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Abstract. We address a generalization of the classical discrete time-cost
tradeoff problem where the costs are irregular and depend on the starting
and the completion times of the activities. We present a complete picture of
the computational complexity and the approximability of this problem for
several natural classes of precedence constraints. We prove that the problem
is NP-hard and hard to approximate, even in case the precedence constraints
form an interval order. For precedence constraints with bounded height,
there is a complexity jump from height one to height two: For height one,
the problem is polynomially solvable, whereas for height two, it is NP-hard
and APX-hard. Finally, the problem is shown to be polynomially solvable
if the precedence constraints have bounded width or are series parallel.

1 Introduction

Due to its practical importance, the discrete time-cost tradeoff problem for
project networks has been studied in various contexts by many researchers
over the last fifty years; see Kelley & Walker (1959) for an early reference.
The modern treatment of this problem started with the dynamic program-
ming approaches of Hindelang & Muth (1979) and Robinson (1975), and
with an enumeration algorithm by Harvey & Patterson (1979). An up-to-
date overview on the discrete time-cost tradeoff problem is Chapter 4 of the
survey by Brucker, Drexl, Möhring, Neumann & Pesch (1999) or Chapter 8
of the book by Demeulemeester & Herroelen (2002). In this paper, we look
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at a generalization of the classical discrete time-cost tradeoff problem where
the costs depend on the exact starting and completion times of the activities.

Statement of the problem. Formally, we consider instances that are called
projects and that consist of a finite set A = {A1, . . . , An} of activities to-
gether with a partial order ≺ on A. All activities are available for processing
at time zero, and they must be completed before a global project deadline T .
Hence, the set of possible starting and completion times of the activities is
{0, 1, . . . , T}. The set of intervals over {0, 1, . . . , T} (the so-called realiza-
tions of the activities) is denoted by R = {(x, y) | 0 ≤ x ≤ y ≤ T}. For ev-
ery activity Aj , there is a corresponding cost function cj : R → R

+∪{±∞}
that specifies for every realization (x, y) ∈ R a non-negative cost cj(x, y)
that is incurred when the activity is started at time x and completed at time
y. A realization of the project is an assignment of the activities in A to the
intervals in R.A realization is feasible if it obeys the precedence constraints:
For any Ai and Aj with Ai ≺ Aj , activity Aj is not started before activity
Ai has been completed. The cost of a realization is the sum of the costs
of all activities in this realization. The goal is to find a feasible realization
of minimum cost. This problem is called min-cost project scheduling with
irregular costs, or min-cost PSIC for short.

A closely related problem is max-profit project scheduling with irregular
costs, or max-profit PSIC for short. Instead of cost functions cj for activity
Aj , here we have profit functions pj : R → R

+ ∪ {±∞} that specify for
every realization of Aj the resulting profit. The goal is to find a feasible
realization of maximum profit. Such a profit may for instance represent
the cost reduction for the project, if a deadline is stretched and an activity
becomes less urgent. Clearly, the min-cost and the max-profit version are
polynomial time equivalent: The transformations cj := const1 − pj and
pj := const2−cj with sufficiently large constants const1 and const2 translate
one version into the other. However, the two versions seem to behave quite
differently with respect to their approximability.

Special cases and related problems. Various special cases arise if the cost
and profit functions satisfy additional properties. A cost function c is mono-
tone, if [x1, y1] ⊆ [x2, y2] implies c(x1, y1) ≥ c(x2, y2). A profit function
p is monotone, if [x1, y1] ⊆ [x2, y2] implies p(x1, y1) ≤ p(x2, y2). The
intuition behind these concepts is that short and quick executions should be
more expensive than long and slow executions. It is readily seen that the
general version of PSIC is equivalent to the monotone version with respect
to computational complexity and approximability.

Another interesting special case arises, if y1 − x1 = y2 − x2 implies
c(x1, y1) = c(x2, y2) and p(x1, y1) = p(x2, y2). In this special case, the
cost and the profit of an activity only depend on the length of its realization.
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This special case actually is equivalent to the DEADLINE problem for the
discrete time-cost tradeoff problem: The deadline T is hard, and the goal is
to assign lengths to activities such that the overall cost is minimized. Only
recently, De, Dunne, Gosh & Wells (1997) proved that this problem is NP-
hard in the strong sense. Skutella (1998) gives some positive approximability
results, and Deineko & Woeginger (2001) give some inapproximability re-
sults for bicriteria versions. All negative results in this paper are proved for
the DEADLINE problem, the weakest variant of PSIC. All positive results
in this paper are proved for the most general version of PSIC.

