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Abstract

We start with the classic result that the Cauchy problem for ideal compressible gas dynamics is locally 
well posed in time in the sense of Hadamard; there is a unique solution that depends continuously on initial 
data in Sobolev space Hs for s > d/2 +1 where d is the space dimension. We prove that the data to solution 
map for periodic data in two dimensions although continuous is not uniformly continuous.
© 2017 Elsevier Inc. All rights reserved.
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0. Introduction

The compressible gas dynamics equations of ideal hydrodynamics are given by the system

ρt + ∇ · (ρu) = 0

(ρu)t + ∇ · (ρu ⊗ u) + ∇p = 0

(Eρ)t + ∇ · (Eρu + pu) = 0

(1)
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with E = e + 1

2
|u|2 the total energy and e = p

(γ − 1)ρ
the internal energy, expressed in terms of 

density ρ, pressure p and velocity u.
Classical solutions and well-posedness in Sobolev spaces (existence and uniqueness of solu-

tions as well as continuous dependence of solutions on initial data) of the initial value problem 
for (1) have been studied extensively, see for instance [9,14–16]. Sobolev space results are all lo-
cal in time. In one space dimension shock waves form in finite time for almost all data in Hs , and 
for later times only weak solutions exist. (The definition of weak solutions, and well-posedness 
theory in BVloc ∩ L1

loc, which are not the subject of this paper, can be found in [2] and [3].) In 
higher dimensions there is as yet no existence theory for weak solutions, and classical (Sobolev 
space) solutions have a finite-time life span for almost all data [14,16].

Our goal is to study continuity properties of the solution map for classical solutions; in this 
paper we prove that for periodic data the initial-data to solution map is not uniformly continuous 
in Sobolev spaces. In a companion paper, [8], we extend this result to Hs data in the plane. 
Throughout, we assume s to be large enough for classical results to hold.

We consider solutions U = U(x, t) that take values in a compact subset of the state space 
G = {U ≡ (ρ, u, p) | ρ, p > 0}, defined as the region where the physical quantities ρ and e are 
positive, and the system is symmetrizable hyperbolic.

In two dimensions, since we are considering classical solutions, we can ignore conservation 
form and write system (1) as

ρt + uρx + vρy + ρ(ux + vy) = 0

ut + uux + vuy + hx + h

ρ
ρx = 0

vt + uvx + vvy + hy + h

ρ
ρy = 0

ht + uhx + vhy + (γ − 1)h(ux + vy) = 0 .

(2)

The parameter γ denotes the ratio of specific heats (typically 1 < γ < 3) and h = p/ρ = (γ −1)e

is a multiple of the internal energy.
We study this system in Sobolev spaces on the two dimensional torus: Hs(T2) where T =

R/2πZ. The Sobolev norm is given by

‖u‖2
s = 〈�su,�su〉 ,

where �s = (1 − �)s/2 and 〈 , 〉 denotes the L2 inner product. Defining U = (ρ, u, v, h) and 
U(t) = U(·, t), our main result is

Theorem 1 (Nonuniform dependence on initial data). For s > 2, the data to solution map 
U(0) → U(t) for the system (2) is not uniformly continuous from a closed ball centered at 
(ρ0, 0, 0, h0) in (Hs(T2))4 into C([0, T ]; (H s(T2))4).

We note the significance of s > 2. The well-posedness theory for symmetrizable hyperbolic 
systems, which forms the basis for our analysis, is credited to Gårding [4], Leray [12], Kato [9]
and Lax [11]. Solutions for quasilinear systems in d space dimensions exist in spaces Hs for 
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s > d/2 + 1. Modern expositions of the theory can be found in Majda [13], Serre [15] or Taylor 
[16].

We give the proof of Theorem 1 in Section 3. Our proof uses a framework introduced to 
prove an analogous result for the incompressible Euler equations of ideal hydrodynamics in [7]. 
This framework has been used for other nonlinear PDE including the Benjamin–Ono equation 
in [10] and the Camassa–Holm equation on the real line and on the one dimensional torus in [5]
and [6] respectively. Implementation of this framework for the periodic Cauchy problem for the 
incompressible two-dimensional Euler equations is carried out in [7] with minimal technicalities. 
In that case, two sequences of exact solutions {U−1,n(t)} and {U1,n(t)} in Hs are constructed 
such that as n → ∞,

‖U−1,n(0) − U1,n(0)‖s → 0 and ‖U−1,n(t) − U1,n(t)‖s ≥ sin t for t > 0 . (3)

Exact solutions with this property exist for the compressible system as well, as we show in 
Section 1.1, but they have the unsatisfactory feature of being almost trivial: They have constant 
density and pressure (they are thus also solutions of the incompressible equations). Our proof of 
Theorem 1 exhibits the phenomenon of nonuniform dependence in a situation where density and 
pressure also vary, by adapting the Himonas–Misiołek construction in [7]. As exact solutions of 
(2) with non-constant density are not available, we use instead two sequences, similar to those 
constructed in [7], which we prove are approximate solutions. Section 1 sets up the background 
for the construction, and in Section 2 we prove the critical estimate that shows the approximate 
solutions are close enough to exact solutions to give the estimates (3) for actual solutions. The 
final section, Section 4, includes some comments on the examples and on the significance of the 
result.

1. Well-posedness and lifespan

In this section, we present a suggestive example, and review some of the classical results, 
mentioned in the introduction, for system (1) or (2).

