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Abstract

Mobile agents are software abstractions that can migrate across the links of a network. They naturally extend the object oriented
program style and nicely correspond to agents as examined in game theory. In this paper, we introduce a simple, robust, and efficient
randomized broadcast protocol within this mobile agent programming paradigm. We show that by using this scheme, broadcasting
enquiries in a random graph of certain density O(ln n) steps, where n denotes the number of nodes in the graph. Then, we consider
bounded degree graphs and prove that we are able to distribute an information among all nodes in O(D) steps, where D denotes
the diameter of the graph. We also show that, in contrast to traditional randomized broadcasting (TRB), graphs exist in which
agent-based randomized broadcasting requires �(n2) steps. On the other hand, some graphs which require �(n ln n) steps to spread
the information in the traditional broadcast model, allow very fast agent-based broadcasting. It should be noted that the previously
mentioned results are guaranteed with probability 1 − o(1/n).
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the agent-based model, as examined in this paper, n agents are randomly distributed in a graph with n nodes. The
agents move randomly from one node to another, in rounds, across the edges of the network. At a given time, we inject
a piece of information to a node v, which is then called informed or infected. In the succeeding rounds, informed nodes
infect visiting agents and infected agents carry the information to other nodes. The goal is to determine the number
of rounds required by the agents to infect all nodes in the network. The agents only know the neighborhood of their
hosting nodes; the size of the network, its topology or the ‘infected’ area are unknown.

The randomized broadcast strategy, as introduced in this paper, is simple, scalable, and robust (i.e., some nodes can
be switched off, while their corresponding agents are working in the system). Apart from these characteristics, the
algorithm also allows to interleave several tasks. Due to this property, agent-based randomized broadcasting is well
suited for asynchronous systems, in which we cannot expect to control the task flow of all participants. The object
oriented programming view greatly interferes with this paradigm [13].

This agent-based model is fairly different from the traditional randomized broadcast model (TRB) [9], in which any
informed node sends, in each step, some rumor to a randomly chosen neighbor. We will see in Section 4 that there are
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examples for the agent-based algorithm being asymptotically slower than the corresponding algorithm in the TRB, and
vice versa. Nevertheless, we show that for several important graph classes agent-based randomized broadcasting can
be performed asymptotically as fast as in the TRB model.

1.1. Specific background

Our main intention is to initiate the analysis of agent-based broadcasting apart from the different application possi-
bilities of this model. However, our attention has been attracted to this model when we studied distributed algorithms
in the area of personalized television.

The idea behind personalized television is that a collection of ‘personal video recorders’ (PVRs) collect information
about their users each, and then filter the sky for contributions which each PVR supposes to be interesting for it. The
collected information of a PVR is called a user profile. One possibility for a PVR to come to reasonable predictions is
to compare its profile with the profiles of other users, and then to base predictions on the opinions of users which have
a similar profile. Thereby, two questions arise. First, how to define similarity, but reasonable heuristics exist. Second,
how can one find a PVR the users of which are similar to it, i.e., how to find friends. The common procedure is to build
a database of profiles and compare them centralized [19]. There have also been efforts to work within a distributed
database, however, the main focus remains centralistic and it is questionable whether the existing proprietary systems
will work in the mass market with more than 108 PVRs.

We propose another way to deal with such a large number of PVRs. Assume that every PVR that enters the system,
notifies a central instance which places it into a ground network (such as a grid), ensuring that all PVRs are within
one connected component. From a practical point of view, this causes no timing problems, since every PVR enters the
system only once. Each PVR has the ability to build a specified number of connections to other PVRs, which means
that it possesses a couple of half-links at the beginning. A pair of half-links becomes a virtual link across the Internet,
as soon as the corresponding PVRs have found each other. In order to achieve this, each PVR is allowed to send out
one agent which executes the following protocol: when an agent A enters a node P , then A asks P whether it wants to
be a friend of A’s origin Q. If P has either free half-links, or the distance between the profile of Q and P is smaller
than the distance to one of its neighbors, then P agrees and sends a request directly to Q. If Q wants to be P ’s friend
too, then they establish the link between Q and P . Possibly, P or Q have to resolve an existing link to a processor R.
In that case R is notified.

