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LetG be a graphwithn vertices andν(G)be thematchingnumber of

G. Letη(G)denote thenullity ofG (themultiplicity of the eigenvalue

zeroofG). It iswell knownthat ifG is a tree, thenη(G) = n − 2ν(G).
Tan and Liu [X. Tan, B. Liu, On the nullity of unicyclic graphs, Linear

Alg. Appl. 408 (2005) 212–220] proved that the nullity set of all uni-

cyclic graphs with n vertices is {0, 1, . . . , n − 4} and characterized

the unicyclic graphs with η(G) = n − 4. In this paper, we charac-

terize the unicyclic graphs with η(G) = n − 5, andwe prove that if

G is a unicyclic graph, then η(G) equals n − 2ν(G) − 1, n − 2ν(G),
or n − 2ν(G) + 2. We also give a characterization of these three

types of graphs. Furthermore, we determine the unicyclic graphs G

with η(G) = 0, which answers affirmatively an open problem by

Tan and Liu.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let G = (V(G), E(G)) be a simple graph with vertex set V(G) = {v1, v2, . . . , vn} and edge set E(G).
A set M of edges in G is a matching if every vertex of G is incident with at most one edge in M. It is

a perfect matching if every vertex of G is incident with exactly one edge in M. We denote by m(G, i)
the number of matchings of Gwith i edges and by ν(G) the matching number of G (i.e., the number of

edges of a maximummatching in G). A subgraph Λ of G is an elementary subgraph if each component

of Λ is a single edge or a cycle. We use r(Λ) (resp. s(Λ)) to denote the number of even components
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(resp. the number of cycles) in an elementary subgraph Λ. A unicyclic graph is a connected graph

with equal number of vertices and edges. Obviously, there exists exactly one cycle in a unicyclic graph.

Denote by Kn, Cn, Pn, and Sn the complete graph, the cycle, the path, and the star K1,n−1 with n vertices,

respectively.

The adjacency matrix of a graph G with n vertices, denoted by A(G) = (aij)n×n, is the n × n sym-

metric matrix such that aij = 1 if vertices vi and vj are adjacent and 0 otherwise. The characteristic

polynomial of G, denoted by φ(G, x), is defined as det(xIn − A(G)), where In is a unit matrix of order

n. A graph G is said to be singular (resp. nonsingular) if φ(G, 0) = 0 (resp. φ(G, 0) /= 0)). The roots of

φ(G, x) are called the eigenvalues of G. The multiplicity of the eigenvalue zero of G is called the nullity

of G, which is denoted by η(G).
The following result, which will play a key role in the proofs of our main results, is well known and

useful ([1,2,15–18]):

Proposition 1.1 [4]. Suppose G is a graph with n vertices. Then the coefficients of the characteristic poly-

nomial φ(G, x) = ∑n
i=0 aix

n−i of G is given by

(−1)iai = ∑
(−1)r(Λ)2s(Λ),

where the summation ranges over all elementary subgraphs Λ of G with i vertices.

Collatz and Sinogowitz [3] and Schwenk and Wilson [7] posed the problem of characterizing all

singular or nonsingular graphs. This problem is very difficult. At present, only some particular cases

are known [4–6,8–12,14]. On the other hand, this problem is very interesting in chemistry, because,

as has been shown in Longuet-Higgins [6], the occurrence of a zero eigenvalue of a bipartite graph

(corresponding to an alternant hydrocarbon) indicates the chemical instability of the molecule which

such a graph represents. The question is of interest also for non-alternant hydrocarbons (non-bipartite

graph), but a direct connectionwith the chemical stability in these cases is not so straightforward. The

following result gives a concise formula for the nullity of a tree T in terms of the matching number

of T:

Proposition 1.2 [4]. Suppose T is a tree with n vertices and the matching number of T is ν(T). Then

η(T) = n − 2ν(T).

Recently, Tan and Liu [13] investigated the nullity of the unicyclic graphs and proved the following

interesting results:

Proposition 1.3 [13]. The nullity set of all unicyclic graphs with n vertices (n� 5) is {0, 1, 2, . . . , n − 4}.
Proposition 1.4 [13]. Let G be a unicyclic graph with n vertices (n� 5). Then η(G) = n − 4 if and only if

G∼=U∗
1 ,U

∗
2 or U∗

3 , where U∗
i are illustrated in Fig. 1 for 1� i � 3, where Sni is the star K1,ni−1.