1.1. A constant-density example

The following example presents a pair of sequences, somewhat simpler than the exact solu-
tions of [7], that solve both the incompressible and the compressible gas dynamics system, and 
are easily seen to have the property (3). The functions

Vω,n(x, y, t) = (ρ,u, v,h) =
(

ρ0,
1

ns
cos(ny − ωt),

ω

n
,h0

)
(4)

for ω = ±1 are exact solutions of (2). Each solution is divergence-free; in Section 4 we note 
that these sequences also satisfy the incompressible system, (54). (Solutions of this form may 
be known but it seems not to have been observed that they exhibit this property.) We carry out 
verification of (3), which is straightforward. For each n,

V1,n(x, y,0) − V−1,n(x, y,0) =
(

0,0,
2

n
,0

)
,

and clearly this tends to 0 in Hσ for any σ ≥ 0. On the other hand,



JID:YJDEQ AID:8913 /FLA [m1+; v1.268; Prn:1/08/2017; 10:55] P.4 (1-18)
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V1,n(x, y, t) − V−1,n(x, y, t) =
(

0,
2

ns
sinny sin t,

2

n
,0

)
.

A straightforward calculation (see [7, Lemma 3.2]) gives the values

‖ cosnx‖σ = ‖ sinnx‖σ = π
√

2(1 + n2)σ/2 (5)

for the one-dimensional Hσ(T) norms for any σ , and so

‖V1,n(·, t) − V−1,n(·, t)‖s = 2
√

2π

ns
(1 + n2)s/2| sin t | + 2

n
� | sin t | ; (6)

that is, the difference in Hs between two solutions does not go to zero for t �= 0. (The notation 
�, � and � indicates that the relations hold up to constants independent of n.)

The approximate solutions we construct for our proof of Theorem 1 exhibit non-uniform 
dependence on data via the same mechanism. Their structure is similar to, but not quite the same 
as, the solutions (4). We emphasize that the actual solutions to (2) with the same initial data as 
the approximate solutions (10) below do not have constant density. In particular, they all develop 
shocks, but after a time that is bounded away from zero, uniformly in n.

This example, simple as it is, forms the basis for the demonstration of non-uniform depen-
dence in Hs(R2), both for Himonas and Misiołek in [7] and for our adaptation for the compress-
ible equations (2) in a companion paper, [8]. When transforming periodic data to Hs-integrable 
data by introducing cut-off functions, one introduces perturbations to the density and pressure, 
so the full-plane variant of this example is not a constant-density solution.

1.2. Symmetrized system

The equations for compressible ideal gas dynamics (1) form a classical model from mathemat-
ical physics, one that indeed motivated the theory of symmetric and symmetrizable hyperbolic 
systems. We express system (2) in the form

Ut + A(U)Ux + B(U)Uy = 0 (7)

with

U =

⎛⎜⎜⎝
ρ

u

v

h

⎞⎟⎟⎠ , A(U) =

⎛⎜⎜⎝
u ρ 0 0

h/ρ u 0 1
0 0 u 0
0 (γ − 1)h 0 u

⎞⎟⎟⎠ ,

B(U) =

⎛⎜⎜⎝
v 0 ρ 0
0 v 0 0

h/ρ 0 v 1
0 0 (γ − 1)h v

⎞⎟⎟⎠ ,

and note that it is symmetrizable. If we let
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A0(U) =

⎛⎜⎜⎝
h/ρ 0 0 0

0 ρ 0 0
0 0 ρ 0
0 0 0 ρ

(γ−1)h

⎞⎟⎟⎠ ,

then A0(U) is a positive definite symmetric matrix for U ∈ G and we have the equivalent sym-
metric hyperbolic system

A0Ut + A1(U)Ux + B1(U)Uy = 0

with

A1(U) =

⎛⎜⎜⎝
uh
ρ

h 0 0
h ρu 0 ρ

0 0 ρu 0
0 ρ 0 ρu

(γ−1)h

⎞⎟⎟⎠ , B1(U) =

⎛⎜⎜⎝
vh
ρ

0 h 0
0 ρv 0 0
h 0 ρv ρ

0 0 ρ
ρv

(γ−1)h

⎞⎟⎟⎠ .

1.3. Lifespan and solution size estimates

A standard approach in proving existence and uniqueness of solutions for Cauchy problems 
is to obtain a solution as a limit to a mollified system. This is the approach taken by Taylor, [16]. 
Let Uε be a solution of

A0(JεUε)∂tUε + A1(JεUε)∂x(JεUε) + B1(JεUε)∂y(JεUε) = 0 (8)

where Jε, 0 < ε ≤ 1 is a Friedrichs mollifier, defined by a Fourier series representation

(Jεv)∧(l) = ϕ(εl)̂v(l), l ∈ Z
2

with ϕ ∈ C∞
0 (R2) real-valued and ϕ(0) = 1. Then the existence and uniqueness of solutions 

follow from a general argument for symmetrizable hyperbolic systems. The proof uses an energy 
estimate (see Chapter 16 in [16] for instance, or estimate (2.50) in the statement of Theorem 2.2 
in [13]) that leads to a solution size estimate

‖U(t)‖s ≤ C‖U0‖s for t ∈ [0, T ] (9)

where T depends on ‖U0‖s .
In [9, Theorem III(b)], Kato proves that there exists T ′ ∈ (0, T ] depending only on the Hs

norm of the initial data U0 such that if limn→∞ ‖Un
0 − U0‖s = 0 then the solutions Un exist on a 

common interval [0, T ′] and ‖Un(t) − U(t)‖s → 0 uniformly in t . The comparison between our 
result and Kato’s is discussed in the final section of this paper.