Lots of links are resolved and connected in the system, however, after a finite time the system stabilizes. The reason
simply is that there is one cheapest edge in the system. As soon as this edge is detected, it will never be resolved
again. Altogether, the procedure leads to a distributed greedy algorithm, and from the edges point of view, the system
finishes in a Nash equilibrium. When the system is frozen, the nodes are not interested in changing their connections
without further connections being changed simultaneously. The number of steps until the system is frozen depends on
the profiles and on the networks which arise during the procedure. Simulations showed that everything stabilizes fast
with randomly chosen profiles, however, one subproblem remains: when the algorithm comes close to its final state,
a few free half-links occur which should be reconnected as fast as possible. This subproblem can be reduced to the
problem of fast broadcasting in the agent-based model.

The system can be seen as a network of n processors, which communicate via a fixed number of agents, ensuring
a fast distribution of information, without flooding the network, and without restricting the reach of a message. Since
the number of PVRs which enter or possibly leave the system changes slowly, we assume that the number of nodes in
our network is fixed. The agent-based view on the given problem fits nicely into known distributed agent protocols,
e.g. distance vector routing [14].

1.2. Related work

Mobile agents (MAs) [17] are software abstractions that can migrate across a network, as for example, the Internet.
They are the successors of process migration, and therefore in its core as old as distributed computing itself. Several high
level programming tools, such as Java or the script language Tcl/tk, support mobility.Aglets, Concordia, Jumping Beans
etc. are examples of industrial programming tools which support the MA paradigm. From the software technology’s
point of view, the MA paradigm serves with benefits like improved locality of reference, the ability to deal with ad
hoc ideas as disconnected users, and flexibility. It is worth mentioning that the agent is the basic entity in game theory
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mostly analyzed within the context of selfish agents [22]. Nevertheless, the MA paradigm stands in concurrency with
other techniques like Message Passing. Certainly, many problems addressed by mobility can also be solved even more
efficiently and more securely by static clients that exchange messages. We see the difference between MA and Message
Passing only in the programmer’s point of view. Indeed a mobile agent is a piece of software, and an MA is a data packet
which invokes some action on the target computer, from a machine’s point of view, MA is very similar to Message
Passing. In the same way as a message, the MA must be processed with the help of its recipient. An MA however, is a
quite special message, as not every traditional message encodes a piece of a program.

There is also a long history of empirical and theoretical research on epidemic disease within cliques and random
networks [12,20,1]. Often, mathematical studies about infection propagation make the assumption that an infected
person spreads the infection equally likely to any member of the population [18] which leads to a complete graph
for the underlying network. Whenever the question is, how fast the disease reaches all persons, the problem reduces
to the broadcasting problem in the TRB model. However, in most of these papers, spreaders are only active in a
certain time window, and the question of interest is, whether on certain networks modelling personal contacts an
epidemic outbreak occurs. Several threshold theorems involving the basic reproduction number, contact number, and
the replacement number have been stated. See [12] for a collection of results concerning the mathematics of infectious
diseases. Notably, the analysis of epidemic diseases have recently been extended to more generalized random networks
with arbitrary degree distributions [20].

Concerning results on the field of broadcasting, Frieze and Molloy [10] showed that in a random graph Gp with n

vertices, an upper bound of �(ln n/n) is required on the edge density in order to deterministically broadcast information
in �log2 n� steps (with high probability). Chen improved this result in [3]. The TRB has also been examined within
geometric networks in [16]. It is shown that new information is spread to nodes at distance t with high probability
in O(ln1+�t) steps. A similar broadcasting model has been analyzed under the name of rumor-spreading. There, one
of n people knows some rumor and any ‘knower’, in our language an infected person, infects in each round another
randomly chosen person of the population. The goal is to determine the number of rounds required for infecting all
persons in the system. Pittel [21] proved a nice result, which shows that within log2(n) + ln(n) + O(1) steps they are
probably infected. Feige et al. [9] extended the results to different graph classes. Karp et al. [15] showed that, in the
so-called random phone call model, the number of messages can be bounded by O(n ln ln n).

1.3. Our results

The paper is organized in the following way. We start our analysis by considering randomized agent-based broad-
casting in random graphs. We show in Section 2 that within O(ln n) rounds, every node of a random graph receives the
information (with high probability) whenever the generating probability function of the random graph exceeds some
certain threshold. In Section 3, we prove that in any bounded degree graph, we can broadcast within O(D) rounds
with high probability, where D denotes the diameter of the graph. In Section 4, we consider graph classes on which
agent-based broadcasting performs very fast or very slow. We show that while traditional broadcasting can always
spread an information within O(n ln n) steps, graphs exist on which �(n2) steps are always required in the agent-based
model. In contrast to this, on the star we need only O(ln n) rounds to spread the information (with high probability),
while in the TRB model �(n ln n) steps are needed. We conclude by pointing to some further research directions.

