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Abstract. The skill of the state-of-the-art climate field re-
construction technique BARCAST (Bayesian Algorithm for
Reconstructing Climate Anomalies in Space and Time) to re-
construct temperature with pronounced long-range memory
(LRM) characteristics is tested. A novel technique for gener-
ating fields of target data has been developed and is used to
provide ensembles of LRM stochastic processes with a pre-
scribed spatial covariance structure. Based on different pa-
rameter setups, hypothesis testing in the spectral domain is
used to investigate if the field and spatial mean reconstruc-
tions are consistent with either the fractional Gaussian noise
(fGn) process null hypothesis used for generating the target
data, or the autoregressive model of order 1 (AR(1)) pro-
cess null hypothesis which is the assumed temporal evolu-
tion model for the reconstruction technique. The study re-
veals that the resulting field and spatial mean reconstructions
are consistent with the fGn process hypothesis for some of
the tested parameter configurations, while others are in better
agreement with the AR(1) model. There are local differences
in reconstruction skill and reconstructed scaling character-
istics between individual grid cells, and the agreement with
the fGn model is generally better for the spatial mean re-
construction than at individual locations. Our results demon-
strate that the use of target data with a different spatiotempo-
ral covariance structure than the BARCAST model assump-
tion can lead to a potentially biased climate field reconstruc-
tion (CFR) and associated confidence intervals.

1 Introduction

Proxy-based climate reconstructions are major tools in un-
derstanding the past climate system and predicting its fu-
ture variability. Target regions, spatial density and tempo-
ral coverage of the proxy network vary between the studies,
with a general trend towards more comprehensive networks
and sophisticated reconstruction techniques used. For exam-
ple, Jones et al. (1998), Moberg et al. (2005), Mann et al.
(1998), Mann et al. (2008), PAGES 2k Consortium (2013),
Luterbacher et al. (2016), Werner et al. (2018) and Zhang
et al. (2018) present reconstructions of surface air tempera-
tures (SAT) for different spatial and temporal domains. On
the most detailed level, the available reconstructions tend
to disagree on aspects such as specific timing, duration and
amplitude of warm/cold periods, due to different methods,
types and number of proxies, and to different regional de-
limitation used in the different studies (Wang et al., 2015).
There are also alternative viewpoints on a more fundamen-
tal basis considering how the level of high-frequency ver-
sus low-frequency variability is best represented; see, e.g.,
Christiansen (2011); Tingley and Li (2012). In this context,
differences between reconstructions can occur due to short-
comings of the reconstruction techniques, such as regression
causing variance losses back in time and bias of the target
variable mean. These artifacts can appear as a consequence
of noisy measurements used as predictors in regression tech-
niques based on ordinary least squares (Christiansen, 2011;
Wang et al., 2014), though ordinary least squares still pro-
vides optimal parameter estimation when the predictor vari-
able has error (Wonnacott and Wonnacott, 1979). The level
of high- and low-frequency variability in reconstructions also
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depends on the type and quality of the proxy data used as in-
put (Christiansen and Ljungqvist, 2017).

The concept of pseudo-proxy experiments was introduced
after millennium-long paleoclimate simulations from general
circulation models (GCMs) first became available, and has
been developed and applied over the last 2 decades (Mann
et al., 2005, 2007; Lee et al., 2008). Pseudo-proxy exper-
iments are used to test the skill of reconstruction methods
and the sensitivity to the proxy network used; see Smerdon
(2012) for a review. The idea behind idealized pseudo-proxy
experiments is to extract target data of an environmental vari-
able of interest from long paleoclimate model simulations.
The target data are then sampled in a spatiotemporal pattern
that simulates real proxy networks and instrumental data.
The target data representing the proxy period are further per-
turbed with noise to simulate real proxy data in a system-
atic manner, while the pseudo-instrumental data are left un-
changed or only weakly perturbed with noise of magnitude
typical for the real-world instrumental data. The surrogate
pseudo-proxy and pseudo-instrumental data are used as in-
put to one or more reconstruction techniques, and the result-
ing reconstruction is then compared with the true target from
the simulation. The reconstruction skill is quantified through
statistical metrics, both for a calibration interval and a much
longer validation interval.

Available pseudo-proxy studies have to a large extent used
target data from the same GCM model simulations, subsets
of the same spatially distributed proxy network and a tem-
porally invariant pseudo-proxy network (Smerdon, 2012). In
the present paper we extend the domain of pseudo-proxy ex-
periments to allow more flexible target data, with a range of
explicitly controlled spatiotemporal characteristics. Instead
of employing surrogate data from paleoclimate GCM simu-
lations, ensembles of target fields are drawn from a field of
stochastic processes with prescribed dependencies in space
and time. In the framework of such an experiment design,
the idealized temperature field can be thought of as a (un-
forced) control simulation of the Earth’s surface temperature
field with a simplified spatiotemporal covariance structure.
The primary goal of using these target fields is to test the abil-
ity of the reconstruction method to preserve the spatiotempo-
ral covariance structure of the surrogates in the climate field
reconstruction. Earlier, Werner et al. (2014); Werner and Tin-
gley (2015) generated stochastic target fields based on the
AR(1) process model equations of BARCAST (Bayesian Al-
gorithm for Reconstructing Climate Anomalies in Space and
Time) introduced in Sect. 2.1. We present for the first time
a data generation technique for fields of long-range memory
(LRM) target data.

Additionally, we test the reconstruction skill on an ensem-
ble member basis using standard metrics including the corre-
lation coefficient and the root-mean-squared error (RMSE).
The continuous ranked probability score (CRPS) is also em-
ployed; this is a skill metric composed of two subcom-

ponents recently introduced for ensemble-based reconstruc-
tions (Gneiting and Raftery, 2007).

Temporal dependence in a stochastic process over time t is
described as persistence or memory. An LRM stochastic pro-
cess exhibits an autocorrelation function (ACF) and a power
spectral density (PSD) of a power law form: C(t)∼ tβ−1

and S(f )∼ f−β , respectively. The power law behavior of
the ACF and the PSD indicates the absence of a charac-
teristic timescale in the time series; the record is scale in-
variant (or just scaling). The spectral exponent β determines
the strength of the persistence. The special case β = 0 is the
white noise process, which has a uniform PSD over the range
of frequencies. For comparison, another model often used to
describe the background variability of the Earth’s SAT is the
autoregressive process of order 1 (AR1; Hasselmann, 1976).
This process has a Lorentzian power spectrum (steep slope
at high frequencies, constant at low frequencies) and thereby
does not exhibit long-range correlations.

For the instrumental time period, studies have shown that
detrended local and spatially averaged surface temperature
data exhibit LRM properties on timescales from months up to
decades (Koscielny-Bunde et al., 1996; Rybski et al., 2006;
Fredriksen and Rypdal, 2016). For proxy/multi-proxy SAT
reconstructions, studies indicate persistence up to a few cen-
turies or millennia (Rybski et al., 2006; Huybers and Curry,
2006; Nilsen et al., 2016). The exact strength of persistence
varies between data sets and depends on the degree of spatial
averaging, but in general 0< β < 1.3 is adequate. The value
of β > 1 is usually associated with sea surface temperature,
which features stronger persistence due to effects of oceanic
heat capacity (Fraedrich and Blender, 2003; Fredriksen and
Rypdal, 2016).