2. Nonuniform dependence

In this section we construct a set of approximate solutions, show that they are good approxi-
mations to a true solution, and prove a critical estimate, Theorem 5.
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2.1. Approximate solutions

Our strategy is to use two sequences Uω,n = (ρω,n, uω,n, vω,n, hω,n)ᵀ, with ω = ±1, of ap-
proximate solutions:

ρω,n = ρ0

uω,n = ω

n
+ 1

ns
cos(ny − ωt)

vω,n = ω

n
+ 1

ns
cos(nx − ωt)

hω,n = h0 + 1

n2s
sin(nx − ωt) sin(ny − ωt)

(10)

that are arbitrarily close at time zero but are separated at later times. The approximate solutions 
are in (Hs)4 and their Hs norms are uniformly bounded in n.

Let U ≡ Uω,n represent the actual solution to (7) with the same initial values as Uω,n:

Uω,n(0) = Uω,n(0) =
(

ρ0,
ω

n
+ 1

ns
cosny,

ω

n
+ 1

ns
cosnx, h0 + 1

n2s
sinnx sinny

)ᵀ
. (11)

To estimate dependence of the solution size on n we introduce the notation Ũ ≡ (ρ̃, u, v, h̃)ᵀ =
(ρ − ρ0, u, v, h − h0)

ᵀ, subtracting the stationary solution (ρ0, 0, 0, h0) from both the approxi-
mate and the actual solutions.

From (5) we have, for any σ ≥ 0,

‖Ũω,n‖σ ≤ Cnσ−s . (12)

The solution size estimate (9) also applies to functions Ũ derived from the exact solutions to (7), 
since Ũ satisfies (7) with modified but still symmetrizable coefficients, so the same estimates 
from [16] give us (9) and thence (12) for Ũω,n = Uω,n − (ρ0, 0, 0, h0).

Another calculation shows that the approximate solutions satisfy the equation

U
ω,n
t + A(Uω,n)Uω,n

x + B(Uω,n)Uω,n
y = (0,0,0,R4)

ᵀ ,

where the residue is given by

R4 = 1

n3s−1
cos(nx − ωt) cos(ny − ωt)

(
sin(nx − ωt) + sin(ny − ωt)

)
.

= 1

2n3s−1

(
sin 2(nx − ωt) cos(ny − ωt) + cos(nx − ωt) sin 2(ny − ωt)

)
.

Lemma 2 (Residue estimate). For n � 1, 1 < σ ≤ s − 1 and s > 2 the residue satisfies

‖R4‖σ ≤ Cn2σ−3s+1.

Proof. The estimate follows from the one-dimensional norms, (5). �
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2.2. Error estimates

We fix ω and n and let U and Ũ denote Uω,n and Ũω,n. Our goal in this section is to calculate 
the error E = U − Uω,n ≡ (E, F, G, H)ᵀ, the difference between actual and approximate solu-
tions, and show that it goes to zero in the Hs norm as n → ∞. The error E satisfies the system 
of equations

Et + A(Uω,n)Ex + B(Uω,n)Ey + C(Uω,n,U)E + (0,0,0,R4)
ᵀ = 0 , (13)

where

C(Uω,n,U) =

⎛⎜⎜⎜⎜⎜⎝
ux + vy ρx ρy 0

−hω,nρx

ρρ0
ux uy

ρx

ρ

−hω,nρy

ρρ0
vx vy

ρy

ρ

0 hx hy (γ − 1)(ux + vy)

⎞⎟⎟⎟⎟⎟⎠ .

To obtain the desired estimates, we work in a second Sobolev space, Hσ , with 1 < σ < s −
1. One of the tools we use is the following commutator estimate, which is a special case of 
Proposition 4.2 from [17]:

Lemma 3 (Commutator lemma). For k > 2 and 1 < σ ≤ k,

‖[�σ ,f ]u‖L2 ≤ C‖f ‖k‖u‖σ−1 , (14)

where [�σ , f ]u = �σ (f u) − f �σ u.

We also need the following lemma.

Lemma 4 (Reciprocal lemma). For s > 1 and σ ≤ s let f ∈ Hσ (T2) and suppose the density 
ρ ∈ Hs(T2) is in a compact subset of the state space G. Then f/ρ ∈ Hσ (T2) and∥∥∥∥f

ρ

∥∥∥∥
σ

≤ C
(
1 + ‖ρ̃‖σ

s

)‖f ‖σ . (15)

The proof of this lemma is given in [9] (Lemma 2.13 and the argument following) for integer 
values of s and σ . For the non-integer case, a proof is given in [8].

The approximate solutions exhibit non-uniform dependence via an argument, given in Sec-
tion 3, similar to that presented in Section 1.1. Thus, the heart of the nonuniform dependence 
theorem, Theorem 1, is the demonstration that the approximations are indeed Hs-close to an 
actual solution. The crucial technical estimate is the following theorem. It is established in 
a Sobolev space with index strictly smaller than the space of interest. We will see that this 
suffices.

