy cover, and greater random error for predictions of verti-
cal variability of vegetation height. For all forest attributes, the model
over and under predicts for low and high observed values, respectively
(Fig. 3). This bias is most noticeable for derived variables (basal area,
gross stem volume, total aboveground biomass), and least noticeable
for canopy cover.

Qualitative analysis of imputation maps also provides a useful as-
sessment of map attributes at multiple spatial scales. Imputation maps
of forest structure and total aboveground biomass display clear latitudi-
nal trends at the provincial scale, with higher productivity and forest
cover in the southern boreal forest, while the legacy of past wildfires
is clearly identifiable as large areas with reduced cover, height, and



Table 3
Summary and accuracy statistics for predicted forest structure variables on 1085 validation plots.

Observed Predicted Accuracy metrics

Variable Units Mean Range Stddev Mean Range Stddev R2 RMSE nRMSE ACuns ACsys

elev_mean m 5.65 2.28–18.82 2.65 5.54 2.55–17.33 1.97 0.52 1.84 0.11 0.36 0.90
elev_stddev m 1.85 0.29–8.19 1.10 1.78 0.42–6.11 0.79 0.48 0.80 0.10 0.30 0.86
elev_p95 % 8.72 2.78–26.39 4.01 8.52 3.29–19.09 3.00 0.54 2.74 0.12 0.40 0.90
elev_cv m 0.32 0.11–0.85 0.08 0.31 0.13–0.87 0.06 0.42 0.06 0.08 0.18 0.90
cover_2m % 36.35 1.46–97.08 24.10 35.77 2.53–94.4 20.68 0.69 13.45 0.14 0.63 0.97
cover_mean % 17.86 0.64–55.28 13.02 17.56 0.87–53.18 11.03 0.68 7.34 0.13 0.62 0.97
loreys_height m 9.77 4.37–22.18 3.15 9.62 4.93–17.52 2.40 0.55 2.11 0.12 0.43 0.91
basal_area m2/ha 11.04 1.6–48.50 7.92 10.66 2.49–36.20 6.00 0.57 5.20 0.11 0.45 0.91
stem_volume m2/ha 39.69 3.26–231.42 36.53 37.81 5.63–158.36 26.67 0.53 24.99 0.11 0.39 0.88
total_biomass kg/ha 71048.81 4869.12–521957.37 76988.35 67172.29 8358.31–343407.77 54871.18 0.50 54607.22 0.11 0.31 0.86

Note: stdev= standard deviation, RMSE= rootmean squared error, nRMSE=normalized root mean squared error, ACuns= unsystematic agreement coefficient and ACsys= systematic
agreement coefficient.
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biomass (Fig. 4, Electronic Supplemental Figs. S7–S8). At much finer
scales, the same imputation maps are spatially consistent with wild-
fire perimeters and intra-fire variability, while undisturbed areas
display fine grained patterns likely caused by topographic and
edaphic factors.
Fig. 3. Observed versus predicted values for selected lidar metrics of vegetation structure and d
functional relationships (GMFRs) between observed and predicted values in red.
3.3. Predicted canopy cover and total aboveground biomass in relation to
past wildfires

Predicted forest canopy cover and total aboveground biomass
displayed consistent trends in relation to magnitude change in selected
erived forest attributes on validation plots (n = 1085). 1:1 line in black, geometric mean



Fig. 4. Selected maps of predicted canopy cover above 2 m (percentage of first returns above 2 m), and total aboveground biomass for Saskatchewan. Rectangle in the southern boreal
forest associated with bottom images, focused on Leaf fire of 2003 (black outline) and adjacent undisturbed forest. See Electronic Supplemental Figs. S7–S8 for provincial maps of
other predicted structure variables.

Fig. 5. Boxplots of predicted canopy cover above 2m and total aboveground biomass in relation to changemagnitude variation in five wildfires that burned in 2008. See methods section
for descriptions of response variables and sampling methods. See Electronic Supplemental Fig. S5 for locations and maps of change magnitude variation for the selected wildfires.
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wildfires that burned in 2008 (Fig. 5). High fire severity resulted in con-
sistently low predictions of canopy cover. As change magnitude values
approach zero (fire severity declined), both the mean and variability
of predicted canopy cover increased. Total aboveground biomass also
displayed increased values with lower severity in selected 2008 wild-
fires, although changes in both mean values and variability of biomass
were smaller than those displayed by canopy cover.