Inorder to investigate theunicyclic graphswithη(G) = 0, TanandLiu [13] introduced thedefinition

of the elementary unicyclic graphs as follows. A unicyclic graph G is called an elementary unicyclic

graph if G is a cycle of length l and l /= 0 (mod 4), or G is obtained from a cycle Cl and t isolated

vertices (where 0 < t � l and l = t (mod 2)) by the rule: first select t vertices from Cl such that there

are an even number (which may be 0) of vertices between any two consecutive such vertices. Then

join an edge from each of the t vertices chosen in Cl to an isolated vertex. Tan and Liu [13] proved the

following:

Proposition 1.5 [13]. If U is an elementary unicyclic graph, or a graph obtained by joining a vertex of an

elementaryunicyclic graphwith anarbitrary vertex of a treewith aperfectmatching, thenU is anonsingular

unicyclic graph.
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Fig. 1. Three graphs U∗
1 ,U

∗
2 and U∗

3 in Proposition 1.4, where n1 � 1 and n2 � 2.

Let Xn be the set of the unicyclic graphs with n vertices and with η(G) = 0, and let Yn be the set

of unicyclic graphs with n vertices each of which is obtained from an arbitrary elementary unicyclic

graph G′ by joining a vertex of trees with a perfect matching to some or all vertices of G′. Clearly, we

have Yn ⊆ Xn. Tan and Liu [13] posed the following open problem:

Problem 1.1. Does Xn = Yn?

In the next section, we prove that if G is a unicyclic graph, then η(G) equals n − 2ν(G) − 1,

n − 2ν(G) or n − 2ν(G) + 2. We also characterize these three types of graphs. In Section 3, we deter-

mine the unicyclic graphs G with η(G) = n − 5, and we also characterize the nonsingular unicyclic

graphs, which answers affirmatively Problem 1.1.

2. The nullity of unicyclic graphs

For the sake of convenience, we will assume that G is a unicyclic graph with n vertices and the the

cycle in G is denoted by Cl , where l is the length of the cycle. Let G − Cl denote the induced subgraph

of G by deleting, from G, vertices in Cl and their incident edges. We use the symbols p = ν(G) and

q = ν(G − Cl) if not specified.
Now we can determine the nullity of non-bipartite unicyclic graphs as follows.

Lemma 2.1. Suppose G is a unicyclic graph with n vertices and the length l of the cycle Cl in G is odd. Then

η(G) = n − 2ν(G) − 1 if ν(G) = l−1
2

+ ν(G − Cl), and η(G) = n − 2ν(G) otherwise.

Proof. Let ν(G) = p and ν(G − Cl) = q. Suppose the characteristic polynomial of G is given by

φ(G, x) =
n∑

i=0

aix
n−i. (1)

By Proposition 1.1, we have

(−1)iai = ∑
(−1)r(Λ)2s(Λ), (2)

where the summation ranges over all elementary subgraphs Λ of G with i vertices.

Note that p� l−1
2

+ q, that is, 2p� l − 1 + 2q. Hence, if i > 2p + 1� l + 2q, then G contains no

elementary subgraphs with i vertices, which implies that if i > 2p + 1 we have ai = 0. Since xn−2p−1

is a factor of φ(G, x), η(G) � n − 2p − 1.

If p = l−1
2

+ q, by (2) we have

(−1)2p+1a2p+1 = ∑
(−1)r(Λ)2s(Λ),
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where the summation ranges over all elementary subgraphs Λ of G with 2p + 1 vertices. Note that

the set of the unions of the cycle Cl of G and every matching of G − Cl with q edges equals exactly the

set of elementary subgraphs of G with 2p + 1 vertices. Hence

a2p+1 = 2(−1)q+1m(G − Cl , q) /= 0,

where m(G − Cl , q) is the number of matchings of G − Cl with q edges. So we have proved that if

p = l−1
2

+ q then η(G) = n − 2ν(G) − 1.

If p /= l−1
2

+ q, then 2p + 1 > l + 2q. Hence G contains no elementary subgraphs with 2p + 1

vertices, which shows that η(G) � n − 2p. By a similar discussion, we have

a2p = (−1)pm(G, p) /= 0,

which implies η(G) = n − 2p and the lemma follows. �

In Lemma 2.1 we have characterized the nullity of non-bipartite unicyclic graphs. Now we start to

consider the case in which G is a bipartite unicyclic graph.