Theorem 5. The system (13) is symmetrizable and for s > 2, 1 < σ < s − 1 and n � 1 the error 
E = U − Uω,n satisfies the estimate
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‖E(t)‖σ ≤ nβ
(
ect − 1

)
, where β = max{2σ − 3s + 2, σ − 2s} , (16)

and c depends on ρ0, h0 and γ and decreases with n.

Proof. Upon multiplying the system (13) by the symmetric matrix A0(U
ω,n), the symmetrized 

system for the error is

A0(U
ω,n)Et + A1(U

ω,n)Ex + B1(U
ω,n)Ey + C1(U

ω,n,U)E + A0(U
ω,n)(0,0,0,R4)

ᵀ = 0 ,

(17)

where C1(U
ω,n, U) = A0(U

ω,n)C(Uω,n, U).
We apply �σ to (17) and take the L2 inner product with �σ E to obtain

〈�σ E,�σ
(
A0(U

ω,n)Et

)〉 = − 〈�σ E,�σ
(
C1(U

ω,n,U)E
)〉 (18)

− 〈�σ E,�σ
(
diag(A1(U

ω,n))Ex + diag(B1(U
ω,n))Ey

)〉 (19)

− 〈�σ E,�σ
(
AR(Uω,n)Ex + BR(Uω,n)Ey

)〉 (20)

−
〈
�σ H,�σ

(
ρ0

(γ − 1)hω,n
R4

)〉
, (21)

where diag(A) denotes the diagonal part of a matrix A and AR = A − diag(A).
The first step is to establish the estimate∣∣〈�σ E,�σ

(
A0(U

ω,n)Et

)〉∣∣ ≤ C
[
nmax{−1,σ−s+1}‖E‖2

σ + n2σ−3s+1‖E‖σ

]
, (22)

where C depends only on ρ0, γ and h0.
With a change of sign, the first expression, (18), is〈

�σ E,�σ

(
hω,n

ρ0
(ux + vy)E + hω,n

ρ0
ρxF + hω,n

ρ0
ρyG

)〉

+
〈
�σ F,�σ

(
−hω,nρx

ρ
E + uxρ0F + uyρ0G + ρ0ρx

ρ
H

)〉
+

〈
�σ G,�σ

(
−hω,nρy

ρ
E + ρ0vxF + ρ0vyG + ρ0ρy

ρ
H

)〉
+

〈
�σ H,�σ

(
ρ0hx

(γ − 1)hω,n
F + ρ0hy

(γ − 1)hω,n
G + ρ0(ux + vy)

hω,n
H

)〉
. (23)

We use Cauchy–Schwarz on the first term in (23):

T1 ≡
∣∣∣∣〈�σ E,�σ

(
hω,n

ρ0
(ux + vy)E + hω,n

ρ0
ρxF + hω,n

ρ0
ρyG

)〉∣∣∣∣
≤ C‖E‖σ

∥∥∥(h0 + h̃ω,n)
(
(ux + vy)E + ρxF + ρyG

)∥∥∥ ,

σ
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where C depends on ρ0. From the algebra property of Sobolev spaces [1, page 106], valid for 
σ > 1, we obtain

T1 ≤ C‖E‖2
σ (‖Ũω,n‖σ + 1)‖Ũ‖σ+1.

By the solution size estimate (9), and the bound (12) applied to the initial data, ‖Ũ‖σ+1 is 
bounded, up to a constant independent of n, by nσ+1−s . Using the same bound (12) for ‖Ũω,n‖σ

and noting that 2σ − 2s + 1 < σ − s + 1, we obtain

T1 ≤ Cnσ−s+1‖E‖2
σ . (24)

To estimate the second term in (23) we use Cauchy–Schwarz and the algebra property of 
Sobolev spaces as above to obtain

T2 ≡
∣∣∣∣〈�σ F,�σ

(
−hω,nρx

ρ
E + uxρ0F + uyρ0G + ρ0ρx

ρ
H

)〉∣∣∣∣
≤ C‖F‖σ

(
‖hω,n‖σ

∥∥∥∥ρx

ρ

∥∥∥∥
σ

‖E‖σ + ‖ux‖σ ‖F‖σ + ‖uy‖σ ‖G‖σ +
∥∥∥∥ρx

ρ

∥∥∥∥
σ

‖H‖σ

)
≤ C‖E‖2

σ

(
(‖Ũω,n‖σ + 1)

∥∥∥∥ρx

ρ

∥∥∥∥
σ

+ ‖Ũ‖σ+1

)
.

Using the Reciprocal Lemma, Lemma 4, with the solution size estimate (9), applied to the derived 
solution Ũ , and the bound (12) applied to the initial data leads to

T2 ≤ C‖E‖2
σ

(
1 + ‖Ũω,n‖σ

) (
1 + ‖Ũ‖σ

s

)‖Ũ‖σ+1 .

