INCAC

Linear Algebra and its Applications 431 (2009) 1293-1301

Contents lists available at ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier.com/locate/laa

On the nullity and the matching number of unicyclic graphs

Ji-Ming Guo ^{a,1}, Weigen Yan ^{b,*,2}, Yeong-Nan Yeh ^{c,3}

^a Department of Mathematics, University of Petroleum, Dongying, 257061 Shandong, China

^b School of Sciences, Jimei University, Xiamen 361021, China

^c Institute of Mathematics, Academia Sinica, Taipei 11529, Taiwan

ARTICLE INFO

Article history: Received 12 September 2005 Accepted 30 April 2009 Available online 29 May 2009

Submitted by R.A. Brualdi

AMS classification: 05A50

Keywords: Unicyclic graph Nullity Matching number Perfect matching Characteristic polynomial

ABSTRACT

Let *G* be a graph with *n* vertices and $\nu(G)$ be the matching number of *G*. Let $\eta(G)$ denote the nullity of *G* (the multiplicity of the eigenvalue zero of *G*). It is well known that if *G* is a tree, then $\eta(G) = n - 2\nu(G)$. Tan and Liu [X. Tan, B. Liu, On the nullity of unicyclic graphs, Linear Alg. Appl. 408 (2005) 212–220] proved that the nullity set of all unicyclic graphs with *n* vertices is $\{0, 1, ..., n - 4\}$ and characterized the unicyclic graphs with $\eta(G) = n - 4$. In this paper, we characterize the unicyclic graphs with $\eta(G) = n - 5$, and we prove that if *G* is a unicyclic graph, then $\eta(G)$ equals $n - 2\nu(G) - 1$, $n - 2\nu(G)$, or $n - 2\nu(G) + 2$. We also give a characterization of these three types of graphs. Furthermore, we determine the unicyclic graphs *G* with $\eta(G) = 0$, which answers affirmatively an open problem by Tan and Liu.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let G = (V(G), E(G)) be a simple graph with vertex set $V(G) = \{v_1, v_2, ..., v_n\}$ and edge set E(G). A set M of edges in G is a matching if every vertex of G is incident with at most one edge in M. It is a perfect matching if every vertex of G is incident with exactly one edge in M. We denote by m(G, i)the number of matchings of G with i edges and by v(G) the matching number of G (i.e., the number of edges of a maximum matching in G). A subgraph Λ of G is an elementary subgraph if each component of Λ is a single edge or a cycle. We use $r(\Lambda)$ (resp. $s(\Lambda)$) to denote the number of even components

* Corresponding author.

³ Partially supported by NSC97-2115-M-001-019-MY3.

0024-3795/\$ - see front matter $\ensuremath{\mathbb{C}}$ 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2009.04.026

E-mail addresses: gjm2248@sina.com (J.-M. Guo), weigenyan@263.net (W. Yan), mayeh@math.sinica.edu.tw (Y.-N. Yeh).

¹ Partially supported by NSFC (10871204).

² Partially supported by Program for New Century Excellent Talents in Fujian Province University and NSFC (10771086).

(resp. the number of cycles) in an elementary subgraph Λ . A unicyclic graph is a connected graph with equal number of vertices and edges. Obviously, there exists exactly one cycle in a unicyclic graph. Denote by K_n , C_n , P_n , and S_n the complete graph, the cycle, the path, and the star $K_{1,n-1}$ with n vertices, respectively.

The adjacency matrix of a graph *G* with *n* vertices, denoted by $A(G) = (a_{ij})_{n \times n}$, is the $n \times n$ symmetric matrix such that $a_{ij} = 1$ if vertices v_i and v_j are adjacent and 0 otherwise. The characteristic polynomial of *G*, denoted by $\phi(G, x)$, is defined as det $(xI_n - A(G))$, where I_n is a unit matrix of order *n*. A graph *G* is said to be singular (resp. nonsingular) if $\phi(G, 0) = 0$ (resp. $\phi(G, 0) \neq 0$)). The roots of $\phi(G, x)$ are called the eigenvalues of *G*. The multiplicity of the eigenvalue zero of *G* is called the nullity of *G*, which is denoted by $\eta(G)$.

The following result, which will play a key role in the proofs of our main results, is well known and useful ([1,2,15–18]):

Proposition 1.1 [4]. Suppose *G* is a graph with *n* vertices. Then the coefficients of the characteristic polynomial $\phi(G, x) = \sum_{i=0}^{n} a_i x^{n-i}$ of *G* is given by

$$(-1)^i a_i = \sum (-1)^{r(\Lambda)} 2^{\mathfrak{s}(\Lambda)},$$

where the summation ranges over all elementary subgraphs Λ of G with i vertices.