2. Information spreading in random graphs

In this section, we consider the problem of agent-based information spreading in a randomly connected environment.
We assume that the underlying network is modelled by a random graph Gp = (V , E) defined as follows: given n and
p, generate graph Gp with n vertices by letting each pair be an edge with probability p, independently [2]. Here, we
assume that p = � ln n/n, where � is chosen such that the (large) constants � > 0 and � > � with the following property
exist: �pn�dmin �dmax ��pn, with high probability,1 where dmin and dmax represent the minimal and maximal vertex
degrees in Gp, respectively. The choice of p also implies that the graph is connected with high probability.

As described in the Introduction, for any t ∈ N, the agents lying at time t on a node v ∈ V are able to change in
round t + 1 from v to any of its neighbors with probability 1/(dv + 1), where dv denotes the degree of v. Accordingly,

1 “With high probability” or “w.h.p.” means with probability 1 − o(1/n).
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an agent remains on its hosting node with the same probability 1/(dv + 1). At some time, a piece of information is
placed at one of the nodes, and the goal is to determine the number of rounds needed to distribute this information
by n agents in the system. Note that at the beginning, each agent is equally distributed among the nodes of the
system.

Let I (t) denote the number of infected nodes at time t . Similarly, Ia(t) denotes the number of infected agents at time
t . Let i(t) = I (t)/n and ia(t) = Ia(t)/n be the fraction of infected nodes and infected agents, respectively, at time t .
The healthy nodes and agents are denoted by H(t) = n − I (t) and Ha(t) = n − Ia(t).

We will show that if p = � ln n/n with � defined above, then every node of Gp is infected after O(log n) steps, with
high probability. First we analyze the distribution of the agents among the nodes of the graph. If a graph is regular, then
each agent jumps to some neighbor of the hosting node with the same probability. We can describe this process by a
Markov chain with transition matrix P , where Pi,j =1/(d +1) if {i, j} ∈ E or i = j (d denotes the degree of the nodes
in the graph), and Pi,j = 0 otherwise. Since P is double stochastic, the vector 1 = (1, 1, . . . , 1) is an eigenvector of
P with eigenvalue 1 and all other eigenvalues are in the range (−1, 1). If we assume that at the beginning each agent
is distributed with the same probability among the nodes, then in any step, an arbitrary agent lies on some node of the
graph with probability 1/n. However, if a graph is not regular, then this does not hold. The transition matrix P is then
defined by Pi,j = 1/(dj + 1), if {i, j} ∈ E or i = j ,2 where dj describes the degree of node j , and Pi,j = 0 otherwise.
If the vector (x1, . . . , xn) denotes the stationary distribution of the ergodic reversible Markov chain described by P ,

then it holds that xi = (di + 1)/
(∑n

j=1dj + n
)

for any i ∈ {1, . . . , n}. In the case of a random graph Gp, with p being

defined at the beginning of this section, it holds that xmax/xmin �(1 + �)/(1 + �), where � and � are the constants
defined in the first paragraph of this section.

Concerning the expansion properties of Gp, [2,5] yield the following theorem.

Theorem 1. Let Gp = (V , E) be a random graph with n nodes, generated by p = � ln n/n. Then, it holds with high
probability that the edge expansion of the graph, i.e., min{|E(X, X)|/m|X ⊂ V and |X| = m}��pn for any m�n/2,
where E(X, X) represents the set of edges between X and X, and � > 0 is a constant value.

This theorem implies that, with high probability, the distribution of the agents among the nodes of Gp becomes very
close to the stationary distribution within O(ln n) steps [5,23,8].

We assume in the following lemmas that a constant � exists such that, with probability at least 1 − 1/e�, for some
arbitrary node v ∈ V there is at least one agent on v. First we analyze the case when I (t)�q ln ln n, where q is a
properly chosen large constant value.

Remark 2. If I (t)�q ln ln n at some time t and Ia(t)�1, then in step t + 1 another node will be infected with
probability 1 − O(ln ln n/ ln n), where q is a properly chosen large constant.