Since σ − s < 0 and n � 1, the largest power of n in this expression is σ − n + 1; therefore

T2 ≤ Cnσ−s+1‖E‖2
σ . (25)

The third term in (23) is estimated like the second term above and yields the same bound.
For the last term in (23) we have the following estimate by Cauchy–Schwarz and the algebra 

property of Sobolev spaces:

T3 ≡
∣∣∣∣〈�σ H,�σ

(
ρ0hx

(γ − 1)hω,n
F + ρ0hy

(γ − 1)hω,n
G + ρ0(ux + vy)

hω,n
H

)〉∣∣∣∣
≤ C‖H‖σ

(∥∥∥∥ hx

hω,n

∥∥∥∥
σ

‖F‖σ +
∥∥∥∥ hy

hω,n

∥∥∥∥
σ

‖G‖σ +
∥∥∥∥ux + vy

hω,n

∥∥∥∥
σ

‖H‖σ

)
where C depends on ρ0 and γ . Using the Reciprocal Lemma 4 with the bound (12) applied to 
the initial data and the solution size estimate (9) leads to

T3 ≤ Cnσ−s+1‖E‖2 . (26)
σ
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Combining the estimates (24)–(26) we obtain a bound for (18):∣∣〈�σ E,�σ
(
C1(U

ω,n,U)E
)〉∣∣ ≤ Cnσ−s+1‖E‖2

σ . (27)

The expression (19), with a change of sign, is〈
�σ E,�σ

(
hω,nuω,n

ρ0
Ex + hω,nvω,n

ρ0
Ey

)〉
+ 〈�σ F,�σ

(
ρ0u

ω,nFx + ρ0v
ω,nFy

)〉
+ 〈�σ G,�σ

(
ρ0u

ω,nGx + ρ0v
ω,nGy

)〉 +
〈
�σ H,�σ

(
ρ0u

ω,n

(γ − 1)hω,n
Hx + ρ0v

ω,n

(γ − 1)hω,n
Hy

)〉
.

All terms are estimated in the same way; we demonstrate the details of the first by writing 

〈�σ E, �σ
(

hω,nuω,n

ρ0
Ex

)
〉 using commutators:

〈�σ E,�σ

(
hω,nuω,n

ρ0
Ex

)
〉 = 〈�σ E,

[
�σ ,

hω,nuω,n

ρ0

]
Ex〉 (28)

+ 〈�σ E,
hω,nuω,n

ρ0
�σ Ex〉 (29)

Using the commutator estimate (14) with k = σ + 1 in (28) and taking account of (12) we have∣∣∣∣〈�σ E,

[
�σ ,

hω,nuω,n

ρ0

]
Ex〉

∣∣∣∣ ≤ C‖(h0 + h̃ω,n)uω,n‖σ+1‖E‖2
σ

≤ C(1 + ‖Ũω,n‖σ+1)‖Ũω,n‖σ+1‖E‖2
σ

≤ Cnmax{2(σ−s+1),σ−s+1}‖E‖2
σ ≤ Cnσ−s+1‖E‖2

σ .

We treat the second term, (29), with an integration by parts:

〈�σ E,
hω,nuω,n

ρ0
�σ Ex〉 = 1

2ρ0

∫∫
T2

∂x

(
hω,nuω,n(�σ E)2)dx dy

− 1

2ρ0

∫∫
T2

∂x

(
hω,nuω,n

)
(�σ E)2 dx dy

= − 1

2ρ0

∫∫
T2

(
hω,n

x uω,n + hω,nuω,n
x

)
(�σ E)2dx dy

and now Cauchy–Schwarz and the Sobolev imbedding theorem yield∣∣∣∣〈�σ E,
hω,nuω,n

ρ0
�σ Ex〉

∣∣∣∣ ≤ Cn−1‖E‖2
σ ,

where C depends on ρ0. Treating the remaining terms in (19) in the same way gives
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∣∣〈�σ
(
diag(A1(U

ω,n))Ex + diag(B1(U
ω,n))Ey

)
,�σ E〉∣∣ ≤ Cnmax{−1,σ−s+1}‖E‖2

σ , (30)

where the constant C depends only on ρ0, γ and h0.
We group the terms in (20) to take advantage of the symmetry. With a change of sign we have

〈�σ E,�σ (hω,nFx)〉 + 〈�σ F,�σ (hω,nEx)〉
+ 〈�σ E,�σ (hω,nGy)〉 + 〈�σ G,�σ (hω,nEy)〉
+ 〈�σ F,�σ (ρ0Hx)〉 + 〈�σ H,�σ (ρ0Fx)〉
+ 〈�σ G,�σ (ρ0Hy)〉 + 〈�σ H,�σ (ρ0Gy)〉 .

Since all the pairs are handled in the same way, we show only how to bound the first pair, which 
we rewrite using commutators as

〈�σ E,�σ (hω,nFx)〉 + 〈�σ F,�σ (hω,nEx)〉
= 〈�σ E,

[
�σ ,hω,n

]
Fx〉 + 〈�σ E,hω,n�σ Fx〉 (31)

+ 〈�σ F,
[
�σ ,hω,n

]
Ex〉 + 〈�σ F,hω,n�σ Ex〉 (32)

The first terms on the right hand side in both (31) and (32) are bounded by ‖h̃ω,n‖s‖E‖σ‖F‖σ

from the commutator estimate (14). We combine the second terms in (31) and (32):

〈�σ E,hω,n�σ Fx〉 + 〈�σ F,hω,n�σ Ex〉 =
∫∫
T2

hω,n∂x(�
σ E�σF)dx dy (33)

=
∫∫
T2

∂x(h
ω,n�σ E�σF)dx dy (34)

−
∫∫
T2

hω,n
x �σ E�σ Fdx dy . (35)

The term in (34) vanishes and the term in (35) is estimated by ‖∂xh
ω,n‖∞‖E‖σ‖F‖σ using 

Cauchy–Schwarz. Since ‖h̃ω,n‖s = n−s < n1−2s = ‖∂xh
ω,n‖∞, then for (20) we have∣∣∣∣〈�σ E,�σ