Collatz and Sinogowitz [3] and Schwenk and Wilson [7] posed the problem of characterizing all singular or nonsingular graphs. This problem is very difficult. At present, only some particular cases are known [4–6,8–12,14]. On the other hand, this problem is very interesting in chemistry, because, as has been shown in Longuet-Higgins [6], the occurrence of a zero eigenvalue of a bipartite graph (corresponding to an alternant hydrocarbon) indicates the chemical instability of the molecule which such a graph represents. The question is of interest also for non-alternant hydrocarbons (non-bipartite graph), but a direct connection with the chemical stability in these cases is not so straightforward. The following result gives a concise formula for the nullity of a tree T in terms of the matching number of T:

Proposition 1.2 [4]. Suppose *T* is a tree with *n* vertices and the matching number of *T* is v(T). Then

$$\eta(T) = n - 2\nu(T).$$

Recently, Tan and Liu [13] investigated the nullity of the unicyclic graphs and proved the following interesting results:

Proposition 1.3 [13]. The nullity set of all unicyclic graphs with n vertices $(n \ge 5)$ is $\{0, 1, 2, ..., n - 4\}$.

Proposition 1.4 [13]. Let *G* be a unicyclic graph with *n* vertices $(n \ge 5)$. Then $\eta(G) = n - 4$ if and only if $G \cong U_1^*, U_2^*$ or U_3^* , where U_i^* are illustrated in Fig. 1 for $1 \le i \le 3$, where S_{n_i} is the star K_{1,n_i-1} .

In order to investigate the unicyclic graphs with $\eta(G) = 0$, Tan and Liu [13] introduced the definition of the elementary unicyclic graphs as follows. A unicyclic graph *G* is called an elementary unicyclic graph if *G* is a cycle of length *l* and $l \neq 0 \pmod{4}$, or *G* is obtained from a cycle C_l and *t* isolated vertices (where $0 < t \le l$ and $l = t \pmod{2}$) by the rule: first select *t* vertices from C_l such that there are an even number (which may be 0) of vertices between any two consecutive such vertices. Then join an edge from each of the *t* vertices chosen in C_l to an isolated vertex. Tan and Liu [13] proved the following:

Proposition 1.5 [13]. If U is an elementary unicyclic graph, or a graph obtained by joining a vertex of an elementary unicyclic graph with an arbitrary vertex of a tree with a perfect matching, then U is a nonsingular unicyclic graph.

Fig. 1. Three graphs U_1^* , U_2^* and U_3^* in Proposition 1.4, where $n_1 \ge 1$ and $n_2 \ge 2$.

Let X_n be the set of the unicyclic graphs with n vertices and with $\eta(G) = 0$, and let Y_n be the set of unicyclic graphs with n vertices each of which is obtained from an arbitrary elementary unicyclic graph G' by joining a vertex of trees with a perfect matching to some or all vertices of G'. Clearly, we have $Y_n \subseteq X_n$. Tan and Liu [13] posed the following open problem:

Problem 1.1. *Does* $X_n = Y_n$?

In the next section, we prove that if *G* is a unicyclic graph, then $\eta(G)$ equals $n - 2\nu(G) - 1$, $n - 2\nu(G)$ or $n - 2\nu(G) + 2$. We also characterize these three types of graphs. In Section 3, we determine the unicyclic graphs *G* with $\eta(G) = n - 5$, and we also characterize the nonsingular unicyclic graphs, which answers affirmatively Problem 1.1.

2. The nullity of unicyclic graphs

For the sake of convenience, we will assume that *G* is a unicyclic graph with *n* vertices and the the cycle in *G* is denoted by C_l , where *l* is the length of the cycle. Let $G - C_l$ denote the induced subgraph of *G* by deleting, from *G*, vertices in C_l and their incident edges. We use the symbols p = v(G) and $q = v(G - C_l)$ if not specified.

Now we can determine the nullity of non-bipartite unicyclic graphs as follows.

Lemma 2.1. Suppose *G* is a unicyclic graph with *n* vertices and the length *l* of the cycle *C*_{*l*} in *G* is odd. Then $\eta(G) = n - 2\nu(G) - 1$ if $\nu(G) = \frac{l-1}{2} + \nu(G - C_l)$, and $\eta(G) = n - 2\nu(G)$ otherwise.