Predicted canopy cover and total aboveground biomass also
displayed trends in relation to years since wildfire, although these
trends covariedwith changemagnitude,while also being less consistent
than found on the selected wildfires that burned in 2008 (Fig. 6). Pre-
dicted canopy cover was generally higher with increased years since
fire, but the relationship was nonlinear, with variable predictions 16–
25 years since fire. Predicted canopy cover increased as change magni-
tude values approached zero (decreasing fire severity) for more recent
fires, but this relationship was not apparent 16–25 years since fire. Pre-
dictions of total aboveground biomass were higher with lower fire se-
verity, and this pattern was mostly consistent for 0–25 year old fires.
However, biomass predictions showed little trend 0–9 years since fire,
after which predicted biomass declined in forests that had experienced
high fire severity, and did not appear to decline over time in lower se-
verity fires.

4. Discussion

Imputation approaches are widely used for estimating and mapping
forest attributes, but the use of lidar as a surrogate for traditional inven-
tory plots is a new conceptual approach to mapping forest conditions
that has seen little application (although see Ahmed, Franklin, Wulder,
& White, 2015). While satellite imagery is widely integrated with in-
ventory plots to map forest conditions, pixel composites and change
metrics have only recently become available for large areas, so their
use as explanatory variables in mapping forest conditions is less com-
mon (Pflugmacher et al., 2014; Zald et al., 2014). A key finding of this
study is that lidar plots can be used as a surrogate for traditional field
Fig. 6. Predicted canopy cover (percentage of first returns above 2 m) and total aboveground b
changemagnitude class and years since firewith fewer than 50 plots have been excluded. More
for descriptions of response variables and sampling of wildfires. See Electronic Supplemental F
inventory plots for imputation mapping applications. Below we discuss
the ability of our mapping approach to predict forest structure and bio-
mass and spatially characterize key ecological patterns and processes.
We also discuss the value of pixel composites and change metrics de-
rived from Landsat TM/ETM+ imagery in the context of imputation
mapping.While lidar plots have great potential in forestmapping appli-
cations, there are important limitations and uncertainty we discuss that
may be inherent to lidar plots, the transect sampling utilized in this
study, and imputation procedures.

4.1. Statistical and ecological validity of imputation maps

When combinedwith spectral and change information from Landsat
time series imagery, plot-level predictions of many forest attributes
have comparable or superior accuracy to other regional-scale imputa-
tion mapping projects that use traditional field plots and satellite imag-
ery. For example, our estimates of basal area were equal or more
accurate (R2 = 0.57) than imputation maps generated in Oregon and
California using traditional inventory plots and Landsat imagery with-
out change metrics (R2 = 0.16–59) (Ohmann & Gregory, 2002; Pierce,
Ohmann,Wimberly, Gregory, & Fried, 2009; Zald et al., 2014). Likewise,
our estimates of total aboveground biomass have plot-level accuracy
comparable to recent imputation mapping of Canada's forest using
photo plots and moderate resolution MODIS imagery (Beaudoin et al.,
2014). These comparisons to other studies are partially confounded by
different statistical methods, inventory protocols, and forest types; yet
they indicate lidar plots can be used at least as accurately as traditional
field and photo inventory plots to predict and map forest structure and
total aboveground biomass.