(
AR(Uω,n)Ex + BR(Uω,n)Ey

)〉∣∣∣∣ ≤ Cn1−2s‖E‖2
σ , (36)

where C depends only on ρ0. Note that for n � 1, s > 2 and 1 < σ < s − 1 we have nσ−s+1 >

n1−2s and so this contribution is dominated by the estimates (27) and (30) and can be ignored.
For (21) we use Cauchy–Schwarz and Lemma 2 to get∣∣∣∣〈�σ H,�σ

(
ρ0

(γ − 1)hω,n
R4

)〉∣∣∣∣ ≤ C‖R4‖σ ‖H‖σ ≤ Cn2σ−3s+1‖H‖σ , (37)

where C depends only on ρ0, γ and h0.
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Combining the estimates (27), (30) and (37) for (18)–(21), we obtain (22).
Next we use a standard treatment of symmetrizable hyperbolic systems: We replace the L2

inner product by 〈w, A0(U
ω,n)w〉; this defines an equivalent L2-norm since A0(U

ω,n) is sym-
metric and, for large n, A0(U

ω,n) ≥ κI > 0 with

κ = min

{
ρ0,

h0

2ρ0
,

ρ0

2(γ − 1)h0

}
.

We have

d

dt
‖E‖2

σ = d

dt
〈�σ E,A0(U

ω,n)�σ E〉
= 2〈�σ Et ,A0(U

ω,n)�σ E〉 (38)

+ 〈�σ E,
(
A0(U

ω,n)
)′
�σ E〉 (39)

We write (38) using the symmetry of A0 and a commutator as

2〈�σ Et ,A0(U
ω,n)�σ E〉 = −2〈�σ E, [�σ ,A0(U

ω,n)]Et 〉 (40)

+ 2〈�σ E,�σ
(
A0(U

ω,n)Et

)〉 (41)

The term (41) is estimated in (22). For (40), since ρ0 is a constant and hω,n = h0 + h̃ω,n, we have

〈�σ E, [�σ ,A0(U
ω,n)]Et 〉 = 1

ρ0
〈�σ E, [�σ , h̃ω,n]Et 〉 (42)

+ ρ0

γ − 1
〈�σ H, [�σ ,

1

hω,n
]Ht 〉 (43)

By Cauchy–Schwarz and the commutator estimate (14), the right hand side of (42) is bounded by 
‖h̃ω,n‖σ ‖Et‖σ−1‖E‖σ up to a constant depending on ρ0, and in the same way (43) is bounded 

by 
∥∥∥ 1

hω,n

∥∥∥
σ

‖Ht‖σ−1‖H‖σ up to a constant depending on γ and ρ0. From the equation for the 

error (13) we have

Et = − (
uω,nEx + ρ0Fx + vω,nEy + ρ0Gy + (ux + vy)E + ρxF + ρyG

)
Ht = −(γ − 1)

(
hω,n(Fx + Gy) + (ux + vy)H

) − R4 − uω,nHx − vω,nHy

− h̃xF − h̃yG .

(44)

We cannot use the algebra property of Sobolev spaces here since σ − 1 is not necessarily greater 
than 1. Instead we use the following argument, which we detail here for ‖uω,nEx‖σ−1, on each 
term.

‖uω,nEx‖2
σ−1 = ‖�σ−1(uω,nEx)‖2

L2 = ‖[�σ−1, uω,n]Ex − uω,n�σ−1Ex‖2
L2

≤ ‖[�σ−1, uω,n]Ex‖2
L2 + ‖uω,n�σ−1Ex‖2

L2 .
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Using the commutator estimate (14) and the Sobolev embedding theorem we have

‖uω,nEx‖σ−1 ≤ C(‖uω,n‖σ+1‖E‖σ + ‖uω,n‖s−1‖E‖σ ). (45)

Then the solution size estimate (9) and the bound (12) on the approximate solutions give

‖uω,nEx‖σ−1 ≤ C(nσ−s+1 + n−1)‖E‖σ ≤ Cnmax{−1,σ−s+1}‖E‖σ . (46)

All the terms that arise in computing ‖Et‖σ−1 and ‖Ht‖σ−1 from the right hand side of (44)
are estimated in a similar way. In dealing with (43), in order to get an estimate that contains 
the correct order of decay with n we must replace the expressions involving hω,n in (44) with 
expressions in h̃ω,n, and this can be done since we have

[�σ ,
1

hω,n
](hω,n(Fx + Gy)

) = �σ (Fx + Gy) − 1

hω,n
�σ

(
hω,n(Fx + Gy)

)
= �σ (Fx + Gy) − h0

hω,n
�σ (Fx + Gy) − 1

hω,n
�σ

(
h̃ω,n(Fx + Gy)

)
= h̃ω,n

hω,n
�σ (Fx + Gy) − 1

hω,n
�σ

(
h̃ω,n(Fx + Gy)

)
.

Thus, from (42) and (43) we obtain the following estimate for the right hand side of (40):∣∣〈�σ E, [�σ ,A0(U
ω,n)]Et 〉

∣∣ ≤ Cnmax{−1,σ−s+1}‖E‖2
σ , (47)

where C depends only on ρ0, h0 and γ .
For (39) we have

∂

∂t
A0(U

ω,n) =

⎛⎜⎜⎜⎜⎝
h

ω,n
t

ρ0
0 0 0

0 0 0 0
0 0 0 0

0 0 0 − ρ0h
ω,n
t

(γ−1)(hω,n)2

⎞⎟⎟⎟⎟⎠ ,

hence

〈�σ E,
(
A0(U

ω,n)
)′
�σ E〉 = 〈�σ E,

1

ρ0
h̃

ω,n
t �σ E〉 − 〈�σ H,

ρ0h̃
ω,n
t

(γ − 1)(hω,n)2
�σ H 〉 . (48)

By the definition of approximate solutions (10) we have ‖hω,n
t ‖s ≤ Cn−s , where C is a constant. 