Proof. Let $\nu(G) = p$ and $\nu(G - C_l) = q$. Suppose the characteristic polynomial of *G* is given by

$$\phi(G, x) = \sum_{i=0}^{n} a_i x^{n-i}.$$
(1)

By Proposition 1.1, we have

$$(-1)^{i}a_{i} = \sum (-1)^{r(\Lambda)} 2^{s(\Lambda)},$$
(2)

where the summation ranges over all elementary subgraphs Λ of G with i vertices.

Note that $p \ge \frac{l-1}{2} + q$, that is, $2p \ge l - 1 + 2q$. Hence, if $i > 2p + 1 \ge l + 2q$, then *G* contains no elementary subgraphs with *i* vertices, which implies that if i > 2p + 1 we have $a_i = 0$. Since x^{n-2p-1} is a factor of $\phi(G, x)$, $\eta(G) \ge n - 2p - 1$.

If
$$p = \frac{l-1}{2} + q$$
, by (2) we have
 $(-1)^{2p+1}a_{2p+1} = \sum (-1)^{r(\Lambda)} 2^{s(\Lambda)}$,

where the summation ranges over all elementary subgraphs Λ of G with 2p + 1 vertices. Note that the set of the unions of the cycle C_l of G and every matching of $G - C_l$ with q edges equals exactly the set of elementary subgraphs of G with 2p + 1 vertices. Hence

$$a_{2p+1} = 2(-1)^{q+1}m(G - C_l, q) \neq 0,$$

where $m(G - C_l, q)$ is the number of matchings of $G - C_l$ with q edges. So we have proved that if $p = \frac{l-1}{2} + q$ then $\eta(G) = n - 2\nu(G) - 1$.

If $p \neq \frac{l-1}{2} + q$, then 2p + 1 > l + 2q. Hence *G* contains no elementary subgraphs with 2p + 1 vertices, which shows that $\eta(G) \ge n - 2p$. By a similar discussion, we have

$$a_{2p} = (-1)^p m(G, p) \neq 0,$$

which implies $\eta(G) = n - 2p$ and the lemma follows. \Box

In Lemma 2.1 we have characterized the nullity of non-bipartite unicyclic graphs. Now we start to consider the case in which *G* is a bipartite unicyclic graph.

Lemma 2.2. Suppose *G* is a unicyclic graph with *n* vertices and the length *l* of the cycle C_l in *G* is even. If $\nu(G) \neq \frac{l}{2} + \nu(G - C_l)$, or $\nu(G) = \frac{l}{2} + \nu(G - C_l)$ and $l = 2 \pmod{4}$, then $\eta(G) = n - 2\nu(G)$.

Proof. Let $\nu(G) = p$ and $\nu(G - C_l) = q$. Note that *G* is a bipartite graph. Hence the characteristic polynomial of *G* can be expressed by

$$\phi(G, x) = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} b_i x^{n-2i}.$$
(3)

By Proposition 1.1, we have

$$b_i = \sum (-1)^{r(\Lambda)} 2^{s(\Lambda)},$$
(4)

where the summation ranges over all elementary subgraphs Λ of G with 2i vertices.

By a similar discussion as in the proof of Lemma 2.1, we can prove the following results:

(i) $\eta(G) \ge n - 2p$;

(ii)
$$b_p = (-1)^p m(G, p) \neq 0$$
 if $p \neq \frac{1}{2} + q$;

(iii) $b_p = (-1)^p m(G, p) - 2(-1)^q \tilde{m}(G - C_l, q)$ if $p = \frac{l}{2} + q$.

Hence, by (i) and (ii), if $p \neq \frac{1}{2} + q$ then $\eta(G) = n - 2p$. Note that, if $p = \frac{1}{2} + q$ and $l \neq 0 \pmod{4}$, then $p \neq q \pmod{2}$. So by (iii) we have $b_p = (-1)^p m(G, p) - 2(-1)^q m(G - C_l, q) \neq 0$, which also implies that $\eta(G) = n - 2p$.

The lemma thus follows. \Box

Lemma 2.3. Suppose *G* is a unicyclic graph with *n* vertices and cycle C_l of length $l = 0 \pmod{4}$, and $\nu(G) = \frac{l}{2} + \nu(G - C_l)$. Let E_1 be the set of edges of *G* between C_l and $G - C_l$ and E_2 the set of matchings of *G* with $\nu(G)$ edges. Then, $\eta(G) = n - 2\nu(G) + 2ifE_1 \cap M = \emptyset$ for all $M \in E_2$, and $\eta(G) = n - 2\nu(G)$ otherwise.

Proof. We use the notation in the proof of Lemma 2.2. Note that, by the proof of Lemma 2.2, we have shown that $\eta(G) \ge n - 2p$.