Proof. Obviously, each node has a degree of at least �pn (with high probability). In step t +1, the infected agent jumps
from an infected node v to some infected vertex with a probability of at most q ln ln n/(�pn). Since p�� ln n/n, the
remark follows. �

Now consider the case when q ln ln n�I (t)�q ln n.

Lemma 3. Let S be the set of infected nodes in Gp at time t , and assume that each node i ∈ S has at most
max{c� ln |S|, c�p|S|} neighbors in S, where c� is a constant value. If I (t) ∈ [q ln ln n, q ln n], where I (t) = |S|,
then a constant c exists so that I (t + 1)�I (t)(1 + 1/c) with probability 1 − o(1/ ln n).

Proof. Let p1 = 1/e� be the probability that an arbitrary node is empty (i.e., no agent is lying on it). Then, a second
node is empty with the conditional probability p2 (given that a node exists, which is already empty), where p2 < p1.
Using the Chernoff bound on the tail of a binomial distribution [4,11], the probability for having more than (2/e)�I (t)

2 Letting Pi,i be nonzero is a simple device to avoid periodicity problems.
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infected empty nodes is

Pempty <

I(t)∑
i=(2/e)�I (t)

(
I (t)

i

)(
1

e�

)i(
1 − 1

e�

)I (t)−i

(1)

�
(

1

2

)(2/e)�I (t)(
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e� − 2�

)I (t)(1−(2/e)�)

= o

(
1

ln n

)
, (2)

whenever q is large enough. Now we show that among these |R| = (2/e)�I (t) nonempty nodes, at least |R|/2 will
propagate the information to some healthy nodes in step t + 1 with probability 1 − o(1/ ln n). Let dS(u) denote the
number of neighbors of a node u ∈ V in the set S ⊂ V of infected nodes. From more than |R|/2 nonempty infected
nodes, the agents do not jump to healthy nodes with probability
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In order to obtain the first and second inequality, we use the observation that Pfail is maximized when p and du are
minimized and the inner degree dS(u) is maximized for all u ∈ S.

Summarizing, at least |R|/2 infected agents jump to uninfected nodes in step t + 1 with probability 1 − o(1/ ln n).
On the other hand, applying the Chernoff bound we obtain that after the (t + 1)st step, any newly infected node has
less than 3 previously infected agents (w.h.p.). �

After I (t)�q ln n is achieved, similar methods to that of [9] can be used to show fast broadcasting. However, in
this agent-based model we can only guarantee that at least a constant fraction of the infected nodes are able to forward
the information. We have to show that another constant fraction of the agents positioned on these nodes infect some
healthy nodes in the next step. We consider now the case when q ln n�I (t)� 4

√
n.

Lemma 4. Let S be the subset of infected nodes at some time t with I (t) = |S|. If I (t) ∈ [q ln n, 4
√

n], then it holds
that I (t + 1)�I (t)(1 + 1/c) with probability 1 − o(1/n), where c is a proper constant value.

Proof. We assumed that any node in S is empty with probability at most 1/e� (cf. Lemma 3). Due to Theorem 1, we
know that at least �|S|pn edges are connecting S and V \S. We may assume that every node in S has degree at most
�pn. Therefore, any agent lying on some infected node u ∈ S jumps to an uninfected node with probability at least
dS(u)/(�pn), where dS(u) represents the number of u’s neighbors in S. Therefore, the expected number of infected
agents jumping to uninfected nodes is at least∑

u∈S

(1 − 1/e�)dS(u)/(�pn) = (1 − 1/e�)�S/� = �(S). (3)

Since I (t)�q ln n applying the Chernoff bounds [11] we conclude that a constant c′′ exists so that from each of at
least I (t)/c′′ nodes an agent will jump to healthy nodes with probability 1 − o(1/n2), whenever q is large enough. The

probability that j of these infected agents share the same node after the (t + 1)st step is smaller than
(

Ia(t)
j

)
(1/n)j =

O(1/n3j/4), where j ∈ N. Thus, with probability 1 − o(1/n2), each newly infected node has at most 2 previously
infected agents lying on it. Since I (t)/c′′ infected agents are jumping to healthy nodes in step t + 1 (with probability
1 − o(1/n2)), and each newly infected node has at most 2 of such agents, it follows that at least I (t)/(2c′′) nodes
become infected in step t + 1 (with probability 1 − o(1/n2)). �
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Lemma 5. Let S be the subset of infected nodes at some time t with I (t) = |S|. If 4
√

n�I (t)�n − 4
√

n, then it holds
that I (t + 1)�I (t)(1 + H(t)/(cn)), for some constant c.