Using this last estimate in (48) gives∣∣〈�σ E,
(
A0(U

ω,n)
)′
�σ E〉∣∣ ≤ Cn−s‖E‖2

σ (49)

for (39), where the constant C depends only on γ , h0 and ρ0.
Since −s < −s + σ + 1, the quantity in (39) is dominated by (38), which we have estimated 

in (22) and (47). Combining (22) and (49) with (47) we get the bound
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d

dt
‖E‖2

σ ≤ C
(
nmax{−1,σ−s+1}‖E‖2

σ + n2σ−3s+1‖E‖σ

)
(50)

where C depends only on ρ0, h0 and γ . The estimate (16) now follows by Gronwall’s inequal-
ity. �
3. Proof of Theorem 1

Let us now consider the two sequences of solutions U1,n(x, y, t) and U−1,n(x, y, t) for the 
initial data U1,n(x, y, 0) and U−1,n(x, y, 0) respectively. At time t = 0 we have

‖U1,n(0) − U−1,n(0)‖s = Cn−1 → 0 as n → ∞. (51)

For t > 0, by the triangle inequality we have

‖U1,n(t) − U−1,n(t)‖s ≥ ‖U1,n(t) − U−1,n(t)‖s − ‖U1,n(t) − U1,n(t)‖s

− ‖U−1,n(t) − U−1,n(t)‖s

≥ ‖U1,n(t) − U−1,n(t)‖s − C‖E‖s .

(52)

To complete the proof, which proceeds by showing that ‖E‖s → 0 and so we can bound the dif-
ference in actual solutions by the difference in the approximate solutions, we need the following 
result.

Lemma 6. For τ ∈ (s, �s� + 1] and a constant C that depends on τ but not on n, we have

‖Uω,n(t)‖τ ≤ Cnτ−s ,

for all t ∈ [0, T ].

Proof. The solution size estimate (9) gives ‖U(t)‖τ ≤ C(τ, d)‖U(0)‖τ for all data with 
‖U(0)‖τ ≤ d , for any τ > 2 for which ‖U(0)‖τ is defined, and for all t ∈ [0, T ) where T also 
depends on d and on τ . Furthermore (see Corollary 2 to Theorem 2.2 in Majda [13]), if T is a 
maximum lifespan, then either U leaves every compact subset of G (the subset of phase space 
in which the system is symmetrizable hyperbolic) or ‖∇U(t)‖L∞ + ‖Ut(t)‖L∞ → ∞ as t → T . 
This means, for our solutions, since the data are in Hτ for all τ > 0 and we assume we have 
identified a T < Tcrit, where Tcrit is the value beyond which a solution in Hs no longer exists, 
that the solution remains in Hτ for t < T and any τ > s. (Here we note that s > 2 so U and its 
first derivatives are bounded, both pointwise and in Hs , for t ∈ [0, T ].)

However, in the estimate on the solution size (9), the constant C depends on d = ‖U(0)‖τ , 
and this is bounded (by unity) only for τ ≤ s. If τ > s, then ‖U(0)‖τ → ∞ with n. To use the 
interpolation result, (53) below, we need to apply (9), with a constant independent of n, for some 
value of τ > s.

We obtain a bound for τ = �s� + 1, where �s� is the greatest integer in s, as follows. Let α
with |α| = τ be a multi-index corresponding to any τ th order derivative. There are τ + 1 such 
derivatives; define Vi = D(τ+1−i,i−1)U . Differentiating (7) |α| times for all α with |α| = τ leads 
to
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(∂t + A(U)∂x + B(U)∂y)Vi +
τ+1∑
j=1

MjVj + fi(D
βU ; |β| ≤ τ − 1) = 0

for i = 1, ..., τ + 1 ,

where the Mj are block diagonal matrices that depend only on U and DU = (Ux, Uy). Thus, 
V = (V1, V2, ..., Vτ+1) is the solution of a linear symmetrizable hyperbolic system with bounded 
coefficients. The secular term f = (f1, f2, ..., fτ+1) is also bounded, so the usual energy esti-
mates, applied to the symmetrized system, yield a bound for V that depends on the value of V (0)

(and as usual on ρ0, h0 and γ , and our original choice for T , but on nothing else). From (11)
and (12), a bound for V (0) is Cnτ−s . This gives the bound stated in the Lemma for the actual 
solution Uω,n, for any τ ≤ �s� + 1. �

Theorem 5 gives a bound for ‖E‖σ , for 1 < σ < s − 1. We use interpolation (Theorem 5.2 in 
[1]) between σ and τ = �s� + 1 to obtain a bound for ‖E‖s :

∥∥E
∥∥

s
≤ ∥∥E

∥∥α

σ

∥∥E
∥∥β

τ
, where α = τ − s

τ − σ
, β = s − σ

τ − σ
. (53)

Now, assume we have fixed a compact set G2 with ρ ≥ ρ0/2, say, and once c in Theorem 5 is 
bounded then so is ct for t ≤ T , so ‖E‖σ ≤ Cnν , where ν = max{2σ − 3s + 2, σ − 2s}, and thus 
the exponent of n in ‖E‖s is

αν + β(τ − s) = (τ − s)ν

τ − σ
+ (s − σ)(τ − s)

τ − σ
= τ − s

τ − σ

(
max{σ − 2s + 2,−s})

and this is negative since we have assumed σ < s − 1 and s > 2. Thus, the Hs error in the 
approximate solutions tends to zero as n → ∞, and we can estimate the difference between the 
actual solutions by the difference in the approximate solutions.