First we prove that $\eta(G) \leq n - 2p + 2$. We only need to show that $b_{p-1} \neq 0$. Let

 M_1 = the set of matchings of *G* with p - 1 edges;

 \mathcal{M}'_1 = the set of matchings of $G - C_l$ with q - 1 edges;

 $\mathcal{M}_2 = \{ \Lambda | \Lambda = C_l \cup M, M \in \mathcal{M}'_1 \}.$

Obviously, the set of elementary subgraphs of *G* with 2p - 2 vertices equals exactly $M_1 \cup M_2$. Hence, by (4), we have

1296

$$b_{p-1} = \sum_{\Lambda_1 \in \mathcal{M}_1} (-1)^{r(\Lambda_1)} + 2 \sum_{\Lambda_2 \in \mathcal{M}_2} (-1)^{r(\Lambda_2)} = (-1)^{p-1} m(G, p-1) - 2(-1)^{q-1} m(G - C_l, q-1).$$

In order to prove that $b_{p-1} \neq 0$, we only need to show that $m(G, p-1) > 2m(G - C_l, q-1)$, i.e., $|\mathcal{M}_1| > 2|\mathcal{M}_2|$.

Note that C_l contains exactly two perfect matchings, denoted by M_1 and M_2 . It is obvious that

$$\mathcal{M}^* = \{M_1 \cup M | M \in \mathcal{M}'_1\} \cup \{M_2 \cup M | M \in \mathcal{M}'_1\} \subseteq \mathcal{M}_1.$$

Hence $|\mathcal{M}_1| \ge |\mathcal{M}^*| = 2|\mathcal{M}'_1| = 2|\mathcal{M}_2|$. Let M_3 be a matching of $G - C_l$ with q edges and M_4 a matching of C_l with $\frac{l}{2} - 1$ edges, then $M_3 \cup M_4$ is a matching of G with $\frac{l}{2} - 1 + q = p - 1$ edges. So $M_3 \cup M_4 \in \mathcal{M}_1$. Note that $M_3 \cup M_4 \notin \mathcal{M}^*$. Hence $|\mathcal{M}_1| \ge |\mathcal{M}^*| + 1 = 2|\mathcal{M}_2| + 1 > 2|\mathcal{M}_2|$.

Then the lemma follows from the following claim:

Claim we have $b_p = 0$ if $E_1 \cap M = \emptyset$ for an arbitrary $M \in E_2$ and $b_p \neq 0$ otherwise.

Let \mathcal{M}_3 be the set of matchings of $G - C_l$ with $\nu(G - C_l)$ edges. Let \mathcal{M}_4 be the set of matchings of G with $\nu(G)$ edges, each of which has at least one edge in E_1 . Hence $\mathcal{M}_4 = \emptyset$ if $E_1 \cap M = \emptyset$ for an arbitrary $M \in E_2$ and $\mathcal{M}_4 \neq \emptyset$ otherwise. Note that we have

$$b_p = -2 \sum_{\Lambda_1 \in \mathcal{M}_3} (-1)^{r(\Lambda_1)} + \sum_{\Lambda_2 \in E_2} (-1)^{r(\Lambda_2)}$$

For the case $M_4 = \emptyset$, i.e., $E_1 \cap M = \emptyset$ for an arbitrary $M \in E_2$, since C_l have exactly two perfect matchings M_1 and M_2 , we have $E_2 = \{M_1 \cup M | M \in M_3\} \cup \{M_2 \cup M | M \in M_3\}$. Hence

$$\sum_{\Lambda_2 \in E_2} (-1)^{r(\Lambda_2)} = (-1)^{|M_1|} \sum_{\Lambda \in \mathcal{M}_3} (-1)^{r(\Lambda)} + (-1)^{|M_2|} \sum_{\Lambda \in \mathcal{M}_3} (-1)^{r(\Lambda)} = 2(-1)^{\frac{l}{2}} \sum_{\Lambda \in \mathcal{M}_3} (-1)^{r(\Lambda)} + (-1)^{|M_2|} \sum_{\Lambda \in \mathcal{M}_3} (-1)^{r(\Lambda)} = 2(-1)^{\frac{l}{2}} \sum_{\Lambda \in \mathcal{M}_3} (-1)^{r(\Lambda)} + (-1)^{|M_2|} \sum_{\Lambda \in \mathcal{M}_3} (-1)^{r(\Lambda)} = 2(-1)^{\frac{l}{2}} \sum_{\Lambda \in \mathcal{M}_3} (-1)^{r(\Lambda)} + (-1)^{\frac{l}{2}} \sum_{\Lambda \in \mathcal{M}_3} (-1)^{r(\Lambda)} = 2(-1)^{\frac{l}{2}} \sum_{\Lambda \in \mathcal{M}_3} (-1)^{r(\Lambda)} + (-1)^{\frac{l}{2}} \sum_{\Lambda \in \mathcal{M}_3} (-$$