In another special case, for every activity Aj there is a number Lj such
that cj(x, y) < ∞ if and only if y−x = Lj . In other words, activity Aj must
be realized by an interval of length exactly Lj . This special case is classical
project scheduling with fixed processing times. Chang & Edmonds (1985)
proved that this case is polynomial time equivalent to the min-cut problem
in graphs; hence, this case is polynomially solvable. Project scheduling
with fixed processing times and some of its variants were also studied by
Maniezzo & Mingozzi (1999) and by Möhring, Schulz, Stork & Uetz (2001).

Our results. We derive several positive and negative statements on the com-
plexity and the approximability of min-cost and max-profit PSIC for several
natural classes of precedence constraints. Our results are the following:

(1) Interval orders (Section 2). The min-cost and the max-profit version of the
DEADLINE problem (and of their PSIC generalizations) are NP-hard and
inapproximable even for interval orders.We establish a close (approximation
preserving) connection of the min-cost DEADLINE problem to minimum
vertex cover and of the max-profit DEADLINE problem to maximum in-
dependent set. All inapproximability results for these graph problems carry
over to the DEADLINE problems. As an immediate consequence, unless
P=NP the min-cost DEADLINE problem can not have a polynomial time
approximation algorithm with worst case ratio strictly better than 7/6. This
is quite an improvement over an earlier inapproximability result of Deineko
& Woeginger (2001) that only established APX-hardness for this problem.

(2) Orders of bounded height (Section 3). If the height of the precedence
constraints is bounded by 2, then the DEADLINE problems and its PSIC
generalizations are NP-hard and inapproximable. However, if the height of
the precedence constraints is bounded by 1, then min-cost and max-profit
PSIC both can be solved in polynomial time. The main idea is to translate
these project scheduling problems into a maximum weight independent set
problem in an underlying vertex-weighted bipartite graph.

(3) Orders of bounded width (Section 4). If the width of the precedence con-
straints is bounded by some fixed constant d, then min-cost and max-profit
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PSIC both can be solved in polynomial time O(ndT 2d+1). The algorithm is
based on simple dynamic programming over the time axis, but the details
are somewhat messy.

(4) Series parallel orders (Section 5). For series parallel precedence con-
straints, min-cost and max-profit PSIC can be solved in polynomial time
O(nT 3) by dynamic programming. This result builds on the approaches of
Frank, Frisch, van Slyke & Chou (1970) and Rothfarb, Frank, Rosenbaum,
Steiglitz & Kleitman (1970) for the classical discrete time-cost tradeoff
problem, and extends them to the more general problems max-profit and
min-cost PSIC.

(5) Finally in Section 6, we discuss how the complexity of min-cost and max-
profit PSIC depends on the encoding of the input. We present an example of
PSIC with two activities A and B, with the precedence constraint A ≺ B,
and with (very) specially defined cost/profit functions. For this example,
even the DEADLINE problem is NP-hard.

Technical remarks. For costs and profits we allow any values from R
+ ∪

{±∞}, that is the non-negative numbers together with plus/minus infin-
ity. This should be seen as a useful and simple convention for specifying
the input: Whenever a cost equals +∞ or a profit equals −∞, then the
corresponding realization is forbidden. Of course this convention leads to
instances that do not have any feasible realization with finite cost or profit,
but these instances are easily recognized and singled out in polynomial time
by the following greedy algorithm: “In every step, select a yet unrealized
activity A for which all predecessors have already been realized. Choose for
A the realization (x, y) of finite cost (respectively, finite profit) with small-
est value y.” This algorithm gets stuck if and only if there is no project
realization of finite cost (respectively, finite profit).

Hence, throughout the paper we will restrict ourselves to instances that
allow at least one realization in which all costs (respectively, all profits)
are non-negative reals. A more compact representation of the input only
specifies those realizations of activities that have finite costs/profits.

2 Interval orders

In this section we will derive a number of negative results for problem
PSIC under interval orders. An interval order on a set A = {A1, . . . , An} is
specified by a set of n intervals I1, . . . , In along the real line. Then Ai → Aj

holds if and only if the interval Ii lies completely to the left of the interval
Ij , or if the right endpoint of Ii coincides with the left endpoint of Ij . See
e.g. Möhring (1989).
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The central proof in this section will be done by a reduction from the NP-
hard INDEPENDENT SET problem in graphs; see Garey & Johnson (1979):
Given a graph G = (V, E) and a bound z, does G contain an independent
set (a set that does not induce any edges) of cardinality z? Without loss of
generality, we assume that V = {1, . . . , q}.