Our basic assumption is that the background temporal evo-
lution of Earth’s surface air temperature can be modeled
by the persistent Gaussian stochastic model known as the
fractional Gaussian noise (fGn; Chapter 1 and 2 in Beran
et al., 2013; Rypdal et al., 2013). This process is station-
ary, and the persistence is defined by the spectral exponent
0< β < 1. The synthetic target data are designed as ensem-
bles of fGn processes in time, with an exponentially decay-
ing spatial covariance structure. In contrast to using target
data from GCM simulations, this gives us the opportunity
to vary the strength of persistence in the target data, retain-
ing a simplistic and temporally persistent model for the sig-
nal covariance structure. The persistence is varied system-
atically to mimic the range observed in actual observations
over land, typically 0< β < 1 (Franke et al., 2013; Fredrik-
sen and Rypdal, 2016; Nilsen et al., 2016). The pseudo-proxy
data quality is also varied by adding levels of white noise
corresponding to signal-to-noise ratios by standard deviation
SNR=∞,3,1,0.3. For comparison, the signal-to-noise ra-
tio of observed proxy data is normally between 0.5 and 0.25
(Smerdon, 2012). However, in Werner et al. (2018), most
tree-ring series were found to have SNR> 1.
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The fGn model is appropriate for many observations of
SAT data, but there are also some deviations. The theo-
retical fGn follow a Gaussian distribution, but for instru-
mental SAT data the deviation from Gaussianity varies with
latitude (Franzke et al., 2012). Some temperature-sensitive
proxy types are also characterized by nonlinearities and non-
Gaussianity (Emile-Geay and Tingley, 2016).

Since the target data are represented as an ensemble of in-
dependent members generated from the same stochastic pro-
cess, there is little value in estimating and analyzing ensem-
ble means from the target and reconstructed time series them-
selves. Anomalies across the ensemble members will average
out, and the ensemble mean will simply be a time series with
non-representative variability across scales. Instead we will
focus on averages in the spectral sense. The median of the
ensemble member-based metrics are used to quantify the re-
construction skill.

The reconstruction method to be tested, Bayesian Algo-
rithm for Reconstructing Climate Anomalies in Space and
Time (BARCAST), is based on a Bayesian hierarchical
model (Tingley and Huybers, 2010a). This is a state-of-the-
art paleoclimate reconstruction technique, described in fur-
ther detail in Sect. 2.1. The motivation for using this par-
ticular reconstruction technique in the present study is the
contrasting background assumptions for the temporal covari-
ance structure. BARCAST assumes that the temperature evo-
lution follows an AR(1) process in time, while the target data
are generated according to the fGn model. The consequences
of using an incorrect null hypothesis for the temporal data
structure are illustrated in Fig. 1. Here, the original time se-
ries in Fig. 1a follows an fGn structure. The corresponding
95 % confidence range of power spectra is plotted in blue
in Fig. 1c. Using the incorrect null hypothesis that the data
are generated from an AR(1) model, we estimate the AR(1)
parameters from the time series in Fig. 1a using maximum
likelihood estimation. A realization of an AR(1) process with
these parameters is plotted in Fig. 1b, with the 95 % confi-
dence range of power spectra shown in red in Fig. 1c. The
characteristic timescale indicating the memory limit of the
system is evident as a break in the red AR(1) spectrum. This
is an artifact that does not stem from the original data, but
simply occurs because an incorrect assumption was used for
the temporal covariance structure.

A particular advantage of BARCAST as a probabilistic re-
construction technique lies in its capability to provide an ob-
jective error estimate as the result of generating a distribu-
tion of solutions for each set of initial conditions. The re-
construction skill of the method has been tested earlier and
compared against a few other climate field reconstruction
(CFR) techniques using pseudo-proxy experiments. Tingley
and Huybers (2010b) use instrumental temperature data for
North America, and construct pseudo-proxy data from some
of the longest time series. BARCAST is then compared to
the RegEM method used by Mann et al. (2008, 2009). The
findings are that BARCAST is more skillful than RegEM

if the assumptions for the method are not strongly violated.
The uncertainty bands are also narrower. Another pseudo-
proxy study is described in Werner et al. (2013), where BAR-
CAST is compared against the canonical correlation analy-
sis (CCA) CFR method. The pseudo-proxies in that paper
were constructed from a millennium-long forced run of the
NCAR CCSM4 model. The results showed that BARCAST
outperformed the CCA method over the entire reconstruc-
tion domain, being similar in areas with good data cover-
age. There is an additional pseudo-proxy study by Gómez-
Navarro et al. (2015), targeting precipitation which has a
more complex spatial covariance structure than SAT anoma-
lies. In that study, BARCAST was not found to outperform
the other methods.

In the following, we describe the methodology of BAR-
CAST and the target data generation in Sect. 2. The spec-
tral estimator used for persistence analyses is also introduced
here. Sect. 3 is comprised of an overview of the experiment
setup and explains the hypothesis testing procedure. Results
are presented in Sect. 4 after performing hypothesis testing
in the spectral domain of persistence properties in the local
and spatial mean reconstructions. The skill metric results are
also summarized. Finally, Sect. 5 discusses the implications
of our results and provides concluding remarks.

2 Data and methods

2.1 BARCAST methodology

BARCAST is a climate field reconstruction method, de-
scribed in detail in Tingley and Huybers (2010a). It is based
on a Bayesian hierarchical model with three levels. The true
temperature field in BARCAST, T t is modeled as an AR(1)
process in time. Model equations are defined at the process
level:

T t −µ1= α(T t−1−µ1)+ εt , (1)

where the scalar parameter µ is the mean of the process, α is
the AR(1) coefficient and 1 is a vector of ones. The subscript
t indexes time in years, and the innovations (increments) εt
are assumed to be independent and identically distributed
normal draws εt ∼N (0,6), where

6ij = σ
2 exp(−φ|xi − xj |) (2)

is the spatial covariance matrix depicting the covariance be-
tween locations xi and xj .

The spatial e-folding distance is 1/φ and is chosen to be
∼ 1000 km for the target data. This is a conservative esti-
mate resulting in weak spatial correlations for the variabil-
ity across a continental landmass. (North et al., 2011) es-
timate that the decorrelation length for a 1-year average of
Siberian temperature station data is 3000 km. On the other
hand, Tingley and Huybers (2010a) estimate a decorrelation
length of 1800 km for annually mean global land data. They
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Figure 1. (a) Arbitrary fGn time series with β = 0.75. (b) Arbitrary time series of an AR(1) process with parameters estimated from the time
series in (a) using maximum likelihood. (c) Log–log spectra showing 95 % confidence ranges based on Monte Carlo ensembles of fGn with
β = 0.75 (blue shaded area), and AR(1) processes with parameters estimated from the time series in (a) (red, shaded area). Dashed (dotted)
lines mark the ensemble means of the fGn (AR(1)) process spectra.

further use annual mean instrumental and proxy data from
the North American continent to reconstruct SAT back to
1850, and find a spatial correlation length scale of approx-
imately 3300 km for this BARCAST reconstruction. Werner
et al. (2013) use 1/φ ∼ 1000 km as the mean for the log-
normal prior in the BARCAST pseudo-proxy reconstruction
for Europe, but the reconstruction has correlation lengths
between 6000 and 7000 km. The reconstruction of Werner
et al. (2018) has spatial correlation length slightly longer than
1000 km.

On the data level, the observation equations for the instru-
mental and proxy data are

W t =

(
HI,t

β1 ·HP,t

)
T t +

(
eI,t

eP,t +β01

)
, (3)

where eI,t and eP,t are multivariate normal draws ∼
N (0,τ 2

I I) and ∼N (0,τ 2
P I). HI,t and HP,t are selection ma-

trices of ones and zeros which at each year select the lo-
cations where there are instrumental/proxy data. β0 and β1
are parameters representing the bias and scaling factor of the
proxy records relative to the temperatures. Note that these
two parameters have no relation to the spectral parameter
β. The BARCAST parameters are distinguished by their in-
dices, the notation is kept as it is to comply with existing
literature.