Lemma 2.2. Suppose G is a unicyclic graph with n vertices and the length l of the cycle Cl in G is even. If

ν(G) /= l
2

+ ν(G − Cl), or ν(G) = l
2

+ ν(G − Cl) and l = 2 (mod 4), then η(G) = n − 2ν(G).

Proof. Let ν(G) = p and ν(G − Cl) = q. Note that G is a bipartite graph. Hence the characteristic

polynomial of G can be expressed by

φ(G, x) =
� n

2�∑
i=0

bix
n−2i. (3)

By Proposition 1.1, we have

bi = ∑
(−1)r(Λ)2s(Λ), (4)

where the summation ranges over all elementary subgraphs Λ of G with 2i vertices.

By a similar discussion as in the proof of Lemma 2.1, we can prove the following results:

(i) η(G) � n − 2p;

(ii) bp = (−1)pm(G, p) /= 0 if p /= l
2

+ q;

(iii) bp = (−1)pm(G, p) − 2(−1)qm(G − Cl , q) if p = l
2

+ q.

Hence, by (i) and (ii), if p /= l
2

+ q thenη(G) = n − 2p. Note that, if p = l
2

+ q and l /= 0 (mod 4),

then p /= q (mod 2). So by (iii) we have bp = (−1)pm(G, p) − 2(−1)qm(G − Cl , q) /= 0, which also

implies that η(G) = n − 2p.

The lemma thus follows. �

Lemma 2.3. Suppose G is a unicyclic graph with n vertices and cycle Cl of length l = 0 (mod 4), and

ν(G) = l
2

+ ν(G − Cl). Let E1 be the set of edges of G between Cl and G − Cl and E2 the set of matchings

of Gwithν(G) edges. Then,η(G) = n − 2ν(G) + 2 if E1 ∩ M = ∅ for allM ∈ E2, andη(G) = n − 2ν(G)
otherwise.

Proof. We use the notation in the proof of Lemma 2.2. Note that, by the proof of Lemma 2.2, we have

shown that η(G) � n − 2p.

First we prove that η(G) � n − 2p + 2. We only need to show that bp−1 /= 0. Let

M1 = the set of matchings of G with p − 1 edges;

M′
1 = the set of matchings of G − Cl with q − 1 edges;

M2 = {Λ|Λ = Cl ∪ M,M ∈ M′
1}.

Obviously, the set of elementary subgraphs of G with 2p − 2 vertices equals exactly M1 ∪ M2.

Hence, by (4), we have
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bp−1 = ∑
Λ1∈M1

(−1)r(Λ1) + 2
∑

Λ2∈M2

(−1)r(Λ2) = (−1)p−1m(G, p − 1) − 2(−1)q−1m(G − Cl , q − 1).

In order to prove that bp−1 /= 0, we only need to show thatm(G, p − 1) > 2m(G − Cl , q − 1), i.e.,
|M1| > 2|M2|.

Note that Cl contains exactly two perfect matchings, denoted by M1 andM2. It is obvious that

M∗ = {M1 ∪ M|M ∈ M′
1} ∪ {M2 ∪ M|M ∈ M′

1} ⊆ M1.

Hence |M1| � |M∗| = 2|M′
1| = 2|M2|. Let M3 be a matching of G − Cl with q edges and M4 a

matching of Cl with l
2

− 1 edges, thenM3 ∪ M4 is a matching of G with l
2

− 1 + q = p − 1 edges. So

M3 ∪ M4 ∈ M1. Note thatM3 ∪ M4 /∈ M∗. Hence |M1| � |M∗| + 1 = 2|M2| + 1 > 2|M2|.
Then the lemma follows from the following claim:

Claimwe have bp = 0 if E1 ∩ M = ∅ for an arbitrary M ∈ E2 and bp /= 0 otherwise.

Let M3 be the set of matchings of G − Cl with ν(G − Cl) edges. Let M4 be the set of matchings

of G with ν(G) edges, each of which has at least one edge in E1. Hence M4 = ∅ if E1 ∩ M = ∅ for an

arbitraryM ∈ E2 and M4 /= ∅ otherwise. Note that we have

bp = −2
∑

Λ1∈M3

(−1)r(Λ1) + ∑
Λ2∈E2

(−1)r(Λ2).