We construct a project with deadline T = 3q for max-profit PSIC. This
project contains the activities listed below. For every activity A, we define a
so-called crucial interval I(A) that will be used to specify the interval order.

– For every vertex i ∈ V , there is a corresponding activity Ai. If Ai

is realized by an interval of length zero, then its profit is −∞; for an
interval of length 1 or 2 the profit is 0, and for any longer realization the
profit is 1. The crucial interval I(Ai) for Ai is [3i − 3, 3i].

– For every edge 〈i, j〉 ∈ E with i < j, there is a corresponding activity
Ai,j . If Ai,j is realized by an interval of length 3j − 3i − 2 or more
then its profit is 0, and for shorter intervals its profit is −∞. The crucial
interval I(Ai,j) is [3i, 3j − 3].

– For t = 0, . . . , q there are so-called blocking activities Bt and Ct. If they
are executed for at least 3t time units, then they bring profit 0, and for
shorter intervals they bring profit −∞. The crucial intervals for them are
I(Bt) = [0, 3t] and I(Ct) = [3q − 3t, 3q].

The precedence constraints among these activities are defined as follows:
For activities X and Y , X ≺ Y holds if and only if the crucial interval I(X)
lies completely to the left of the crucial interval I(Y ), or if the right endpoint
of I(X) coincides with the left endpoint of I(Y ). Note that this yields an
interval order on the activities. Moreover, for every edge 〈i, j〉 ∈ E with
i < j this implies Ai ≺ Ai,j ≺ Aj .

Lemma 2.1. If the graph G has an independent set W , then the constructed
project has a feasible realization with profit |W |.
Proof. Let W ⊆ V denote the independent set of cardinality z. If i ∈ W ,
then process activity Ai with profit 1 during [3i − 3, 3i]. If i /∈ W , then
process it with profit 0 during [3i−2, 3i−1].All other activities are processed
at profit 0: Every blocking activity is processed during its crucial interval.
For an edge 〈i, j〉 ∈ E with i < j and i /∈ W , process activity Ai,j during
[3i− 1, 3j − 3]; this puts Ai,j after Ai and before Aj exactly as imposed by
the precedence constraints. For an edge 〈i, j〉 ∈ E with i < j and i ∈ W ,
process activity Ai,j during [3i, 3j − 2]. Since i ∈ W , its neighbor j cannot
be also in W ; hence Aj is processed during [3j − 2, 3j − 1] and after Ai,j ,
exactly as imposed by Ai ≺ Ai,j ≺ Aj .

Since in this realization activity Ai brings profit 1 if and only if i ∈ W ,
this realization has profit |W |. Moreover it can be verified that all precedence
constraints indeed are satisfied. ��
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Lemma 2.2. If the constructed project has a feasible realization with profit
p ≥ 1, then the graph G has an independent set W with |W | = p.

Proof. We first establish three simple claims on such a feasible project real-
ization. The first claim is that (in any feasible realization with positive profit)
the processing of every blocking activity must exactly occupy its crucial in-
terval. Indeed, consider the activities Bt and Cq−t with their crucial intervals
I(Bt) = [0, 3t] and I(Ct) = [3t, 3q]. Since the total profit is positive, Bt

is processed for at least 3t and C3q−t is processed for at least 3q − 3t time
units. Since Bt is a predecessor of Cq−t, they together cover the whole time
horizon [0, 3q]; this fixes them in their crucial intervals.

The second claim is that every activity Ai is processed somewhere within
its crucial time interval [3i−3, 3i]. By our first claim activity Bi−1 completes
at time 3i − 3 and activity Cq−i starts at time 3i. Since Bi−1 ≺ Ai ≺ Cq−i,
activity Ai cannot start before time 3i − 3 and cannot end after time 3i.

The third claim is that there exist exactly p activities Ai that exactly
occupy their crucial intervals. By construction of the project all the profit
results from the activities Ai, and Ai brings positive profit only in case it
is executed for at least three time units. By our second claim, Ai cannot be
executed for more than three time units. Hence, each activity Ai that brings
positive profit occupies its crucial interval [3i − 3, 3i].