The remaining level is the prior. Weakly informative but
proper prior distributions are specified for the scalar parame-
ters and the temperature field for the first year in the analysis.
The priors for all parameters except φ are conditionally con-
jugate, meaning the prior and the posterior distribution has
the same parametric form. The Markov Chain Monte Carlo
(MCMC) algorithm known as the Gibbs sampler (with one
Metropolis step) is used for the posterior simulation (Gelman
et al., 2003). Table C1 sums up the prior distributions and
the choice of hyperparameters for the scalar parameters in
BARCAST. The CFR version applied here has been updated
as described in Werner and Tingley (2015). The updated ver-
sion allows inclusion of proxy records with age uncertainties.

This property will not be used here directly, but it implies
that proxies of different types may be included. Instead of
estimating one single parameter value of τ 2

P , β0, β1, the up-
dated version estimates individual values of the parameters
for each proxy record (Werner et al., 2018).

The Metropolis-coupled MCMC algorithm is run for 5000
iterations, running three chains in parallel. Each chain is as-
sumed equally representative for the temperature reconstruc-
tion if the parameters converge. There are a number of ways
to investigate convergence, for instance one can study the
variability in the plots of draws of the model parameters
as a function of step number of the sampler, as in Werner
et al. (2013). However, a more robust convergence measure-
ment can be achieved when generating more than one chain
in parallel. By comparing the within-chain variance to the
between-chain variance we get the convergence measure-
ment R̂ (Chapter 11 in Gelman et al., 2003). R̂ close to 1
indicates convergence for the scalar parameters.

There are numerous reasons why the parameters may fail
to converge, including inadequate choice of prior distribution
and/or hyperparameters or using an insufficient number of it-
erations in the MCMC algorithm. It may also be problematic
if the spatiotemporal covariance structure of the observations
or surrogate data deviate strongly from the model assumption
of BARCAST.

BARCAST was used to generate an ensemble of recon-
structions, in order to achieve a mean reconstruction as well
as uncertainties. In our case, the draws for each temperature
field and parameter are thinned so that only every 10 of the
5000 iterations are saved; this secures the independence of
the draws.

The output temperature field is reconstructed also in grid
cells without observations; this is a unique property com-
pared to other well-known field reconstruction methods such
as the regularized expectation maximum technique (RegEM)
applied in Mann et al. (2009). Note that the assumptions
for BARCAST should generally be different for land and
oceanic regions, due to the differences in characteristic
timescales and spatiotemporal processes. BARCAST has so
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far only been configured to handle continental land data (Tin-
gley and Huybers, 2010a).

2.2 Target data generation

While generating ensembles of synthetic LRM processes in
time is straightforward using statistical software packages,
it is more complicated to generate a field of persistent pro-
cesses with prescribed spatial covariance. Below we describe
a novel technique that fulfills this goal, which can be ex-
tended to include more complicated spatial covariance struc-
tures. Such a spatiotemporal field of stochastic processes has
many potential applications, both theoretical and practical.

Generation of target data begins with reformulating Eq. (1)
so that the temperature evolution is defined from a power law
function instead of an AR(1). The continuous-time version of
Eq. (1) (with µ= 0) is the stochastic (ordinary) differential
equation:

dT t =−λT dt + dW t , (4)

where T t = (Tt,1, . . .,Tt,n) and Tt,i is the temperature at
time t and spatial position xi . The noise term dW t =

(dWt,1, . . .,dWt,n) is a vector of (dependent) white noise
measurements. Spatial dependence is given by Eq. (2) when
εt =W t+1t −W t and 1t = 1 year. If I denotes the identity
matrix, the stationary solution of Eq. (4) is

T t =

t∫
−∞

exp(−λI (t − s))dW s, (5)

which defines a set of dependent Ornstein–Uhlenbeck pro-
cesses (the continuous-time versions of AR(1) processes
with α = e−λ, α = 1−λ). Equation (4) assumes that the sys-
tem is characterized by a single eigenvalue λ, and conse-
quently that there is only one characteristic timescale 1/λ.
It is well known that surface temperature exhibits variabil-
ity on a range of characteristic timescales, and more realistic
models can be obtained by generalizing the response kernel
as a weighted sum of exponential functions (Fredriksen and
Rypdal, 2017):

T t =

t∫
−∞

[∑
k

ck exp(−λkI (t − s))

]
dW s . (6)

An emergent property of the climate system is that the tem-
poral variability is approximately scale invariant (Rypdal and
Rypdal, 2014, 2016) and the multi-scale response kernel in
Eq. (6) can be approximated by a power law function to yield

T t =

t∫
−∞

(t − s)β/2−1dW s . (7)

This expression describes the long memory response to the
noise forcing. We note that this should be considered as a
formal expression since the stochastic integral is divergent
due to the singularity at s = t . Also note that T t in Eq. (7)
in contrast to Eq. (5) is no longer a solution to an ordinary
differential equation, but to a fractional differential equation.
By neglecting the contribution from the noisy forcing prior
to t = 0 we obtain

T t =

t∫
0

(t − s)β/2−1dW s, (8)

which in discrete form can be approximated by

T t =

t∑
s=0

(t − s+ τ0)β/2−1εs . (9)

The stabilizing term τ0 is added to avoid the singularity at
s = t . The optimal choice would be to choose τ0 such that
the term in the sum arising from s = t represents the integral
over the interval s ∈ (t − 1, t), i.e.,

τ0 =

τ0∫
0

τβ/2−1dτ,

which has the solution τ0 = β/2.
Summations over time steps s = 1,2, . . .N of (9) results in

the matrix product:

Tt,i =

N∑
s=1

Gt,sεs,i,

where G=Gt,s is the N ×N matrix

Gt,s = (t − s+β/2)(β/2−1)2(t − s), (10)

and 2(t) is the unit step function.
If we for convenience omit the spatial index i from

Eq. (10), the model for the target temperature field T at time
t can be written in the compressed form

T t =Gtεt . (11)

2.3 Scaling analysis in the spectral domain

The temporal dependencies in the reconstructions are inves-
tigated to obtain detailed information about how the recon-
struction technique may alter the level of variability on dif-
ferent scales, and how sensitive it is to the proxy data qual-
ity. Persistence properties of target data, pseudo-proxies and
the reconstructions are compared and analyzed in the spec-
tral domain using the periodogram as the estimator. See Ap-
pendix A for details on how the periodogram is estimated.

Power spectra are visualized in log–log plots since the
spectral exponent then can be estimated by a simple linear

www.clim-past.net/14/947/2018/ Clim. Past, 14, 947–967, 2018



952 T. Nilsen et al.: Assessing the performance of the BARCAST climate field reconstruction technique

fit to the spectrum. The raw and log-binned periodograms
are plotted, and β is estimated from the latter. Log binning of
the periodogram is used here for analytical purposes, since
it is useful with a representation where all frequencies are
weighted equally with respect to their contributions to the
total variance.

It is also possible to use other estimators for scaling anal-
ysis, such as the detrended fluctuation analysis (DFA; Peng
et al., 1994), or wavelet variance analysis (Malamud and Tur-
cotte, 1999). One can argue for the superiority of methods
other than PSD or the use of a multi-method approach. How-
ever, we consider the spectral analysis to be adequate for
our purpose and refer the reader to Rypdal et al. (2013) and
Nilsen et al. (2016) for discussions on selected estimators for
scaling analysis.

3 Experiment setup

The experiment domain configuration is selected to resemble
that of the continental landmass of Europe, withN = 56 grid
cells of size 5◦×5◦. The reconstruction period is 1000 years.
reflecting the last millennium. The reconstruction region and
period are inspired by the BARCAST reconstructions in
Werner et al. (2013); Luterbacher et al. (2016) and approx-
imate the density of instrumental and proxy data in recon-
structions of the European climate of the last millennium.
The temporal resolution for all types of data is annual. By
design, the target fGn data are meant to be an analogue of
the unforced SAT field. We will study both the field and spa-
tial mean reconstruction.