Using trigonometric identities, we have

U1,n(t) − U−1,n(t) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
2

n
+ 1

ns
(cos(ny − t) − cos(ny + t))

2

n
+ 1

ns
(cos(nx − t) − cos(nx + t))

1

n2s
[sin(nx − t) sin(ny − t) − sin(nx + t) cos(ny + t)]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
2

n
+ 2

ns
sinny sin t

2

n
+ 2

ns
sinnx sin t

− 1

n2s
sin(nx + ny) sin 2t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then the estimate (52) implies

lim inf
n→∞ ‖U1,n(t) − U−1,n(t)‖s ≥ lim inf

n→∞ ‖U1,n(t) − U−1,n(t)‖s ≥ C sin t .

This completes the proof of nonuniform dependence.
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Fig. 1. Velocity fields for the constant density (left) and approximate (right) solutions.

4. Conclusions

This paper shows that periodic solutions of the compressible gas dynamics equations in two 
space dimensions exhibit nonuniform dependence on initial conditions, by a mechanism very 
similar to that governing the incompressible system. Both the constant-density construction of 
Section 1.1 and the approximate solutions based on the Himonas–Misiołek model take an ini-
tial condition consisting of a uniform motion with a smaller oscillatory motion superimposed 
on it. We sketch the initial velocity fields for typical members of each series in Fig. 1. The 
constant-density and constant-pressure solution is not completely trivial. It is also a solution to 
the incompressible system, somewhat simpler than the one devised by Himonas and Misiołek. 
It persists for all time, without the formation of shocks. There may be other families of solu-
tions and approximate solutions with similar structure. The actual solutions corresponding to our 
approximation (10) do not have constant density or pressure.

The conclusions to be drawn from this demonstration are of two types. First, “nonuniform 
dependence on data” in the sense of this paper can be contrasted to “uniform dependence” in the 
sense of Kato’s original well-posedness proof. Second, it is worth calling attention to the nature 
of the solutions we have constructed, as they are solutions of a hyperbolic system (compressible 
flow) that is closely related to a system that is not hyperbolic (incompressible flow).

We look at these separately.

4.1. The meaning of non-uniform dependence

The failure of uniform dependence on the data is instantaneous and is a property of classical 
solutions. It does not appear to tell us anything about properties of weak solutions (existence of 
which, for the multidimensional compressible Euler system, is an open problem). In his important 
paper [9, Theorem III(b)], Kato considers a limiting initial condition in Hs that is approximated 
in Hs by a sequence of initial conditions {Un

0 } and proves that the data to solution map is uni-
formly continuous in time. In contrast we prove that the uniform continuity of the data to solution 



JID:YJDEQ AID:8913 /FLA [m1+; v1.268; Prn:1/08/2017; 10:55] P.17 (1-18)
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map fails by constructing two sequences of solutions. While the difference between correspond-
ing terms in our sequences U 1,n and U−1,n converges to zero in Hs , neither sequence alone 
converges in Hs . In verifying the error bounds claimed for the approximate solutions, one can 
see that the cancellation between the “low frequency” terms (±1/n in this case) and the high fre-
quency oscillatory terms is a result of nonlinearities in the system. This creates the possibility of 
the nonuniformity demonstrated here. A similar type of cancellation, differing in detail, is used 
in our companion paper [8] to obtain a nonuniformity result for solutions defined on the plane, 
rather than on a torus.

4.2. Linear and nonlinear behavior in gas dynamics

It is also interesting to compare the nonuniform sequences of solutions we have constructed 
here with the sequences Himonas and Misiołek [7] used in their proof of nonuniform dependence 
for the incompressible system. That system takes the form of three equations, for velocity and 
pressure:

∇ · u = 0 , ut + ∇ (u × u) + ∇p = 0 . (54)

This system is not hyperbolic; to the extent that its characteristics can be compared to those 
of (1), one could say that the acoustic characteristics in (1) (those associated with the “speed of 
sound”, and also the pair that are genuinely nonlinear in the sense of conservation laws) have 
become infinite in (54). (This is more correctly stated in terms of the Mach number – the ratio 
of the fluid velocity to the characteristic speed. The system (54) represents a flow in which the 
Mach number has become zero.)

Our exhibition of nonuniform behavior in a hyperbolic system related to the incompressible 
system indicates that the nonuniform dependence is

(a) hyperbolic in nature, and
(b) based in the linear characteristics of the hyperbolic system, which are shared with the in-

compressible system – that is, the shear or entropy waves.

Finally, we observe that a simple adaptation of the constant-density example of Section 1.1
also proves nonuniform dependence on data for the isentropic gas dynamics system – the system 
formed from the first three equations of (1) by assuming that the pressure is a given function of 
the density. That system, of course, has only a single linear family, corresponding to shear waves.
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