In addition to plot-level accuracy assessments, our spatial predic-
tions of forest attributes appear to be ecologically realistic, quantifying
dominant ecological patterns and processes. In the ecozones containing
most of Saskatchewan's forests (Tiaga Shield, Boreal Shield, Boreal
Plains), fire is the dominant disturbance agent shaping ecosystem
dynamics (Kurz & Apps, 1999; Bond-Lamberty et al., 2007). We found
iomass in relation to change magnitude and years since wildfire. Combinations of a given
negative changemagnitude values indicate higher burn severity. See themethods section
ig. S6 for a map of wildfires sampled.
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that in recent fires, predicted canopy cover and total aboveground bio-
mass were negatively associatedwith increased fire severity, consistent
with known relationships of these forest attributes to burn severity
(Campbell, Donato, Azuma, & Law, 2007; Miller et al., 2009). Predicted
total aboveground biomass was less sensitive than canopy cover to
fire severity, which should be expected since trees have lower combus-
tion factors compared to litter and soil, resulting in tree biomass largely
remaining in forests via transfer from living to dead biomass pools (i.e.
snags and logs), and a larger portion of pyrogenic emissions to the at-
mosphere coming from combusted litter and soil (Campbell et al.,
2007). Trends in predicted canopy cover and total aboveground bio-
mass were more variable across 25 years of fires, but were relatively
consistentwith post-fire vegetation recovery. For example, the relation-
ship of canopy cover and burn severity is much stronger in the initial
years after wildfire, but this relationship weakens over time as forests
recover, consistent with post-fire spectral trajectories of forest recovery
over time (Goetz, Fiske, & Bunn, 2006). More difficult to explain are pre-
dictions of total aboveground biomass that do not decline until approx-
imately eight years afterwildfires, and then are variable but have largely
stopped declining 15 years after fire. These trends may result from how
post-fire tree mortality, snag fall, and vegetation recovery dynamics are
reflected in lidar metrics such as canopy cover and mean vegetation
height used to derive biomass estimates (Bolton, Coops, & Wulder,
2015). Dead trees (snags) can persist for many years after fire
(Russell, Saab, Dudley, & Rotella, 2006; Angers, Drapeau, & Bergeron,
2010; Dunn & Bailey, 2012), resulting in lidar metrics of canopy height
remaining elevated until the majority of snags within a pixel fall or ex-
perience significant breakage. Later in post-fire recovery, snagfall-
driven reductions in stand height may be partially offset by increases
in canopy cover and vegetation height associatedwith tree regeneration
and growth. The stability of lidar vegetation metrics may be consistent
with temporal lags of tree mortality and snag fall in post-fire forest dy-
namics, but they may also represent a source of error where the model
is unable to distinguish living trees and snagswith similar stand heights,
even with inclusion of Landsat-derived disturbance history.
4.2. Importance of pixel composites and change metrics in
imputation mapping

Pixel composites and change metrics derived from Landsat TM/
ETM+ imagerywere an important component of the imputationmeth-
od used in this study. Spatially complete, cloud-free, and radiometrically
consistent surface reflectance image composites support the develop-
ment of spatially complete and consistent predictions of forest attri-
butes, regardless of the statistical methods or plot data used. The
opening of the Landsat archive and development of best available
pixel (BAP) compositing methods have greatly improved the develop-
ment of cloud-free image mosaics with the holdings for Canada being
spatially and temporally comprehensive (White & Wulder, 2013); not-
withstanding the favorable coverage of present data, gaps remain on an
annual basis necessitating the development and use of proxy image
composites (White et al., 2014; Hermosilla et al., 2015a). With the
launch of Landsat 8 in 2013, Landsat OLI imagery is acquired in a denser
and more globally consistent manner than Landsat TM/ETM+ (Roy
et al., 2014), which should greatly increase the density of cloud-free
scenes. Furthermore, the successful launch of the Sentinel 2 mission
by the European Space Agency, with similar spatial and spectral charac-
teristics to Landsat (Drusch et al., 2012), will greatly increase the tem-
poral density of imagery available in the future. Despite current and
future improvements with Landsat 8 and Sentinel 2, pixel compositing
will continue to be necessary for forest inventory andmonitoring appli-
cations for both historical and future imagery, not only in Canada, but
also for other boreal and tropical regions with persistent cloud cover,
snow cover, and short phenologic windows (Asner, 2001; Potapov,
Turubanova, & Hansen, 2011).
Previous studies have demonstrated the benefits of incorporating
multi-temporal change metrics from Landsat imagery to improve pre-
dictions of forest structure and biomass (Pflugmacher et al., 2012,
2014; Zald et al., 2014; Ahmed et al., 2015). However, scaling up from
these smaller proof of concept studies has been limited by the availabil-
ity of change metrics at regional and national scales. We leveraged the
recent availability of changemetrics and proxy pixel composites for Sas-
katchewan (Hermosilla et al., 2015a, 2015b). Landsat pixel compositing
and multi-temporal change metrics are an area of active research and
product development. The specific image products used in this study
are not nationally or globally available, yet the emergence of similar na-
tional and global image composites and change metrics (Roy et al.,
2010; Hansen et al., 2013) suggests multi-temporal change mapping
will be increasingly available to support regional and national forest in-
ventory programs. In addition to multi-temporal change detection, im-
putation mapping of forest conditions may greatly benefit from recent
advances in change attribution (Kennedy et al., 2015; Hermosilla et al.,
2015b). Change attribution may improve prediction accuracy by
distinguishing pixel-level spectral conditions, year of change, and mag-
nitude of change that can be very similar for different disturbance
agents (for example harvesting versus wildfire), yet these disturbances
can result in very different forest structure and biomass. In northern
Saskatchewan, change attribution may be less important because fire
is the dominant disturbance agent. However, the increased importance
of other disturbance agents such as harvestingmay lower prediction ac-
curacy in disturbed forests in southern Saskatchewan, and this issue
may be especially important in other forest regions with multi-agent
disturbance regimes.