Pseudo-instrumental data cover the entire reconstruction
region for the time period 850–1000 and are identical to the
noise-free values of the true target variables. The spatial dis-
tribution of the pseudo-proxy network is highly idealized as
illustrated in Fig. 2, the data covers every fourth grid cell for
the time period 1–1000. The pseudo-proxies are constructed
by perturbing the target data with white noise according to
Eq. (3). The variance of the proxy observations is τ 2

P , and the
SNR is calculated as

SNR=
β2

1 Var(Tt )

τ 2
P

. (12)

Our set of experiments is summarized in Table 1 and com-
prises target data with three different strengths of persis-
tence, β = 0.55,0.75,0.95 and pseudo-proxies with SNR=
∞,3,1, and 0.3. In total, 20 realizations of target pseudo-
proxy and pseudo-instrumental data are generated for each
combination of β and SNR and used as input to BARCAST.
The reconstruction method is probabilistic and generates en-
sembles of reconstructions for each input data realization. In
total, 30 000 ensemble members are constructed for every pa-
rameter setup.

 10 °
 E

 20° E  30° E  40
° E

 50° E

 40 °
 N  

 50 °
 N  

 60 °
 N  

 70 °
 N  

Figure 2. The spatial domain of the reconstruction experiments.
Dots mark locations of instrumental sites, proxy sites are high-
lighted by red circles. The superimposed map of Europe provides
a spatial scale.

Table 1. Summary of the experiment setup.

Spatiotemporal resolution: 5◦× 5◦/annual
Strength of persistence (β): 0.55, 0.75, 0.95
Noise level (SNR): ∞, 3, 1, 0.3
Iterations before/after thinning: 5000/500

Input data Reconstruction
Ensemble members per experiment 20 30 000

3.1 Hypothesis testing

Hypothesis testing in the spectral domain is used to de-
termine which pseudo-proxy/reconstructed data sets can be
classified as fGn with the prescribed scaling parameter,
or as AR(1) with parameter α estimated from BARCAST.
The power spectrum for each ensemble member of the lo-
cal/spatial mean reconstructions is estimated, and the mean
power spectrum is then used for further analyses. The first
null hypothesis is that the data sets under study can be de-
scribed using an fGn with the prescribed scaling parame-
ter for the target data at all frequencies, βtarget = 0.55,0.75,
0.95, respectively. For testing we generate a Monte Carlo en-
semble of fGn series with a value of the scaling parameter
identical to the target data. The power spectrum of each en-
semble member is estimated, and the confidence range for the
theoretical spectrum is then calculated using the 2.5 and 97.5
quantiles of the log-binned periodograms of the Monte Carlo
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ensemble. The null hypothesis is rejected if the log-binned
mean spectrum of the data is outside of the confidence range
for the fGn model at any point.

The second null hypothesis tested is that the data can be
described as an AR(1) process at all frequencies, with the
parameter α estimated from BARCAST. Distributions for all
scalar parameters including the AR(1) parameter α are pro-
vided through the reconstruction algorithm. The mean of this
parameter was used to generate a Monte Carlo ensemble of
AR(1) processes. The Monte Carlo ensemble and the confi-
dence range are then based on log-binned periodograms for
this theoretical AR(1) process.

Figure 3 presents an example of the hypothesis testing pro-
cedure. The fGn 95 % confidence range is plotted as a shaded
gray area in the log–log plot together with the mean raw and
mean log-binned periodograms for the data to be tested. Blue
curve and dots represent mean raw and log-binned PSD for
pseudo-proxy data, and red curve and dots represent mean
raw and log-binned PSD for reconstructed data. The gray,
dotted line is the ensemble mean.

The two null hypotheses provide no restrictions on the
normalization of the fGn and AR(1) data used to gener-
ate the Monte Carlo ensembles. In particular, they do not
have to be standardized in the same manner as the pseudo-
proxy/reconstructed data. This makes the experiments more
flexible, as the confidence range of the Monte Carlo ensem-
ble can be shifted vertically to better accommodate the data
under study. A standard normalization of data includes sub-
tracting the mean and normalizing by the standard deviation.
This was sufficient to support the null hypotheses in many of
our experiments. A different normalization had to be used in
other experiments.

4 Results

BARCAST successfully estimates posterior distributions for
all reconstructed temperature fields and scalar parameters.
Convergence is reached for the scalar parameters despite the
inconsistency of the input data temporal covariance structure
with the default assumption of BARCAST. Table C2 lists the
true parameter values used for the target data generation, and
Table C3 summarizes the mean of the posterior distributions
estimated from BARCAST. Studying the parameter depen-
dencies, it is clear that the posterior distributions of α and σ 2

depend on the prescribed β and, to a lesser extent, SNR for
the target data. Instead of listing the posterior distributions of
τ 2

P and β1 we have estimated the local reconstructed SNR at
each proxy location using Eq. (12).

Further results concern the spectral analyses and skill met-
rics. All references to spectra in the following correspond
to mean spectra. Analyses of the reconstruction skill pre-
sented below are performed on a grid point basis, and for
the correlation and RMSE also for the spatial mean recon-
struction. While the latter provides an aggregate summary of

the method’s ability to reproduce specified properties of the
climate process on a global scale, the former evaluates BAR-
CAST’s spatial performance.

4.1 Isolated effects of added proxy noise on scaling
properties in the input data

The scaling properties of the input data have already been
modified when the target data are perturbed with white noise
to generate pseudo-proxies. The power spectra shown in blue
in Fig. 3 are used to illustrate these effects for one arbitrary
proxy location and β = 0.75. Figure 3a shows the pseudo-
proxy spectrum for SNR=∞, which is the unperturbed
fGn signal corresponding to ideal proxies. Figure 3b–d show
pseudo-proxy spectra for SNR= 3, 1, 0.3, respectively. The
effect of added white noise in the spectral domain is man-
ifested as flattening of the high-frequency part of the spec-
trum equal to β = 0, and a gradual transition to higher β for
lower frequencies. The results for βtarget = 0.55 and 0.95 are
similar (figures not shown).

4.2 Memory properties in the field reconstruction

Hypothesis testing was performed in the spectral domain for
the field reconstructions, with the two null hypotheses for-
mulated as follows:

1. The reconstruction is consistent with the fGn structure
in the target data for all frequencies.

2. The reconstruction is consistent with the AR(1) model
used in BARCAST for all frequencies.

Table 2 summarizes the results for all experiment configu-
rations at local grid cells, both directly at and between proxy
locations. Figure 3 shows the mean power spectra generated
for one arbitrary proxy grid cell of the reconstruction in red.
The fGn model is adequate for SNR=∞, 3 and 1, shown
in Fig. 3a–c. For the lowest SNR presented in panel (d), the
reconstruction spectrum falls outside the confidence range of
the theoretical spectrum for one single log-binned point. Not
unexpectedly, the difference in shape of the PSD between the
pseudo-proxy and reconstructed spectra increases with de-
creasing SNR. The difference is largest for the noisiest prox-
ies with SNR= 0.3. This figure does not show the hypothesis
testing for the reconstructed spectrum using the AR(1) pro-
cess null hypothesis. Results show that this null hypothesis is
rejected for all cases except SNR= 0.3.