For the case M4 = ∅, i.e., E1 ∩ M = ∅ for an arbitrary M ∈ E2, since Cl have exactly two perfect

matchingsM1 and M2, we have E2 = {M1 ∪ M|M ∈ M3} ∪ {M2 ∪ M|M ∈ M3}. Hence∑
Λ2∈E2

(−1)r(Λ2) = (−1)|M1| ∑
Λ∈M3

(−1)r(Λ) + (−1)|M2| ∑
Λ∈M3

(−1)r(Λ) = 2(−1)
l
2

∑
Λ∈M3

(−1)r(Λ).

Since l = 0 (mod 4), we have

bp = −2
∑

Λ1∈M3

(−1)r(Λ1) + 2
∑

Λ∈M3

(−1)r(Λ) = 0.

For the case M4 /= ∅, we have E2 = {M1 ∪ M|M ∈ M3} ∪ {M2 ∪ M|M ∈ M3} ∪ M4. Hence∑
Λ2∈E2

(−1)r(Λ2) = (−1)|M1| ∑
Λ∈M3

(−1)r(Λ) + (−1)|M2| ∑
Λ∈M3

(−1)r(Λ) + ∑
Λ∈M4

(−1)r(Λ)

= 2
∑

Λ2∈M3

(−1)r(Λ2) + ∑
Λ∈M4

(−1)r(Λ),

which implies that bp = ∑
Λ∈M4

(−1)r(Λ) /= 0. Thus the claim follows. �

By Lemmas 2.1–2.3, we have the following:

Theorem 2.1. Suppose G is a unicyclic graph with n vertices and the cycle in G is Cl. Let E1 be the set of

edges of G between Cl and G − Cl and E2 the set of matchings of G with ν(G) edges. Then

(1) η(G) = n − 2ν(G) − 1 if ν(G) = l−1
2

+ ν(G − Cl);
(2) η(G) = n − 2ν(G) + 2 if G satisfies properties: ν(G) = l

2
+ ν(G − Cl), l = 0 (mod 4) and

E1 ∩ M = ∅ for all M ∈ E2;
(3) η(G) = n − 2ν(G) otherwise.

Remark 2.1. Let G be a unicyclic graph with n vertices and Cl the cycle in G. If η(G) = n − 2ν(G) − 1,

then, by (1) in Theorem 2.1, l is odd and hence G is a non-bipartite graph.

Remark 2.2. LetG be a unicyclic graphwith n� 4 vertices. Obviously, ν(G) � 2. Hence, by Theorem2.1,

η(G) � n − 4. LetG beaunicyclic graphwithnvertices andwithη(G) = n − 4, and let the lengthof the

cycle in G be l. If l is odd, by Lemma 2.1, η(G) = n − 2ν(G) − 1, or η(G) = n − 2ν(G). Then we have

ν(G) = 2 and G must satisfy: ν(G) > l−1
2

+ ν(G − Cl , q), i.e., ν(G) = 2, l = 3 and ν(G − Cl) = 0.
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Fig. 2. A graph G and a pendant star H of G, where G0 = G − H.

Hence G must have the form of U∗
1 shown in Fig. 1. Similarly, if l is even, then, by Lemmas 2.2 and 2.3,

we can show that G must have the form of U∗
2 or U∗

3 illustrated in Fig. 1. Hence, Proposition 1.4, which

was proved by Tan and Liu [13], can be obtained from Theorem 2.1. In Section 3, we will characterize

the unicyclic graph G with n vertices and with η(G) = 0 and n − 5, respectively.

A vertex-induced subgraph H of a graph G is called a pendant star of G if H is a star with at least

two vertices and all pendant vertices of H are also pendant vertices in G. A graph G and a pendant star

H of G are illustrated in Fig. 2, where G0 is the graph G − H. The following result is immediate from

the definition of the pendant star:

Lemma 2.4. Suppose H is a pendant star of a graph G. Then ν(G) = ν(G0) + 1, where G0 = G − H.

Suppose G is a unicyclic graphwith n vertices. Let the length of the cycle in G be l. If G is a cycle Cl or

a cycle Cl with pendant edges at some or all vertices of Cl , we call G a canonical unicyclic graph. If G is

not canonical, G contains at least one pendant star H1 such that G∗
1 = G − H1 is also a unicyclic graph.

We call the procedure of obtaining G − H1 from G a “deleting operator”. With repeated applications

of the “deleting operators”, then a canonical unicyclic graph, denoted by G∗, is obtained from G.