Proof. First, we determine the number of infected agents at time t . Let I (t) < n/2. We assumed that a constant � exists
so that an arbitrary node is empty with probability 1/e�. Again, we apply Eq. (3) concluding that �(S) agents jump to
uninfected nodes with probability 1 − o(1/n2).

Similarly, if H(t)�n/2, then a constant c′ exists so that at least H(t)/(2c′) agents infect some uninfected nodes.
Summarizing, a constant c exists so that at least 4I (t)H(t)/(cn) agents propagate the infection to uninfected nodes in
step t + 1 (with probability 1 − o(1/n2)), where c > 4.

Ignoring the probability for which less than 4I (t)H(t)/(cn) infected agents jump to uninfected nodes, an arbitrary
healthy node remains uninfected with probability

p1 �
(

1 − 1

H(t)

)4I (t)H(t)/(cn)

�(1/e)
4I (t)
cn .

The probability for a second node remaining uninfected is p2 �p1. Similarly, a node i remains uninfected with the
conditional probability pi (given that i − 1 nodes are uninfected), where it holds that pi �p1. Therefore, more than
H(t) − I (t)H(t)/(cn) nodes remain uninfected after the (t + 1)st step with probability

P(t)�
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cn

(
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i

)
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Noting that p1 �(1/e)4I (t)/(cn) and that P(t) is minimized if p1 is maximized, we get
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Since (H(t) − I (t)H(t)/cn)/H(t) > (1/e)4I (t)/(cn), using the results of e.g. [11] we obtain
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and the lemma follows. �

If H(t)� 4
√

n, then we can show the following lemma.
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Lemma 6. Let S be a set of healthy nodes in Gp. If H(t)� 4
√

n at some time t , where H(t)=|S|, then a constant c > 0
exists so that an arbitrary node v ∈ S is infected in step t + 1 with probability 1/c. Moreover, after O(ln n) rounds, all
nodes of the graph are infected with high probability.

Proof. Applying Eq. (1) with I (t) > n− 4
√

n, it follows that, with probability 1−o(1/n2), in step t at least n(1−(2/e)�)

infected nodes are not empty. Due to the distribution of the edges out of S, �|S|/2� nodes have at least pn/c′ neighbors
within this set of n(1 − (2/e)�) infected nonempty nodes (with probability 1 − o(1/n2)), where c′ is a constant. Since
each node v belongs to this set of |S|/2 nodes with the same probability, v becomes infected in the next step with
probability 1/c, where c is a proper constant value.

Whenever H(t)�q ln n, there exists a constant c′′ such that H(t +1)�H(t)(1−1/c′′) with probability 1−o(1/n2).
In order to see this, let Pl be the probability that more than H(t)/c′′ nodes remain uninformed after the t th step. Now,
when a node remains uninformed, then a second node is also uninformed with some conditional probability less than
1/c, and Pl fulfils the inequality

Pl �
|S|/2∑

i=|S|/c′′

( |S|/2
i

)
(1/c)i(1 − 1/c)|S|/2−i �o(1/n2) (4)

for some constant c′′ chosen properly. When q ln ln n�H(t)�q ln n, then inequality (4) implies that a constant c′′
exists so that H(t + 1)�H(t)(1 − 1/c′′) with probability 1 − o(1/ ln n). This implies that within O(ln n) rounds, the
number of healthy nodes is reduced to q ln ln n. Finally, since each remaining node is infected with probability at least
1/c, within O(ln n) additional steps every node of S is infected with probability 1 − o(1/n). �

We are now ready to state the following theorem concerning the spread of an information in random graphs using
the agent-based model.

Theorem 7. Let Gp = (V , E) be a random graph with n vertices, where p = � ln n/n. At the beginning, we dis-
tribute somehow n agents among the nodes of Gp, and allow each agent, which lies on some node v ∈ V , to
change with probability 1/(dv + 1) to one of the neighbors of v. Assuming that at some time an arbitrary node
receives an information, after O(log n) rounds the information is completely distributed in the whole system with high
probability.