The hypothesis testing results vary moderately between
the individual grid cells. PSD analyses of the local recon-
structions using the same β but in an arbitrary non-proxy lo-
cation are displayed in Fig. 4. Here, the reconstructed mean
spectrum is plotted in gray together with both the fGn 95 %
confidence range (blue) and the AR(1) confidence range
(red). Hypothesis testing using null hypothesis 1 and 2 is
performed systematically. Wherever the reconstructed log-
binned spectrum is consistent with the fGn/AR(1) model,
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Figure 3. Mean raw and log-binned PSD for pseudo-proxy data (blue curve and asterisks, respectively) and reconstruction at the same site
(red curve and dots, respectively) generated from βtarget = 0.75 and different SNR indicated in (a)–(d). Colored gray shading and dashed,
gray lines indicate 95 % confidence range and the ensemble mean, respectively, for a Monte Carlo ensemble of fGn with β = 0.75.

Figure 4. Mean raw and log-binned PSD for local reconstructed data at a site between proxies (gray curve and dots, respectively) generated
from βtarget = 0.75 and different SNR indicated in (a)–(d). Colored shading and dashed/dotted lines indicate 95 % confidence range and
the ensemble mean, respectively, for a Monte Carlo ensemble of fGn with β = 0.75 (blue) and of AR(1) processes with α estimated from
BARCAST (red). The confidence ranges found consistent with the data are drawn with solid lines.

the edges of the associated confidence range are plotted with
solid lines. We find that all reconstructed log-binned spectra
are consistent with the AR(1) model, and for SNR=∞ and
3 the reconstructions are also consistent with the fGn model.

4.3 Memory properties in the spatial mean
reconstruction

The spatial mean reconstruction is calculated as the mean
of the local reconstructions for all grid cells considered,
weighted by the areas of the grid cells. The reconstruction re-
gion considered is 37.5–67.5◦ N, 12.5–47.5◦ E, as shown in
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Figure 5. Mean raw and log-binned PSD for the spatial mean reconstruction (gray curve and dots, respectively), generated from βtarget = 0.75
and different SNR indicated in (a)–(d). Colored shading and dashed/dotted lines indicate 95 % confidence range and the ensemble mean,
respectively, for a Monte Carlo ensemble of fGn with β = 0.75 (blue) and of AR(1) processes with α estimated from BARCAST (red). The
confidence ranges found consistent with the data are drawn with solid lines.

Table 2. Hypothesis testing results for local reconstructed data
compared to Monte Carlo ensembles of fGn and AR(1) processes.
The “x” mark in the table indicates that the null hypothesis cannot
be rejected. Null hypotheses are 1: the reconstruction is consistent
with the fGn structure in the target data for all frequencies; 2: the
reconstruction is consistent with the AR(1) assumption from BAR-
CAST for all frequencies.

Local field values

SNR ∞ 3 1 0.3 ∞ 3 1 0.3

β = 0.55 proxy site between proxy sites

1: x x x x x x x x

2: x x x x x x x

β = 0.75 proxy site between proxy sites

1: x x x x x

2: x x x x x

β = 0.95 proxy site between proxy sites

1: x x x x

2: x x x x x

Fig. 2. Figure 5 shows the raw and log-binned periodogram
of the spatial mean reconstruction for βtarget = 0.75 in gray,
together with the 95 % confidence range of fGn generated
with β = 0.75 (blue) and AR(1) confidence range (red). All

Table 3. Hypothesis testing results for spatial mean reconstructed
data compared to Monte Carlo ensembles of fGn and AR(1) pro-
cesses. The null hypotheses 1 and 2 are the same as in Table 2, and
the “x” has the same meaning.

Spatial mean values

SNR ∞ 3 1 0.3 ∞ 3 1 0.3 ∞ 3 1 0.3

β = 0.55 β = 0.75 β = 0.95

1: x x x x x x x x x x x x

2: x x

hypothesis testing results for the spatial mean reconstruction
are summarized in Table 3. Results show that the fGn null
hypothesis is suitable for all values of β and SNR, while the
AR(1) process null hypothesis is also supported for the case
β = 0.55,0.75, SNR= 0.3.

4.4 Effects from BARCAST on the reconstructed signal
variance

The power spectra can also be used to gain information
about the fraction of variance lost/gained in the reconstruc-
tion compared with the target. This fraction is in some sense
the bias of the variance, and was found by integrating the
spectra of the input and output data over frequency. The
spatial mean target/reconstructions were used, and the mean
log-binned spectra. The total power in the spatial mean re-
construction and the target were estimated, and the ratio of
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Figure 6. Log–log plot showing log-binned power spectra of spa-
tial mean target (blue) and reconstruction (red) for one experiment.
Vertical gray lines mark the frequency ranges used to estimate bias
of variance as referred to in Sect. 4.4.

the two provides the under/overestimation of the variance:
RVar =

Var(Tt(rec))
Var(Tt(target))

. A ratio less than unity implies that the
reconstructed variance is underestimated compared with the
target. Our analyses for the total variance reveal that the
ratio varies between 0.83 and 1.05 for the different exper-
iments and typically decreases for increasing noise levels.
How much the ratio decreases with SNR depends on β, with
higher ratios for higher β values. For example, R ∼ 1 for
all β, SNR=∞ and progressively decreases to R = 0.83,
0.89, 0.94 for SNR= 0.3, β = 0.55,0.75,0.95, respectively.
In other terms, there are larger variance losses in the recon-
struction for smaller values of β than for higher β. We also
divided the spectra into three different frequency ranges as
shown in Fig. 6 to test if the fraction of variance lost/gained
is frequency dependent. The sections separate low frequen-
cies corresponding approximately to centennial timescales,
middle frequencies corresponding to timescales between
decades and centuries and high frequencies corresponding
to timescales shorter than decadal. The results show no sys-
tematic differences between the frequency ranges associated
with the parameter configuration.

4.5 Assessment of reconstruction skill

It is common practice in paleoclimatology to evaluate recon-
struction skill using metrics such as the Pearson’s correla-
tion coefficient r , the RMSE, the coefficient of efficiency
(CE) and reduction of error (RE; Smerdon et al., 2011; Wang
et al., 2014). The two former skill metrics will be used in
this study, but the CE and RE metrics are not proper scor-
ing rules and are therefore unsuitable for ensemble-based re-
constructions in general (Gneiting and Raftery, 2007; Tip-
ton et al., 2015); see also Appendix B. Instead, the contin-
uous ranked probability score (CRPS) will be used (Gneit-
ing and Raftery, 2007). The metric was used specifically for
probabilistic climate reconstructions in Tipton et al. (2015);
Werner and Tingley (2015); Werner et al. (2018). Since the
CRPS, its average and subcomponents are less well known
than the two former skill metrics, we define these terms in

Appendix B and refer the reader to Gneiting and Raftery
(2007) and Hersbach (2000) for further details. CRPS results
below are shown for the CRPS represented via the sum of the
subcomponents CRPSpot and Reli score.

4.5.1 Skill measurement results

Figures 7–9 display the spatial distribution of the ensemble
mean skill metrics for the experiment β = 0.75 and all noise
levels. All figures show a spatial pattern of dependence on
the proxy availability, with the best skill attained at proxy
sites. This is the most important result for all the spatially dis-
tributed skill metrics. For the BARCAST CFR method, the
signal at locations distant from proxy information by design
cannot be skillfully reconstructed, as the amount of shared
information on the target climate field between the two lo-
cations decreases exponentially with distance (Werner et al.,
2013). See Sect. 5 for further details on the relation between
skill and co-localization of proxy data.