4.3. Limitations of lidar plots in imputation mapping

A key component of this study is the use of lidar plots as surrogates
for traditional field plotswithin the imputation technique. This novel el-
ement also poses conceptual andmethodological limitations for accura-
cy assessment, uncertainty analysis, and large area estimation of forest
resources. The most obvious limitation is the inability to map species
composition, because lidar plots lack tree observations that include spe-
cies identification, and this limitation also applies to any variable that is
only observable with field plot data. Imputation mapping relies on rela-
tionships between sampled response and mapped predictor variables,
constraining predictions to values in the plot sample, so that predictions
cannot exceed biological reality as determined from the sample dataset.
However, this assumes the sample dataset adequately contains the var-
iables of interest, and represents the range of variation in these variables
that are unmeasured in the larger study area. Plot-level accuracy assess-
ments used a validation set of sampled lidar plots spatially constrained
within lidar transects. Sampled lidar plots cover the range and frequen-
cy distribution of values in the larger lidar transects (Electronic Supple-
mental Table S2, Electronic Supplemental Figs. S2–S3), but meaningful
plot-level validation of predicted forest attributes beyond the lidar tran-
sects was precluded by the scarcity of available inventory field plots in
the study area, as Provincial and industry inventory data exist, but
were not available at the time of this study. Our mean predictions of
aboveground biomass for the Boreal Shield (56.47 tons/ha) and Boreal
Plains (104.30 tons/ha) ecozones are reasonable when compared to
provincial-level estimates derived from National Forest Inventory
plots (e.g., 75.6 tons/ha for Boreal Shield and 77.7 tons/ha for Boreal
Plains) (Canadian Forest Service, 2013b), but these comparisons have
significant caveats. NFI-based biomass estimates incorporate all plot-
data for entire ecozones, which extend beyond the boundaries of Sas-
katchewan and our study area. Moreover, NFI plot density is low for
these ecozones (290 for the Boreal Shield, 116 for the Boreal Plains),
and entirely lacking for the Taiga Shield and Prairies ecozones. For the
two ecozones with NFI data, our maximum biomass estimates are 56
and 59% higher than NFI estimates. However, natural and anthropogen-
ic disturbances prevent most forests from reaching their maximum



198 H.S.J. Zald et al. / Remote Sensing of Environment 176 (2016) 188–201
potential biomass, posing problems for establishing upper bounds using
geographically systematic inventory plots (Smithwick, Harmon,
Remillard, Acker, & Franklin, 2002), and this issue is compounded by
low plot sample numbers in Canada's unmanaged northern forests.