Since $l = 0 \pmod{4}$, we have

$$b_p = -2 \sum_{\Lambda_1 \in \mathcal{M}_3} (-1)^{r(\Lambda_1)} + 2 \sum_{\Lambda \in \mathcal{M}_3} (-1)^{r(\Lambda)} = 0$$

For the case $\mathcal{M}_4 \neq \emptyset$, we have $E_2 = \{M_1 \cup M | M \in \mathcal{M}_3\} \cup \{M_2 \cup M | M \in \mathcal{M}_3\} \cup \mathcal{M}_4$. Hence

$$\sum_{A_2 \in E_2} (-1)^{r(A_2)} = (-1)^{|M_1|} \sum_{A \in \mathcal{M}_3} (-1)^{r(A)} + (-1)^{|M_2|} \sum_{A \in \mathcal{M}_3} (-1)^{r(A)} + \sum_{A \in \mathcal{M}_4} (-1)^{r(A)}$$
$$= 2 \sum_{A_2 \in \mathcal{M}_3} (-1)^{r(A_2)} + \sum_{A \in \mathcal{M}_4} (-1)^{r(A)},$$

which implies that $b_p = \sum_{\Lambda \in \mathcal{M}_4} (-1)^{r(\Lambda)} \neq 0$. Thus the claim follows. \Box

By Lemmas 2.1–2.3, we have the following:

Theorem 2.1. Suppose *G* is a unicyclic graph with *n* vertices and the cycle in *G* is C_1 . Let E_1 be the set of edges of *G* between C_1 and $G - C_1$ and E_2 the set of matchings of *G* with $\nu(G)$ edges. Then

(1)
$$\eta(G) = n - 2\nu(G) - 1$$
 if $\nu(G) = \frac{l-1}{2} + \nu(G - C_l)$;
(2) $\eta(G) = n - 2\nu(G) + 2$ if *G* satisfies properties: $\nu(G) = \frac{l}{2} + \nu(G - C_l)$, $l = 0 \pmod{4}$ and $E_1 \cap M = \emptyset$ for all $M \in E_2$;
(3) $\eta(G) = n - 2\nu(G)$ otherwise.

Remark 2.1. Let *G* be a unicyclic graph with *n* vertices and C_l the cycle in *G*. If $\eta(G) = n - 2\nu(G) - 1$, then, by (1) in Theorem 2.1, *l* is odd and hence *G* is a non-bipartite graph.

Remark 2.2. Let *G* be a unicyclic graph with $n \ge 4$ vertices. Obviously, $\nu(G) \ge 2$. Hence, by Theorem 2.1, $\eta(G) \le n - 4$. Let *G* be a unicyclic graph with *n* vertices and with $\eta(G) = n - 4$, and let the length of the cycle in *G* be *l*. If *l* is odd, by Lemma 2.1, $\eta(G) = n - 2\nu(G) - 1$, or $\eta(G) = n - 2\nu(G)$. Then we have $\nu(G) = 2$ and *G* must satisfy: $\nu(G) > \frac{l-1}{2} + \nu(G - C_l, q)$, i.e., $\nu(G) = 2$, l = 3 and $\nu(G - C_l) = 0$.

Fig. 2. A graph *G* and a pendant star *H* of *G*, where $G_0 = G - H$.

Hence *G* must have the form of U_1^* shown in Fig. 1. Similarly, if *l* is even, then, by Lemmas 2.2 and 2.3, we can show that *G* must have the form of U_2^* or U_3^* illustrated in Fig. 1. Hence, Proposition 1.4, which was proved by Tan and Liu [13], can be obtained from Theorem 2.1. In Section 3, we will characterize the unicyclic graph *G* with *n* vertices and with $\eta(G) = 0$ and n - 5, respectively.

A vertex-induced subgraph H of a graph G is called a pendant star of G if H is a star with at least two vertices and all pendant vertices of H are also pendant vertices in G. A graph G and a pendant star H of G are illustrated in Fig. 2, where G_0 is the graph G - H. The following result is immediate from the definition of the pendant star:

Lemma 2.4. Suppose H is a pendant star of a graph G. Then $\nu(G) = \nu(G_0) + 1$, where $G_0 = G - H$.