Figure 7 shows the local correlation coefficient r between
the target and the localized reconstruction for the verification
period 2–1849. The correlation is highest for the ideal proxy
experiment in Fig. 7a, and gradually decreases at all locations
as the noise level rises in panels (b)–(d). Figure 8 shows the
local RMSE. Note that Figs. 8–9 use the same color bar as in
Fig. 7, but best skill is achieved where the RMSE/CRPSpot
is low. Figure 9 shows the distribution of CRPSpot. The con-
tribution from Reli is generally < 1× 10−2, indicating ex-
cellent correspondence between the predicted and the recon-
structed confidence intervals. The CRPSpot therefore dom-
inates the average CRPS metric. The minimum estimate for
the CRPSpot at proxy locations in Fig. 9a is 2×10−2, indicat-
ing a low error between the temporally averaged reconstruc-
tion and the target. For the remaining locations in Fig. 9a–d,
the estimates are between 0.24 and 0.55 given in the same
unit as the target variable. The temperature unit has not been
given for our reconstructions, but for real-world reconstruc-
tions the unit will typically be degrees Celsius (◦C) or Kelvin
(K).

Table 4 summarizes the median local skill for all exper-
iments. BARCAST is in general able to reconstruct major
features of the target field. A general conclusion that can
be drawn is that the skill metrics vary with SNR, but are
less sensitive to the value of β. For the highest noise level
SNR= 0.3, the values obtained for r and the RMSE are in
line with those listed in Table 1 of Werner et al. (2013).

Table 4 also sums up the ensemble median skill values of
r and RMSE for the spatial mean reconstructions. The skill
is considerably better than for the local field reconstructions.

5 Discussion

In this study we have tested the capability of BARCAST
to preserve temporal LRM properties of reconstructed data.
Pseudo-proxy and pseudo-instrumental data were generated
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Figure 7. Local correlation coefficient between reconstructed temperature field and target field for the verification period (ensemble mean).
The box plots left of the color bars indicate the distribution of grid point correlation coefficients. β = 0.75

with a prescribed spatial covariance structure and LRM tem-
poral persistence using a new method. The data were then
used as input to the BARCAST reconstruction algorithm,
which by design use an AR(1) model for temporal dependen-
cies in the input/output data. The spatiotemporal availability
of observational data was kept the same for all experiments
in order to isolate the effect of the added noise level and the
strength of persistence in the target data. The mean spectra
of the reconstructions were tested against the null hypothe-
ses that the reconstructed data can be represented as LRM
processes using the parameters specified for the target data,
or as AR(1) processes using the parameter estimated from
BARCAST.

We found that despite the default assumptions in BAR-
CAST, not all local and spatial mean reconstructions were
consistent with the AR(1) model. Figures 3–5 and Tables 2–
3 summarize the hypothesis testing results; the local recon-
structions at grid cells between proxy locations follow to
large extent the AR(1) model, while the local reconstruc-
tions directly at proxy locations are more similar to the

original fGn data. However, the simulated proxy quality is
crucial for the spectral shape of the local reconstructions,
with higher noise levels indicating better agreement with the
AR(1) model than fGn.

All spatial mean reconstructions are consistent with the
fGn process null hypothesis according to Table 3. For the
two cases β = 0.55,0.75, SNR= 0.3, the spatial mean re-
constructions are also consistent with the AR(1) process null
hypothesis. This is clear from the spatial mean reconstruc-
tion spectra (gray curves in Fig. 5) and from comparing the
hypothesis testing results in Tables 2 and 3. The improve-
ment in scaling behavior with spatial averaging is expected,
as the small-scale variability denoted by εt in Eq. (11) is av-
eraged out. Eliminating local disturbances naturally results
in a more coherent signal. However, the spatial mean of the
target data set does not have a significantly higher β than lo-
cal target values. This is due to the relatively short spatial
correlation length chosen: 1/φ = 1000 km. In observed tem-
perature data, spatial averaging tends to increase the scaling
parameter β (Fredriksen and Rypdal, 2016).
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Figure 8. Local RMSE between reconstructed temperature field and target field for the verification period. The box plots left of the color
bars indicate the distribution of grid point correlation coefficients. β = 0.75.

The power spectra in Figs. 3–5b–d show that the temporal
covariance structure of the reconstructions is altered com-
pared with the target data for all experiments where noisy
input data were used. Furthermore, the spectra of the pseudo-
proxies in Fig. 3b–d all deviate from the target in the high-
frequency range, but for a different reason. The pseudo-proxy
data deviate from the target due to the white proxy noise
component, while the reconstruction deviate because BAR-
CAST quantifies the proxy noise from an AR(1) assumption.
Real-world proxy data are generally noisy, and the noise level
is normally at the high end of the range studied here. We
demonstrate that the variability level of the reconstructions
does not exclusively reflect the characteristics of the target
data, but is also influenced by the fitting of noisy data to a
model that is not necessarily correct. At present, there ex-
ists no reconstruction technique assuming explicitly that the
climate variable follows an LRM process.

In addition to BARCAST, other reconstruction techniques
that may experience similar deficiencies for LRM target
data are the regularized expectation–maximization algorithm

(RegEM; Schneider, 2001; Mann et al., 2007) and all re-
lated models (CCA, PCA, GraphEM). These models assume
observations at subsequent years are independent (Tingley
and Huybers, 2010b). The assumption of temporal indepen-
dence corresponds to yet another incorrect statistical model
for our target data, a white noise process in time. Note that
for target variables/data sets consistent with a white noise
process, these types of reconstruction methods are appropri-
ate, as demonstrated using the truncated empirical orthog-
onal function (EOF) principal component spatial regression
methodology on precipitation data in Wahl et al. (2017).

When an incorrect statistical model is used to reconstruct
a climate signal, the temporal correlation structure is likely
to be deteriorated in the process. For the range of different
reconstructions available, such effects may contribute to dis-
cussions on a number of questions under study, including the
possible existence of different scaling regimes in paleocli-
mate; see Huybers and Curry (2006); Lovejoy and Schertzer
(2012); Rypdal and Rypdal (2016); Nilsen et al. (2016).
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Figure 9. Local CRPSpot between reconstructed temperature field and target field for the verification period. The box plots left of the color
bars indicate the distribution of grid point correlation coefficients. β = 0.75.

The criteria for the hypothesis testing used in this study
are strict, and may be modified if reasonable arguments are
provided. For example, if the first null hypothesis used here
was modified so that only the low-frequency components of
the spectra were required to fall within the confidence ranges,
more of the reconstructions would be consistent with the fGn
model. However, from studying the spectra in Figs. 3–5, it
is generally unclear where one should set a threshold, since
the spectra show a gradual change with a lack of any abrupt
breaks. Considering real-world proxy records, the noise color
and level is generally unknown or not quantified. We know
there are certain sources of noise influencing different fre-
quency ranges that are unrelated to climate, but it is difficult
to decide when the noise becomes negligible compared with
the effects of climate driven processes. The decision to use all
frequencies for the hypothesis testing in this idealized study
is therefore a conservative and objective choice.

The skill metrics used to validate the reconstruction skill
are the Pearson’s correlation coefficient r , the RMSE and

CRPS, the latter divided into the CRPSpot and the Reli. Skill
metric results are illustrated in Figs. 7–9 and summarized
in Table 4. The reconstruction skill is sensitive to the proxy
quality, and highest at sites with co-localized proxy informa-
tion. This is an expected result, due to the BARCAST model
formulation and our choice of a relatively short decorrela-
tion length 1/φ ∼ 1000 km. Contrasting results of high skill
away from proxy sites and poor skill close to proxy sites have
been documented in Wahl et al. (2017), although care must
be taken in the comparison as that paper used a different re-
construction methodology (truncated EOF principal compo-
nent spatial regression) and the target variable was precipita-
tion/hydroclimate instead of SAT. Without performing dedi-
cated pseudo-proxy experiments it is difficult to resolve the
main cause of these contrasting results for spatial skill.