Theorem 2.2. Suppose G is a unicyclic graph with n vertices and G∗ is the graph defined above. Then
η(G) = n − 2ν(G) − 1 if and only if η(G∗) = |V(G∗)| − 2ν(G∗) − 1; η(G) = n − 2ν(G) if and only if

η(G∗) = |V(G∗)| − 2ν(G∗); and η(G) = n − 2ν(G) + 2 if and only if η(G∗) = |V(G∗)| − 2ν(G∗) +
2.

Proof. If G is a canonical unicyclic graph, then G = G∗ and the theorem holds. Hence we may assume

that G /= G∗. Then G has a pendant star H such that G − H is a unicyclic graph. The theorem follows

from the the following claims:

1. η(G) = n − 2ν(G) − 1 if and only if η(G − H) = n − |V(H)| − 2ν(G − H) − 1;

2. η(G) = n − 2ν(G) if and only if η(G − H) = n − |V(H)| − 2ν(G − H);
3. η(G) = n − 2ν(G) + 2 if and only if η(G − H) = n − |V(H)| − 2ν(G − H) + 2.

We prove that the second statement holds. Suppose that η(G) = n − 2ν(G). Note that, if G′ is
a graph obtained from G by deleting a pendant edge, then η(G) = η(G′), a result in [4]. Hence

η(G) = |V(H)| − 2 + η(G − H), which implies that η(G − H) = n − |V(H)| + 2 − 2ν(G). By

Lemma 2.4, we have η(G − H) = n − |V(H)| + 2 − 2(ν(G − H) + 1) = n − |V(H)| − 2ν(G − H).
Similarly, we can show that if η(G − H) = n − |V(H)| − 2ν(G − H) then η(G) = n − 2ν(G). By a

similar discussion, we can prove the first and the third statements. �

The following corollary, which can be obtained from Theorems 2.1 and 2.2, characterizes the unicy-

clic graphs Gwith η(G) = |V(G)| − 2ν(G) − 1, |V(G)| − 2ν(G) and |V(G)| − ν(G) + 2, respectively.
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Fig. 3. The graph U∗
4 in Theorem 3.3.

Corollary 2.1. Suppose G is a unicyclic graph with n vertices and the length of the cycle in G is l. Let G∗ be

the graph defined above. Then η(G) = n − 2ν(G) − 1 if G∗ = Cl and l is odd, η(G) = n − 2ν(G) + 2 if

G∗ = Cl and l = 0 (mod 4), and η(G) = n − 2ν(G) otherwise.

3. The unicyclic graphs with extremal nullity

In this section,weuse some results in Section2 to characterize theunicyclic graphsGwithη(G) = 0

and n − 5, respectively.

Theorem 3.3. Let G be a unicyclic graph with n vertices (n� 5) and with η(G) = n − 5. Then G must

have the form of U∗
4 illustrated in Fig. 3 or G = C5, where r > 0.

Proof. Suppose the length of the cycle in G is l. Note that, by Theorem 2.1, η(G) = n − 2ν(G) − 1,

n − 2ν(G) or n − 2ν(G) + 2. Hence if η(G) = n − 5 then G must satisfy:

(i) l is odd;

(ii) η(G) = n − 2ν(G) − 1;

(iii) ν(G) = l−1
2

+ ν(G − Cl).
By (i), (ii) and (iii), we have: ν(G) = 2, and l = 3 or l = 5. If l = 5 then ν(G − Cl) = 0. Note that

ν(G) = 2. Hence if l = 5 then G = C5. If l = 3, it is trivial to show that G must have the form of U∗
4

illustrated in Fig. 3. The theorem has thus been proved. �

Nowwe start to characterize the nonsingular unicyclic graphs. First we consider the case in which

G is not bipartite.

Lemma 3.5. Let G be a unicyclic graph with n vertices and the length l of the cycle Cl in G be odd. Then G

is nonsingular if and only if G has a perfect matching or G − Cl has a perfect matching.

Proof. “⇐”. If G has a perfect matching, then n = 2ν(G). If ν(G) = l−1
2

+ ν(G − Cl), then, by Lemma

2.1,wehaveη(G) = n − 2ν(G) − 1 = −1, acontradiction.Hence,byLemma2.1,η(G) = n − 2ν(G) =
0. If G − Cl contains a perfect matching, then ν(G) = l−1

2
+ ν(G − Cl) and n = 2ν(G) + 1. Hence, by

Lemma 2.1, we have η(G) = n − 2ν(G) − 1 = 0. Hence we have proved that sufficiency holds.