Suppose *G* is a unicyclic graph with *n* vertices. Let the length of the cycle in *G* be *l*. If *G* is a cycle C_l or a cycle C_l with pendant edges at some or all vertices of C_l , we call *G* a canonical unicyclic graph. If *G* is not canonical, *G* contains at least one pendant star H_1 such that $G_1^* = G - H_1$ is also a unicyclic graph. We call the procedure of obtaining $G - H_1$ from *G* a "deleting operator". With repeated applications of the "deleting operators", then a canonical unicyclic graph, denoted by G^* , is obtained from *G*.

Theorem 2.2. Suppose *G* is a unicyclic graph with *n* vertices and *G*^{*} is the graph defined above. Then $\eta(G) = n - 2\nu(G) - 1$ if and only if $\eta(G^*) = |V(G^*)| - 2\nu(G^*) - 1$; $\eta(G) = n - 2\nu(G)$ if and only if $\eta(G^*) = |V(G^*)| - 2\nu(G^*)$; and $\eta(G) = n - 2\nu(G) + 2$ if and only if $\eta(G^*) = |V(G^*)| - 2\nu(G^*) + 2$.

Proof. If *G* is a canonical unicyclic graph, then $G = G^*$ and the theorem holds. Hence we may assume that $G \neq G^*$. Then *G* has a pendant star *H* such that G - H is a unicyclic graph. The theorem follows from the the following claims:

1. $\eta(G) = n - 2\nu(G) - 1$ if and only if $\eta(G - H) = n - |V(H)| - 2\nu(G - H) - 1$; 2. $\eta(G) = n - 2\nu(G)$ if and only if $\eta(G - H) = n - |V(H)| - 2\nu(G - H)$; 3. $\eta(G) = n - 2\nu(G) + 2$ if and only if $\eta(G - H) = n - |V(H)| - 2\nu(G - H) + 2$.

We prove that the second statement holds. Suppose that $\eta(G) = n - 2\nu(G)$. Note that, if G' is a graph obtained from G by deleting a pendant edge, then $\eta(G) = \eta(G')$, a result in [4]. Hence $\eta(G) = |V(H)| - 2 + \eta(G - H)$, which implies that $\eta(G - H) = n - |V(H)| + 2 - 2\nu(G)$. By Lemma 2.4, we have $\eta(G - H) = n - |V(H)| + 2 - 2(\nu(G - H) + 1) = n - |V(H)| - 2\nu(G - H)$. Similarly, we can show that if $\eta(G - H) = n - |V(H)| - 2\nu(G - H)$ then $\eta(G) = n - 2\nu(G)$. By a similar discussion, we can prove the first and the third statements. \Box

The following corollary, which can be obtained from Theorems 2.1 and 2.2, characterizes the unicyclic graphs *G* with $\eta(G) = |V(G)| - 2\nu(G) - 1$, $|V(G)| - 2\nu(G)$ and $|V(G)| - \nu(G) + 2$, respectively.

Fig. 3. The graph U_4^* in Theorem 3.3.

Corollary 2.1. Suppose G is a unicyclic graph with n vertices and the length of the cycle in G is 1. Let G^* be the graph defined above. Then $\eta(G) = n - 2\nu(G) - 1$ if $G^* = C_l$ and l is odd, $\eta(G) = n - 2\nu(G) + 2$ if $G^* = C_l$ and $l = 0 \pmod{4}$, and $n(G) = n - 2\nu(G)$ otherwise.

3. The unicyclic graphs with extremal nullity

In this section, we use some results in Section 2 to characterize the unicyclic graphs G with $\eta(G) = 0$ and n-5, respectively.

Theorem 3.3. Let G be a unicyclic graph with n vertices $(n \ge 5)$ and with $\eta(G) = n - 5$. Then G must have the form of U_4^* illustrated in Fig. 3 or $G = C_5$, where r > 0.

Proof. Suppose the length of the cycle in G is l. Note that, by Theorem 2.1, $\eta(G) = n - 2\nu(G) - 1$, $n - 2\nu(G)$ or $n - 2\nu(G) + 2$. Hence if $\eta(G) = n - 5$ then G must satisfy:

(i) l is odd;

(*ii*) $\eta(G) = n - 2\nu(G) - 1$;

(iii) $\nu(G) = \frac{l-1}{2} + \nu(G - C_l)$. By (i), (ii) and (iii), we have: $\nu(G) = 2$, and l = 3 or l = 5. If l = 5 then $\nu(G - C_l) = 0$. Note that $\nu(G) = 2$. Hence if l = 5 then $G = C_5$. If l = 3, it is trivial to show that G must have the form of U_4^{*} illustrated in Fig. 3. The theorem has thus been proved. \Box

Now we start to characterize the nonsingular unicyclic graphs. First we consider the case in which *G* is not bipartite.