5.1 Implications for real proxy data

The spectral shape of the input pseudo-proxy data plotted
in blue in Fig. 3 is similar to the spectral shape of ob-
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served proxy data as observed in, for example, some types
of tree-ring records (Franke et al., 2013; Zhang et al., 2015;
Werner et al., 2018). In particular, Franke et al. (2013) and
Zhang et al. (2015) found that the scaling parameters β were
higher for tree-ring-based reconstructions than for the cor-
responding instrumental data for the same region. Werner
et al. (2018) present a new spatial SAT reconstruction for
the Arctic, using the BARCAST methodology. The analyses
shown in Fig. A4 demonstrate that several of the tree-ring
records could not be categorized as either AR(1) or scaling
processes, but featured spectra similar to the pseudo-proxy
spectrum in our Fig. 3c–d. We hypothesize that the possible
mechanism(s) altering the variability can be due to effects of
the tree-ring processing techniques, specifically the methods
applied to eliminate the biological tree aging effect on the
growth of the trees (Cook et al., 1995). The actual tree-ring
width is a superposition of the age-dependent curve, which is
individual for a tree, and a signal that can often be associated
with climatic effects on the tree growth process. To correct
for the biological age-effect, the raw tree-ring growth values
are often transformed into proxy indices using the regional
curve standardization technique (RCS; Briffa et al., 1992;
Cook et al., 1995), age band decomposition (ABD; Briffa
et al., 2001), the signal-free processing (Melvin and Briffa,
2008) or other techniques. These techniques attempt to elim-
inate biological age effects on tree-ring growth while pre-
serving low-frequency variability. As an example, consider
the RCS processing of tree-ring width as a function of age
(Helama et al., 2017). For a number of individual tree-ring
records, each record is aligned according to its biological
years. The mean of all the series is then modeled as a neg-
ative exponential function (the RCS curve). To construct the
RCS chronology, the raw, individual tree-ring width curves
are divided by the mean RCS curve for the full region. The
RCS chronology is then the average of the index individual
records. It is likely that the shape of a particular tree-ring
width spectrum reflects the uncertainty in the standardiza-
tion curve, which is expected to be largest at the timescales
corresponding to the initial stage of a tree growth, where the
slope of the growth curve is generally steeper (i.e., of the
order of a few decades). In particular, there may be slightly
different climate processes affecting the growth of different
trees, causing localized nonlinearities that limit the represen-
tativeness of the derived chronology. We therefore suggest
that the observed excess of LRM properties in some of the
tree-ring-based proxy records could be an artifact of the fit-
ting procedure.

Our study further suggests that for a proxy network of high
quality and density, exhibiting LRM properties, the BAR-
CAST methodology is capable, without modification, of con-
structing skillful reconstructions with LRM preserved across
the region. This is because the data information overwhelms
the vague priors. The availability of well-documented proxy
records therefore helps the analyst select an appropriate re-
construction method based on the input data. For quan-

Table 4. Median local skill measurements

Local skill Spatial mean skill

SNR r RMSE CRPSpot r RMSE

β = 0.55

∞ 0.60 0.89 0.36 0.95 0.18
3 0.52 0.97 0.39 0.87 0.28
1 0.42 1.05 0.43 0.76 0.38
0.3 0.29 1.16 0.48 0.56 0.51

β = 0.75

∞ 0.60 0.89 0.36 0.95 0.18
3 0.52 0.96 0.39 0.87 0.28
1 0.45 1.03 0.42 0.78 0.37
0.3 0.33 1.14 0.47 0.60 0.50

β = 0.95

∞ 0.61 0.88 0.35 0.94 0.18
3 0.53 0.95 0.39 0.88 0.28
1 0.48 1.01 0.41 0.79 0.36
0.3 0.38 1.10 0.45 0.66 0.46

tification and assessment of real-world proxy quality, for-
ward proxy modeling is a powerful tool that models proxy
growth/deposition instead of the target variable evolution,
also taking known proxy uncertainties and biases into con-
sideration. See for example Dee et al. (2017) for a compre-
hensive study on terrestrial proxy system modeling, and Dol-
man and Laepple (2018) for a study on forward modeling of
sediment-based proxies.

6 Concluding remarks

Several extensions to the presented work appear relevant for
future studies, including (a) implementing external forcing
and responses to this forcing in the target data to make the
numerical experiments more realistic, (b) generating target
data using a more complex model than described in Sect. 2.2
and (c) reformulating BARCAST model Eqs. (1)–(2) to ac-
count for LRM properties in the target data. In addition, there
is the possibility of repeating the experiments from this study
using a different reconstruction technique, and experiments
with more complicated spatiotemporal design of the multi-
proxy network can also be considered (Smerdon, 2012; Wang
et al., 2014).

The alternatives (a) and (b) can be implemented together.
Relevant advancements for target data generation can be ob-
tained using the class of stochastic–diffusive models, such
as the models described in North et al. (2011); Rypdal et al.
(2015). The alternative method for generating spatial covari-
ance stands in contrast to what is done in the present study.
The data generation technique used in this paper and also in
Werner et al. (2014) and Werner and Tingley (2015) gener-
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ates a signal without spatial dynamics, where the spatial co-
variance is defined through the noise term. On the other hand,
the stochastic–diffusive models generate the spatial covari-
ance through the diffusion, without spatial structure in the
noise term. The latter model type may be considered more
physically correct and intuitive than the simplistic model
used here. North et al. (2011) use an exponential model for
the temporal covariance structure, while Rypdal et al. (2015)
use an LRM model.

For the BARCAST CFR methodology, reformulation of
model Eqs. (1)–(2) would drastically improve the perfor-
mance in our experiments. However, at present we cannot
guarantee that modifications favoring LRM are practically
feasible in the context of a Bayesian hierarchical model,
due to higher computational demands. Changing the AR(1)
model assumption to instead account for LRM would in the
best scenario slow the algorithm down substantially, and in
the worst scenario it would not converge at all. Some cut-
off timescale would have to be chosen to ensure conver-
gence. Regarding the spatial covariance structure, accounting
for teleconnections introduces similar computational chal-
lenges. The more general Matérn covariance family form
(Tingley and Huybers, 2010a) has already been implemented
for BARCAST, but was not used in this study. Another prob-
lem is the potential temporal instability of teleconnections;
it is possible that major climate modes might have changed
their configuration through time. Therefore, setting addi-
tional a priori constraints on the model may not be considered
justified. The use of exponential covariance structure appears
to be a conservative choice in such a situation.

The pseudo-proxy study presented here sets a powerful ex-
ample for how to construct and utilize an experimental struc-
ture to isolate specific properties of paleoclimate reconstruc-
tion techniques. The generation of the input data requires
far less computation power and time than for GCM paleo-
climatic simulations, but also results in less realistic target
temperature fields. We demonstrate that there are many areas
of use for these types of data, including statistical modeling
and hypothesis testing.

Data availability. Data and codes are available on request, includ-
ing BARCAST code package.
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Appendix A: Estimation of the periodogram

The periodogram is defined here in terms of the discrete
Fourier transform Hm as (Malamud and Turcotte, 1999)

S(fm)=
(

2
N

)
|Hm|

2, m= 1,2, . . .,N/2,

for evenly sampled time series x1,x2, . . ..xN . The sampling
time is an arbitrary time unit, and the frequency is measured
in cycles per time unit: fm = m

N
·1f = 1

N
is the frequency

resolution and the smallest frequency which can be repre-
sented in the spectrum.

Appendix B: Continuous ranked probability score
(CRPS) for a reconstruction ensemble

For probabilistic forecasts, scoring rules are used to mea-
sure the forecast accuracy, and proper scoring rules secure
that the maximum reward is given when the true probabil-
ity distribution is reported. In contrast, the reduction of error
(RE) and coefficient of efficiency (CE) are improper scor-
ing rules, meaning they measure the accuracy of a forecast,
but the maximum score is not necessarily given if the true
probability distribution is reported. For climate reconstruc-
tions, RE= 1 and CE= 1 imply a deterministic forecast, the
maximum score is obtained when the mean (a point measure-
ment) within the probability distribution P is used instead of
the predictive distribution P itself.