Plot-level accuracy assessments did find a consistent bias, over
predicting all attributes at low observed values and under predicting
at high values. Under prediction for high observed values is also found
in studies relating traditional field inventory plots and space borne
lidar to Landsat spectral conditions (Ohmann & Gregory, 2002;
Duncanson, Niemann, & Wulder, 2010), consistent with saturation of
Landsat reflectance data in forests with high biomass and leaf area
index. Prediction biases may also be caused to varying degrees by the
lidar data, lidar plot sampling procedures, and nearest neighbor meth-
odology. Lidar data within a 25 m pixel was only used if the percent of
first returns above 2 m was greater than zero, resulting in exclusion of
lidar data that may represent forest conditions found in canopy gaps,
forest openings, and recent harvests. Heterogeneous plotswithmultiple
forest conditions were excluded, but this reduced the frequency of lidar
plots with very low canopy cover (Electronic Supplemental Fig. S3). Fi-
nally, the nearest neighbor imputation method itself may contribute to
prediction bias. Lidar plots occupy amulti-dimensional cloudwithin the
feature space of the explanatory variables, with longer nearest neighbor
distances towards the edges of the plot cloud. Therefore, pixels towards
the edges of the feature space are more likely to have larger nearest
neighbor distances and their nearest neighbor plots are more likely to
be towards the centroid of the feature space, resulting in over and
under predictions at the low and high ranges, respectively. While be-
yond the scope of this study, these biases may be partially corrected
by approaches that stratify plot selection during sampling or imputation
procedures (McRoberts & Tomppo, 2007; Eskelson, Temesgen, &
Barrett, 2008). However, using the plots themselves to derive strata
can potentially violate the assumption that plots are a random sample
of a stratum, this can be a particular concern when using nearest neigh-
bor imputation techniques (McRoberts & Tomppo, 2007), requiring
other independent data sources for stratification purposes.

In addition to limitations for plot-level accuracy assessment, spatial-
ly clustered lidar plots from transacts may require new conceptual and
methodological approaches to spatial accuracy assessment, area estima-
tion, and uncertainty analysis. Geographically systematic sampling un-
derlies assessment protocols for continuous geospatial datasets such
as imputation maps of forest conditions (Riemann, Wilson, Lister, &
Parks, 2010), yet the lidar transectswe use are not a spatially systematic
probability sample. Additionally, derived lidar attributes such as stem
volume and biomass are themselves not true observations but predic-
tions derived from regressions between lidar and values from NFI field
plots, posing questions for using accuracy assessments protocols that
compare observed and predicted values. While posing problems for ac-
curacy assessments, the transect based sample we use is more widely
distributed spatially and much larger than is typically used in global
studies of Lefsky (2010) and Simard, Pinto, Fisher, and Baccini (2011),
as summarized in Bolton, Coops, and Wulder (2013). Furthermore,
field plot based studies are often limited in the number of samples avail-
able and are often spatially limited to safe and ready access to road net-
works, which would adversely constrain and bias plot sampling in
Northern Canada, as well as many regionswith remote and inaccessible
forests.

Nearest neighbor distance maps can provide an indirect metric of
spatial error in map predictions (Ohmann & Gregory, 2002; Beaudoin
et al., 2014), but they do not provide directmeasures of error associated
with the predicted forest conditions of interest. Limitations of spatial
accuracy assessment also pose problems for area estimation and uncer-
tainty analysis. For example, from our predictionswe can generate total
estimates of basal area (365.68 Mm2), timber volume (1321.90 Mm3),
and total aboveground biomass (2.36 Pg) for Saskatchewan, yet we
have limited tools for quantifying the uncertainty of such estimates.
One approach to quantify uncertainty would be to apply recently
developed variance estimators to imputation predictions, but the com-
putational requirements to calculate variance estimates may be pro-
hibitive when using the NN imputation approach over large areas
(McRoberts, Tomppo, Finley, & Heikkinen, 2007). There are other ap-
proaches that have recently been developed to quantify variance in uni-
variate regressions (Gregoire et al., 2011; Ståhl et al., 2011) and
uncertainty in multi-variate imputation procedures (Bell, Gregory, &
Ohmann, 2015), and development of such procedures for Random
Forest implementations of imputation procedures is an area of future
research.