Lemma 3.5. Let G be a unicyclic graph with n vertices and the length l of the cycle C_l in G be odd. Then G is nonsingular if and only if G has a perfect matching or $G - C_{l}$ has a perfect matching.

Proof. " \Leftarrow ". If *G* has a perfect matching, then $n = 2\nu(G)$. If $\nu(G) = \frac{l-1}{2} + \nu(G - C_l)$, then, by Lemma 2.1, we have $\eta(G) = n - 2\nu(G) - 1 = -1$, a contradiction. Hence, by Lemma 2.1, $\eta(G) = n - 2\nu(G) = 1$ 0. If $G - C_l$ contains a perfect matching, then $\nu(G) = \frac{l-1}{2} + \nu(G - C_l)$ and $n = 2\nu(G) + 1$. Hence, by Lemma 2.1, we have $\eta(G) = n - 2\nu(G) - 1 = 0$. Hence we have proved that sufficiency holds.

" \Rightarrow ". Let G be nonsingular (i.e., $\eta(G) = 0$). By Lemma 2.1, either we have $n = 2\nu(G)$ and $\nu(G) > 0$ $\frac{l-1}{2} + \nu(G - C_l)$ or we have $n = 2\nu(G) + 1$ and $\nu(G) = \frac{l-1}{2} + \nu(G - C_l)$, which implies that *G* has a perfect matching or $G - C_l$ has a perfect matching.

The lemma thus follows. \Box

For the bipartite unicyclic graphs *G* with $\eta(G) = 0$, we have the following:

Lemma 3.6. Let G be a unicyclic graph with n vertices and the length l of the cycle C_l in G be even. Then G is nonsingular if and only if G contains a unique perfect matching or $l \neq 0 \pmod{4}$ and G has two perfect matchings.

Proof. Since *G* is a bipartite graph with *n* vertices, the characteristic polynomial of *G* can be expressed by

$$\phi(G, x) = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} b_i x^{n-2i}.$$

" \Leftarrow ". If *G* contains a unique perfect matching, by Proposition 1.1 we have $b_{\frac{n}{2}} = (-1)^{\frac{n}{2}}$. If *G* contains two perfect matchings, $G - C_l$ contains a (unique) perfect matching. By Proposition 1.1, we have $b_{\frac{n}{2}} = 2(-1)^{\frac{n}{2}} + 2(-1)^{\frac{n-l}{2}+1}$. Note that $l \neq 0 \pmod{4}$. Hence we have $b_{\frac{n}{2}} = 4(-1)^{\frac{n}{2}}$. So we have shown that if *G* contains a unique perfect matching or $l \neq 0 \pmod{4}$ and *G* has two perfect matchings then $\eta(G) \neq 0$. Sufficiency thus follows.

" \Rightarrow ". We assume that *G* is nonsingular. Hence $\eta(G) = 0$. By Lemmas 2.2 and 2.3, $\eta(G) = n - 2p$ or $\eta(G) = n - 2p + 2$, where $p = \nu(G)$. Hence n = 2p or n = 2p - 2. Note that $n \ge 2p$, thus it is impossible that n = 2p - 2. So n = 2p, which shows that *G* contains perfect matchings. Note that *G* contains at most two perfect matchings. Thus either $l = 0 \pmod{4}$, $E_1 \cap M \neq \emptyset$ for arbitrary $M \in E_2$, n = 2p or $l = 2 \pmod{4}$, n = 2p. Hence we only need to prove that if *G* contains two perfect matchings then $l \neq 0 \pmod{4}$. We prove this by contradiction. If $l = 0 \pmod{4}$, by a similar way as in the proof of Lemma 2.2, we have

$$b_{\frac{n}{2}} = (-1)^{\frac{n}{2}} m\left(G, \frac{n}{2}\right) + 2(-1)^{\frac{n-l}{2}+1} m\left(G - C_{l}, \frac{n-l}{2}\right).$$

Since *G* has two perfect matchings and $G - C_l$ contains a unique perfect matching (a matching with $\frac{n-l}{2}$ edges), we have

$$b_{\frac{n}{2}} = (-1)^{\frac{n}{2}} m\left(G, \frac{n}{2}\right) + 2(-1)^{\frac{n-l}{2}+1} m\left(G - C_l, \frac{n-l}{2}\right) = 0.$$

This contradicts $\eta(G) = 0$.