The concept behind the CRPS is to provide a metric of
the distance between the predicted (forecasted) and occurred
(observed) cumulative distribution functions of the variable
of interest. The lowest possible value for the metric corre-
sponding to a perfect forecast is therefore CRPS= 0. Follow-
ing Sect. 4b of Hersbach (2000) (elaborated for clarity), the
definition of the CRPS and its subcomponents can be defined
as follows:

CRPS(P,xtarget)=

∞∫
−∞

[P (x)−2(x− xtarget)]2dx, (B1)

where x is the variable of interest, xtarget denotes target (val-
idation) data, 2 is the unit step function and P (x) is the cu-
mulative distribution function of the forecast ensemble with
a probability density function (PDF) of ρ(y):

P (x)=

x∫
−∞

ρ(y)dy. (B2)

In the case of a reconstruction ensemble at each spatial lo-
cation j and time step t (omitted for convenience), the CRPS

can be evaluated as

CPRS=
N∑
i=0

xi+1∫
xi

[
i

N
−2(x− xtarget)

]2

dx, (B3)

where xi < x < xi+1 refers to members of the locally ordered
reconstruction ensemble of length N . For this study, x corre-
sponds to the ensemble of local reconstructed values of T .

For the average over K time and/or grid points, the aver-
age CRPS (CPRS) is defined as a weighted sum with equal
weights, yielding

CPRS=
N∑
i=0

gi

[
(1− oi)

(
i

N

)2

+ oi

(
1−

i

N

)2
]
. (B4)

Here, gi and oi define two quantities characterizing the re-
construction ensemble and its link with the verifying target
data. The quantity gi = xi+1− xi , i ∈ (0,N ) represents the
average over K distances between the neighboring members
i and i+ 1 of the locally ordered reconstruction ensemble,
and essentially quantifies the ensemble spread. The quantity
oi in turn is related with the average over K the frequency of
the verifying target analysis xtarget to be below 1

2 (xi + xi+1),
and should ideally match the forecasted probability of i/N .

It can be demonstrated that the spatially and/or temporally
averaged CRPS can further be broken into two parts: the av-
erage reliability score metric (Reli) and the average potential
CRPS (CRPSpot):

CPRS= Reli+CRPSpot,

where

Reli=
N∑
i=0

gi

(
oi −

i

N

)2

, (B5)

CRPSpot =

N∑
i=0

gioi(1− oi). (B6)

Equation (B5) suggests that Reli summarizes second-order
statistics on the consistency between the average frequency
of oi of the verifying analysis to be found below the middle
of interval number i and i/N , thereby estimating how well
the nominal coverage rates of the ensemble reconstructions
correspond to the empirical (target-based) ones. Hence Reli
represents the metric for assessing the validity of the uncer-
tainty bands. Reli can also be interpreted as the MSE of the
confidence intervals, which in a perfectly reliable system is
Reli=0.

CRPSpot in turn measures the accuracy of the reconstruc-
tion itself, quantifying the spread of the ensemble and the
mismatch between the best estimate and the target variable.
Equation (B6) demonstrates that the smaller the gi , indica-
tive of a more narrow reconstruction ensemble, the lower
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the resulting CRPSpot is. At the same time CRPSpot takes
into account the effect of outliers, i.e., the cases with xtarget 6∈

[x1,xN ]. Although the reconstruction ensemble can be com-
pact around its local mean, too-frequent outliers will have
a clear negative impact on the resulting CRPSpot. Note that
this metric is akin to the mean absolute error of a determinis-
tic forecast which achieves its minimal value of zero only in
the case of a perfect forecast.

Both scores are given in the same unit as the variable under
study, here surface temperature.

Appendix C: Information on true parameters, prior
and posterior distributions of BARCAST parameters

The forms of the prior PDFs for the scalar parameters in
BARCAST are identical to those used in Werner et al. (2013).
The values of the hyperparameters were chosen after analyz-
ing the target data. The forms of the priors and the values of
the hyperparameters are listed in Table C1.

The parameter values prescribed for the target data are
listed in Table C2. The instrumental observations are iden-
tical to the true target values, and the instrumental error vari-
ance τ 2

I is therefore zero. The proxy noise variance τ 2
P is var-

ied systematically for the different SNR through the relation
in Eq. (12).

The mean of the posterior distributions of the BARCAST
parameters α,µ,σ 2,1/φ, τ 2

I and β0 are listed in Table C3,
together with the reconstructed SNR.

Table C1. List of parameters defined in BARCAST, form of prior
and hyperparameters.

Parameter Form Hyperparameters

α truncated normal N[0,1](αµ, ασ ), αµ = 0.5, ασ = 0.1
µ normal N(µµ, µσ ), µµ =−0.4, µσ = 0.12

σ 2 inv-gamma shape= 0.5, scale= 0.5
φ lognormal logφ ∼N (φµ, φσ ),

φµ =−7, φσ = 0.2
τ2

I inv-gamma shape= 0.5, scale= 0.5
τ2

P inv-gamma shape= 0.5, scale= 0.5
β0 normal N(β0,µ, β0,σ ), β0,µ = 0,

β0,σ = 4× 10−2

β1 normal N(β1,µ, β1,σ ), β1,µ = 1.14,
β1,σ = 4× 10−2

Table C2. List of parameter values defined for the target data set.
The four values of τ2

P listed are related to the four different signal-
to-noise ratios: SNR= 1

τ 2
P

. εmach is machine epsilon, the smallest

positive number represented by the computer.

Parameter Target value

µ 0
φ 1/1000
τ2
I

0
τ2
P

εmach, 0.333, 1, 3.33
β0 0
β1 1
β 0.5, 0.75, 0.95

www.clim-past.net/14/947/2018/ Clim. Past, 14, 947–967, 2018



964 T. Nilsen et al.: Assessing the performance of the BARCAST climate field reconstruction technique

Table C3. Mean of posterior distribution for each parameter.

Persistence SNRtarget SNRrec α µ σ 2 1/φ τ2
I

β0

β = 0.55

∞ 117.6 0.40 −2.2× 10−2 0.83 1020 2.3× 10−3 6.7× 10−4

3 3.05 0.43 −2.6× 10−2 0.78 1053 2.4× 10−2 -2.7× 10−3

1 1.01 0.44 −3.3× 10−2 0.75 1064 3.0× 10−2 3.8× 10−3

0.3 0.38 0.44 −2.7× 10−2 0.75 1053 3.3× 10−2 3.2× 10−3

β = 0.75

∞ 115.8 0.57 −3.5× 10−2 0.68 1020 2.3× 10−3
−8.2× 10−4

3 2.81 0.62 −4.5× 10−2 0.61 1111 2.8× 10−2 5.1× 10−3

1 0.99 0.64 −5.6× 10−2 0.59 1136 3.3× 10−2 8.3× 10−3

0.3 0.36 0.64 −5.1× 10−2 0.59 1136 3.4× 10−2 3.8× 10−3

β = 0.95

∞ 112.9 0.71 −4.8× 10−2 0.5 1020 2.4× 10−3
−5.3× 10−4

3 2.69 0.77 −8.5× 10−2 0.44 1205 2.8× 10−2 3.0× 10−3

1 0.97 0.79 −9.7× 10−2 0.41 1235 3.1× 10−2 1.1× 10−2

0.3 0.36 0.77 −1.0× 10−1 0.42 1190 2.9× 10−2 1.6× 10−2
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