Proof. After a piece of information is injected to some node v ∈ V , then within O(ln n) rounds the distribution of the
agents becomes very close to the stationary distribution of the Markov chain described by the matrix P . Within O(ln n)

additional rounds one of the agents will visit v, with high probability, and carry the information further.
Now, we consider the following algorithm. Until I (t)�q ln ln n, we allow only this one agent to transmit the infection

from one node to another. Due to Remark 2, within O(ln n) steps we achieve I (t)�q ln ln n (w.h.p.). In the following
rounds, we call a step successful, if within this step at least I (t)H(t)/(cn) uninfected nodes become infected, where
c is the constant defined in Lemmas 3–5. Otherwise, the step is called unsuccessful and the agents that have jumped
to healthy nodes become healthy (instead of infecting the nodes). In each successfull step, we choose I (t)H(t)/(cn)

newly infected nodes, uniformly at random, among all newly infected nodes, and heal all other nodes which became
infected in this last step. Clearly, each node gets the information from an informed agent. The distribution of the other
agents, not seen before to infect some node, differ only in a constant factor from the stationary distribution. Since a
constant fraction of the agents infecting some node in an arbitrary step carry the information further to uninfected
nodes in the next step, there exists a constant � such that in any step, each infected node is empty with probability at
most 1/e�.

Since the assumptions of Lemmas 3–5 are fulfilled, we need O(ln n) steps to achieve H(t)� 4
√

n (w.h.p.). Finally, if
H(t)� 4

√
n, we do not speak anymore about successful or unsuccessful rounds and allow each infected agent to infect

any healthy node without becoming itself healthy at all. Using Lemma 6, we can show that with high probability, within
another O(ln n) steps all nodes in the graph become infected.

Due to the arguments described above, the algorithm described in this proof spreads the information among all nodes
in the graph within O(ln n) steps. Obviously, the algorithm presented at the beginning of this section performs faster
than the one described here, and therefore the theorem holds. �
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The results of Theorem 7 can easily be generalized to the other traditional random graph model [2]: given n and m,

let each graph with n vertices and m edges occur with probability
(

N
m

)−1
, where N = (

n
2

)
. The random variable Gn,m

represents a graph generated in this way. If m = �n ln n with � being large enough, then the results described in this
section also hold for Gn,m.

3. Information spreading in bounded degree graphs

In the previous section, we determined the number of steps required to distribute the information in a system described
by a random graph. In this section, we consider the previously mentioned distribution problem in a more restricted
environment. We also slightly modify the randomized scheme in the following way. An agent lying at time t on some
node v ∈ V can jump to one of the neighbors of v with probability 1/(2dv), where dv denotes the degree of node v.
Accordingly, the agent remains on v with probability 1

2 . We assume throughout this section that dv is bounded by some
constant value c for any node v.

We show that with high probability, in at most O(D) steps the information is distributed among the nodes of the
system, where D denotes the diameter of G. First we analyze the probability distribution of the agents among the
nodes of the graph. As described in the previous section, each agent is equally distributed at the beginning. Then, the
following lemma can be stated.

Lemma 8. Let G = (V , E) be a graph and let P be a transition matrix defined in the following way: Pi,i = 1
2 for any

i ∈ {1, . . . , n}, Pi,j =1/(2dj ) if {i, j} ∈ E, where dj describes the degree of node j , and Pi,j =0 otherwise. We assume
that a constant c exists so that c�di for any i ∈ {1, . . . , n}. Let x = (x1, . . . , xn) be defined by xT = P t · (1/n)1T,
where t is an arbitrary chosen integer. Then, it holds that xi �1/(cn) for any i ∈ {1, . . . , n}.

Proof. The matrix P represents the transition matrix of an ergodic reversible Markov chain with stationary distribution
�, where �i = di/

∑n
j1

dj . Vector � is an eigenvector of P with eigenvalue 1. Due to the properties of P , its eigenvalues
are real and they lie in the range [0, 1]. On the other hand, the matrix P can be viewed as a diffusion matrix of a
node-weighted graph with the structure of G and node-weights di [8]. Then, P = I − 1

2LD−1, where I is the identity
matrix, L is the Laplacian of G [6], and D is the diagonal matrix containing di in the ith diagonal entry. The initial
load distribution has the form w0 = (1/n)(1, . . . , I ), and it holds that wk+1 = Pwk in every iteration step k, where wk

denotes the load distribution in G after k steps. Then, it also holds that

wk+1
i = wk

i −
∑

j∈N(i)

1

2

(
wk

i

di

− wk
j

dj

)
,

where N(i) defines the set of neighbors of node i. We show that minn
i=1 wk

i /di �minn
i=1 wk+1

i /di for any k. Assume
first that wk

l /dl = minn
i=1 wk

i /di for some l ∈ {1, . . . , n}. For any node i ∈ V it holds that

wk+1
i = wk

i −
∑

j∈N(i)

1

2

(
wk

i

di

− wk
j

dj

)
= wk

i

2
+ 1

2

∑
j∈N(i)

wk
j

dj

�
wk

i

2
+ di

2
· wk

l

dl

.