More fundamentally, a major area for future research is to assess
how completely lidar plots from transects occupy the feature space of
the larger study area of interest, as well as covering the variation of
the forest variables of interest. Such knowledge could be used with a
priori flight information to plan optimal locations for lidar transects, as
well as after lidar collection to determine if additional lidar is needed,
quantify areaswith diminished plot support, and stratify lidar plot sam-
pling and model based estimation. Regardless of these potential limita-
tions, it is important to recognize the lidar plot sample size used in this
study is larger and better distributed than could be expected fromafield
based program over the same jurisdiction.

Derived forest attributes (basal area, stem volume, total above-
ground biomass, etcetera) also have important sources of error and lim-
itations for quantifying their uncertainty. These attributes were
calculated using empirical models developed between lidar plots and
201 NFI inventory plots across Canada's boreal forest (Wulder et al.,
2012b). Model fit for these attributes was high (adjusted R2 of 0.64–
0.84), and our imputation models only use the predicted values from
these equations. It is possible to incorporate the uncertainty or confi-
dence intervals from the Wulder et al. (2012b) models into pixel-level
imputation predictions as ancillary variables, but there are important
reasons why we did not. Most importantly, equations from Wulder
et al. (2012b) were developed across multiple ecozones and provinces
in order to have a robust NFI plot sample size and nationally consistent
equations. While model fit and lidar metrics used as predictor variables
are generally consistent with other studies (Hudak et al., 2006; Li,
Andersen, &McGaughey, 2008), applying confidence intervals from na-
tional models to an area without robust plot support is likely exceeding
the data's scope of inference. More broadly, calculating basal area, stem
volume, and total aboveground biomass is limited by multiple sources
of error. For example, tree species vary in their wood density and cano-
py structure, and these species-level differences influence biomass
equations (Lambert, Ung, & Raulier, 2005; Ung, Bernier, & Guo, 2008;
Jenkins, Chojnacky, Heath, & Birdsey, 2003), yet we do not incorporate
tree species into our predictions. However, Tompalski, Coops, White,
andWulder (2014) found error in height had a larger impact than spe-
cies information on simulated tree volume estimates, implying our lidar
based models of forest structure are likely more accurate that estimates
generated with species data but without precise lidar height estimates.
Furthermore, field-based biomass estimates themselves have many
sources of sampling and measurement error, as well as model
misspecifications (Temesgen, Affleck, Poudel, Gray, & Sessions, 2015).
One of the strengths of our imputation approach is we only used lidar
metrics (canopy height, variation of canopy height, and canopy cover)
as response variables in the Random Forest model, while derived forest
attributes with higher potential but unquantified uncertainty and error
were predicted as ancillary variables. This approach is inherently more
flexible as it allows future incorporation of more accurate predictions
as new models of the derived forest attributes become available.

5. Conclusions

Canada's National Forest Inventory (NFI) is designed to support
many inventory, monitoring, and reporting objectives. As a sample
based program, the NFI represents 100% of Canada's forest with a 1%
sample (Gillis et al., 2005), resulting in a need to characterize and map
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forest conditions on the remaining 99%. This information must be tem-
porally and nationally consistent, spatially explicit and exhaustive, at a
spatial resolution that can resolve natural and human impacts, and gen-
erated in a way that is transparent and scientifically defensible. Ap-
proaches that integrate inventory plots with remotely sensed imagery
have commonly had limitations in the context of Canada's extensive
northern forests (i.e. too few inventory plot samples, temporal mis-
match of plots and imagery, and now-mitigated issues with multi-
scene Landsat mosaics). By integrating lidar plots with Landsat pixel
composites and change metrics, our approach overcomes many of
these limitations to provide timely, spatially complete, and verifiable
information on forest conditions. This information can inform policy,
support jurisdictional (including national) monitoring programs, and
facilitate a wide range of scientific inquiry. Furthermore, lidar-based
imputation of forest attributes is temporally transferable (Fekety,
Falkowski, & Hudak, 2015), indicating that the single year predictions
we present in this study can be extended across the Landsat time series
to characterize multi-decadal changes in forest conditions.
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