“⇒”. Let G be nonsingular (i.e., η(G) = 0). By Lemma 2.1, either we have n = 2ν(G) and ν(G) >
l−1
2

+ ν(G − Cl) or we have n = 2ν(G) + 1 and ν(G) = l−1
2

+ ν(G − Cl), which implies that G has

a perfect matching or G − Cl has a perfect matching.

The lemma thus follows. �

For the bipartite unicyclic graphs G with η(G) = 0, we have the following:

Lemma 3.6. Let G be a unicyclic graph with n vertices and the length l of the cycle Cl in G be even. Then G

is nonsingular if and only if G contains a unique perfect matching or l /= 0 (mod 4) and G has two perfect

matchings.
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Proof. Since G is a bipartite graph with n vertices, the characteristic polynomial of G can be expressed

by

φ(G, x) =
� n

2�∑
i=0

bix
n−2i.

“⇐”. If G contains a unique perfect matching, by Proposition 1.1 we have b n
2

= (−1)
n
2 . If G con-

tains two perfect matchings, G − Cl contains a (unique) perfect matching. By Proposition 1.1, we have

b n
2

= 2(−1)
n
2 + 2(−1)

n−l
2

+1. Note that l /= 0 (mod 4). Hence we have b n
2

= 4(−1)
n
2 . So we have

shown that if G contains a unique perfect matching or l /= 0 (mod 4) and G has two perfect matchings

then η(G) /= 0. Sufficiency thus follows.

“⇒”.We assume that G is nonsingular. Hence η(G) = 0. By Lemmas 2.2 and 2.3, η(G) = n − 2p or

η(G) = n − 2p + 2, where p = ν(G). Hence n = 2p or n = 2p − 2. Note that n� 2p, thus it is impos-

sible that n = 2p − 2. So n = 2p, which shows thatG contains perfectmatchings. Note thatG contains

at most two perfect matchings. Thus either l = 0 (mod 4), E1 ∩ M /= ∅ for arbitrary M ∈ E2, n = 2p

or l = 2 (mod 4), n = 2p. Hence we only need to prove that if G contains two perfect matchings then

l /= 0 (mod 4). We prove this by contradiction. If l = 0 (mod 4), by a similar way as in the proof of

Lemma 2.2, we have

b n
2

= (−1)
n
2 m

(
G,

n

2

)
+ 2(−1)

n−l
2

+1m

(
G − Cl ,

n − l

2

)
.

Since G has two perfect matchings and G − Cl contains a unique perfect matching (a matching with
n−l
2

edges), we have

b n
2

= (−1)
n
2 m

(
G,

n

2

)
+ 2(−1)

n−l
2

+1m

(
G − Cl ,

n − l

2

)
= 0.

This contradicts η(G) = 0.

So we have finished the proof of the lemma. �

The following result is immediate from Lemmas 3.5 and 3.6.

Theorem 3.4. Suppose G is a unicyclic graph and the cycle in G is denoted by Cl. Then G is nonsingular if

and only if G satisfies one of the following properties:
(1) l is odd and G − Cl contains a perfect matching;
(2) G contains a unique perfect matching;
(3) l /= 0 (mod 4) and G contains two perfect matchings.

Corollary 3.2. Let Xn and Yn be as in Problem 1.1. Then Xn = Yn.

Proof. Note that, by Theorem 2.2, Yn ⊆ Xn. We only need to prove Xn ⊆ Yn. Suppose that G is a non-

singular unicyclic graph with n vertices. Let the cycle in G be denoted by Cl (i.e., G ∈ Xn). By Theorem

3.4, G must satisfy one of the following properties:

(1) l is odd and G − Cl contains a perfect matching;

(2) G contains a unique perfect matching;

(3) l /= 0 (mod 4) and G contains two perfect matching.

If G satisfies the property (1), then G − Cl is a forest with a perfect matching. By the definition

of Yn, G ∈ Yn. If G satisfies the properties (2) or (3), then, by Theorem 2.2, either G is an elementary

unicyclic graph or each of its pendant stars, obtained when we obtain G∗ from G by the “deleting

operators”, is a P2. Then G ∈ Yn. Hence Xn ⊆ Yn and the corollary follows. �
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