Thus,

wk+1
i

di

� 1

2

(
wk

i

di

+ wk
l

dl

)
�

wk
l

dl

.

Since minn
i=1 w0

i /di �1/cn, the lemma holds. �

We are now ready to state the following theorem.

Theorem 9. Let G=(V , E) be a graph, where di �c, c being constant, for any i ∈ V . We assume that at the beginning,
n agents are equally distributed among the nodes of G, and at some time an information is placed on a node of G.
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If the movements of the agents satisfy the transition probabilities described by the transition matrix P (as defined in
Lemma 8), then within O(D) steps every node will get the information by some agent with probability 1 − o(1/n).

Proof. Due to Lemma 8, any agent lies in each step on some arbitrary node i with a probability of at least 1/(cn).
Since the diameter of a graph with bounded vertex degree is �(log n), the information fails to traverse a shortest path
between two vertices in G in less than 6c2(D + 3 ln n) steps with probability o(1/n2). Hence, the information reaches
all vertices of the graph within O(D) steps with probability 1 − o(1/n). �

4. Best-case and worst-case graphs

In this section, we consider graph classes on which we can broadcast in the agent-based model very fast or very
slowly (with high probability). The agents lying on the nodes of some graph G = (V , E) are able to change from a
node v ∈ V to any of its neighbors with probability 1/(dv +1), where dv denotes the degree of i. Accordingly, an agent
remains on its hosting node with the same probability 1/(dv + 1). Here, we assume that the agents are lying on the
nodes according to the stationary distribution of the Markov chain determined by the transition matrix P as defined in
Section 2.

It is known that in the TRB model at most O(n ln n) steps are needed in order to broadcast an information among all
nodes of an arbitrary graph. We show in the next theorem that this bound cannot be achieved in the agent-based model.

Theorem 10. There exist graphs G= (V , E) in which �(n2) rounds are necessary for broadcasting in the agent-based
model.

Proof. Consider the graph G=(V , E) with n vertices constructed as follows: the first n/2 vertices, labelled 1, . . . , n/2,
are connected with each other mutually, forming a complete graph withn/2 vertices.Vertexn/2 is additionally connected
to vertex n/2+1. Then, we connect the vertices n/2+j and n/2+j +1 for any j ∈ {1, . . . , n/2−1}, by letting the last
n/2 nodes form a path of length n/2. An agent is lying on node i ∈ {1, . . . , n/2−1} with probability n/(n2/2+n+3).
Node n/2 has an agent with probability (n + 2)/(n2/2 + n + 3). All other nodes excepting n have an agent with
probability 3/(n2/2 + n + 3), and finally on n a certain agent is lying with probability 2/(n2/2 + n + 3).

With some constant probability, each agent lies on some node i ∈ {1, . . . , n/2}. Letting the information be placed
somewhere, node n receives the information only if one of the agents traverses the whole path from node n/2 + 1 to
node n. Using simple probability theory, an agent traverses the path (without dropping first into the complete part) with
probability 1/n. Noting that an agent jumps from node n/2 to node n/2 + 1 with probability O(1/n), we obtain the
statement of the theorem. �

Now we study a graph on which an exponential gap between the speed of information spreading in the traditional
broadcast model and in the agent-based model occurs. Let Gu = (V , E) be a graph, which consists of 2k levels, where
each level i ∈ {0, . . . , 2k − 1} contains 2(i mod k) vertices. We connect the vertices of two consecutive levels i and
i + 1 mutually, obtaining for any (i mod k) ∈ {0, . . . , k − 2} a complete bipartite graph between levels i and i + 1.
Additionally, we connect the nodes between levels k −1 and 2k −1 in the same way. Using the techniques described in
the proof of Theorem 10, it can be shown that we need �(k2k) steps to propagate the information through the network.
In the TRB model, only O(k) steps are required. Thus, there is an exponential gap between the speed of broadcasting
in these two models.