So we have finished the proof of the lemma. \Box

The following result is immediate from Lemmas 3.5 and 3.6.

Theorem 3.4. Suppose *G* is a unicyclic graph and the cycle in *G* is denoted by C_1 . Then *G* is nonsingular if and only if *G* satisfies one of the following properties:

- (1) *l* is odd and $G C_l$ contains a perfect matching;
- (2) G contains a unique perfect matching;
- (3) $l \neq 0 \pmod{4}$ and G contains two perfect matchings.

Corollary 3.2. Let X_n and Y_n be as in Problem 1.1. Then $X_n = Y_n$.

Proof. Note that, by Theorem 2.2, $Y_n \subseteq X_n$. We only need to prove $X_n \subseteq Y_n$. Suppose that *G* is a non-singular unicyclic graph with *n* vertices. Let the cycle in *G* be denoted by C_l (i.e., $G \in X_n$). By Theorem 3.4, *G* must satisfy one of the following properties:

- (1) *l* is odd and $G C_l$ contains a perfect matching;
- (2) G contains a unique perfect matching;
- (3) $l \neq 0 \pmod{4}$ and *G* contains two perfect matching.

If *G* satisfies the property (1), then $G - C_l$ is a forest with a perfect matching. By the definition of $Y_n, G \in Y_n$. If *G* satisfies the properties (2) or (3), then, by Theorem 2.2, either *G* is an elementary unicyclic graph or each of its pendant stars, obtained when we obtain G^* from *G* by the "deleting operators", is a P_2 . Then $G \in Y_n$. Hence $X_n \subseteq Y_n$ and the corollary follows.

Acknowledgments

Thanks to the referee for providing many very helpful suggestions for revising this paper.

1300

References

- [1] G.G. Cash, The permanental polynomial, J. Chem. Inf. Comput. Sci. 40 (2000) 1203-1206.
- [2] R.S. Chen, A note on the relations between the permanental and characteristic polynomials of coronoid hydrocarbons, MATCH Commun. Math. Comput. Chem., 51 (2004) 137–148.
- [3] L. Collat, U. Sinogowitz, Spektren endlicher Grafen, Abh. Math. Sem. Univ., Hamburg 21 (1957) 63–77.
- [4] D.M. Cvetkocić, M. Doob, H. Sachs, Spectra of Graphs Theory and Application, Academic Press, New York, 1980.
- [5] S. Fiorini, I. Gutman, I. Sciriha, Trees with maximum nullity, Linear Algebra Appl. 397 (2005) 245–251.
- [6] H.C. Longuet-Higgins, Resonance structures and MO in unsaturated hydrocarbons, J. Chem. Phys. 18 (1950) 265-274.
- [7] A.J. Schwenk, R.J. Wilson, Selected Topics in Graph Theory, Academic Press, New York, 1978, pp. 307–336.
- [8] I. Sciriha, On the construction of graphs of nullity one, Discrete Math. 181 (1998) 193-211.
- [9] I. Sciriha, On the rank of grpahs, in: Y. Alavi, D.R. Lick, A. Schwenk (Eds.), Combinatorics, Graph Theory and Algorithms, vol. 2, Michigan, 1999, pp. 769–778.
- [10] I. Sciriha, On singular line graphs of trees, Congr. Numer. 135 (1998) 73-91.
- [11] I. Sciriha, I. Gutman, On the nullity of line graphs of trees, Discrete Math. 232 (2001) 35-45.
- [12] I. Sciriha, I. Gutman, Nut graphs-maximally extending cores, Util. Math. 54 (1998) 257-272.
- [13] X. Tan, B. Liu, On the nullity of unicyclic graphs, Linear Algebra Appl. 408 (2005) 212–220.
- [14] Y.N. Yeh, I. Gutman, C.M. Fu, Graph transformations which preserve the multiplicity of an eigenvalue, Discrete Appl. Math. 67 (1996) 221–228.
- [15] W. Yan, L. Ye, On the minimal energy of trees with a given diameter, Appl. Math. Lett. 18 (2005) 1046–1052.
- [16] W. Yan, F. Zhang, On the permanental polynomials of some graphs, J. Math. Chem. 35 (2004) 175–188.
- [17] W. Yan, F. Zhang, Enumeration of perfect matchings of graphs with reflective symmetry by Pfaffians, Adv. Appl. Math. 32 (2004) 655–668.
- [18] W. Yan, F. Zhang, Enumeration of perfect matchings of a type of Cartesian products of graphs, Discrete Appl. Math. 154 (2006) 145–157.