In contrast to the previous paragraph, the star is a good-natured graph for broadcasting in our agent-based model.
Despite the fact that the star has only �(n) edges, whereas the complete graph has �(n2), the time of a broadcast is
O(ln n) with high probability for both. Surprisingly, the infection among the agents is even faster than on the complete
graph. The reason for this is the outstanding position of the central node, which we call z, and we denote the number
of agents visiting z at time t by z(t).

Theorem 11. Let Sn = (V , E) be the star with n vertices and let z be its central node. In Sn we equally distribute n

agents among the nodes and allow each agent lying on some node v ∈ V \{z} to change with probability 1
2 to z. Any

agent lying on z is allowed to change with probability pv = 1/n to some noncentral node v. Assuming that at some
time an arbitrary node receives an information, after O(ln n) rounds the information is completely distributed in the
whole system with probability 1 − o(1/n).
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Proof. First, we show that the node z is infected in constant expected time. If ia(t) > 0, then we may suppose that the
infected agent is on a noncentral node v ∈ V \{z}. Since the agent jumps to z with probability 1

2 , the agent infects z

after 2 expected rounds. If ia(t) = 0 and i(t) > 0, then let v ∈ V \{z} be an infected noncentral node. After an agent
reaches node v, we are able to apply the previous case. The probability that a certain uninfected agent A reaches node
v within two rounds is at least 1/(2n). To see this, first consider the case when A is on another noncentral node v′. The
agent leaves v′ with probability 1

2 . However, if A is on z, it jumps to v with probability 1/n. Thus, the probability that
at least one agent reaches v within two rounds is: 1 − (1 − 1/(2n))n �1 − e−1/2. Therefore, the expected time until
an agent jumps to v is 2/(1 − e−1/2)�2 · 3 = 6. Applying the Chernoff bound [11], node z is infected within O(ln n)

steps with probability 1 − o(1/n).
Now we will concentrate on the infection among the agents. First we show that max{z(t), z(t + 1)}�n/5 for any

t ∈ N with probability 1 − o(1/n2). To prove this, we may assume z(t) < n/5. Then, at least 4n/5 agents are on V \{z}
at time t . Since each of these agents jumps to z with probability 1

2 , we can apply the Chernoff bound [4,11] to show that
z(t + 1)�n/5 with probability 1 − o(1/n2). As a consequence after two rounds, at least n/5 agents become infected
with a probability of 1 − o(1/n).

Now we turn our attention to the infection of nodes. The probability that an uninfected node remains uninfected after
t rounds is (((n − 1)/n)n/5)t �(1/e)t/5. Hence, for some t = �(ln n), we obtain the theorem. �

We have seen that agent-based broadcasting can be performed very fast on a star. Let us now consider the graph Gs

which is very similar to the star and is defined in the following way: the first n/2 nodes of Gs , labelled 0, 1, . . . , n/2−1,
of Gs are connected mutually with each other, forming a complete graph with n/2 nodes, while a node n/2 + j − 1 is
only connected to j − 1. Using the techniques of Theorem 11, it can be shown that agent-based broadcasting requires
�(n ln n) rounds. This example shows that, although the diameter of Gs is O(1) and the graph is very similar to the
star, agent-based randomized broadcasting performs slowly.

5. Conclusion

In this paper, we analyzed the performance of randomized broadcasting within the agent-based model. We have
shown that with high probability, we can distribute within O(ln n) steps an information among the nodes of a random
graph of certain density. We proved that broadcasting in a bounded degree graph can be performed with high probability
in O(D) steps, where D represents the diameter of the graph. We considered examples of graphs, in which agent-based
broadcasting is very fast or very slow. We also pointed out some differences between broadcasting in the agent-based
model and the TRB model.

Our main intention was to initiate the analysis of broadcasting in the agent-based model. However, the results of this
paper can only be viewed as a first step in this direction, and there are still several interesting open problems which are
worth to be analyzed.

In our model we assumed that the number of agents equals the number of nodes. In the case when the number of
agents is a constant fraction of the size of the network, then the same asymptotic results also hold. However, it would be
interesting to know how the runtime changes when the number of agents (and the overall communication complexity
within one step) decreases significantly. Another question is how the runtime depends on the initial distribution of the
agents in worst and best case graphs. It is also an open problem how gossiping performs in this agent-based model.
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