Now we are ready to prove the statement in the lemma. Consider the set
W ⊆ V that contains vertex i if and only if Ai occupies its crucial interval
[3i− 3, 3i]. We claim that W is an independent set. Suppose otherwise, and
consider i, j ∈ W with i < j and 〈i, j〉 ∈ E. Then Ai occupies [3i − 3, 3i],
and Aj occupies [3j − 3, 3j], and Ai ≺ Ai,j ≺ Aj holds. Hence, Ai,j is
processed during the 3j − 3i − 3 time units between 3i and 3j − 3. But in
this case its profit is −∞, and we get the desired contradiction. Hence, W
is an independent set, and by our third claim |W | = p. ��
Theorem 2.3. Max-profit project scheduling with irregular costs is NP-
hard even for interval order precedence constraints. For any ε > 0, the
existence of a polynomial time approximation algorithm for max-profit PSIC
for projects with n activities

– with worst case ratio O(n1/4−ε) implies P=NP,
– with worst case ratio O(n1/2−ε) implies ZPP=NP.

Proof. NP-hardness follows from the Lemmas 2.1 and 2.2. The constructed
reduction preserves objective values. It translates graph instances with in-
dependent sets of size z into project instances with realizations of profit
z, and thus it is approximation preserving in the strongest possible sense.
For a graph with q vertices, the corresponding project consists of O(q2)
activities. Håstad (1999) proved that the clique problem in n-vertex graphs
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(and hence also the independent set problem in the complement of n-vertex
graphs) cannot have a polynomial time approximation algorithm with worst
case guarantee O(n1/2−ε) unless P=NP, and it cannot have a polynomial
time approximation algorithm with worst case guarantee O(n1−ε) unless
ZPP=NP. Since the blow-up in our construction is only quadratic, the theo-
rem follows. ��

In the VERTEX COVER problem, the goal is to find a minimum car-
dinality vertex cover (a subset of the vertices that touches every edge) for
a given input graph. Note that vertex covers are the complements of inde-
pendent sets. We denote by τV C the approximability threshold for the vertex
cover problem, i.e., the infimum of the worst case ratios over all polynomial
time approximation algorithms for this problem. Håstad (1999) proved that
τV C ≥ 7/6 unless P=NP, and it is widely believed that τV C = 2.

Theorem 2.4. Min-cost project scheduling with irregular costs is NP-hard
even for interval order precedence constraints. The existence of a polynomial
time approximation algorithm for min-cost PSIC with worst case ratio better
than τV C would imply P=NP.

Proof. By a slight modification of the above construction. For activities Ai,j

and for blocking activities, we replace low profit −∞ by high cost ∞, and
the neutral profit 0 by the neutral cost 0. For activities Ai, we replace low
profit −∞ by high cost ∞, profit 0 by cost 1, and profit 1 by cost 0. It can
be shown that there exists a realization of cost c for the constructed project,
if and only if there exists an independent set of size q − c for the graph, if
and only if there exists a vertex cover of size c for the graph. Hence, this
reduction preserves objective values. ��
Corollary 2.5. For the discrete time/cost tradeoff problem, the existence
of a polynomial time approximation algorithm with worst case ratio better
than τV C for the DEADLINE problem would imply P=NP. ��

3 Orders of bounded height

In this section we will derive a positive result for the project scheduling
problem with irregular costs under orders of bounded height. The height
of an ordered set is the number of elements in the longest chain minus
one. Precedence constraints of height 1 are sometimes also called bipartite
precedence constraints; see e.g. Möhring (1989).

Theorem 3.1. Max-profit and min-cost project scheduling with irregular
costs are NP-hard and APX-hard even when restricted to precedence con-
straints of height two.
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Proof. Deineko & Woeginger (2001) establish APX-hardness for the min-
cost DEADLINE version of the discrete time/cost tradeoff problem. Their
reduction produces instances of height 2 for min-cost PSIC, and it is straight-
forward to adapt the construction to max-profit PSIC. ��

In the rest of this section we will concentrate on the max-profit PSIC for
precedence constraints of height 1, and we will derive a polynomial time
algorithm for it. Consider such an instance where all profits are either −∞
or non-negative, and classify the activities into two types. The A-activities
A1, . . . , Aa do not have any predecessors, and the B-activities B1, . . . , Bb

do not have any successors. The only precedence constraints are of the
type Ai → Bj , that is from A-activities to B-activities. We start with a
preprocessing phase that simplifies this instance somewhat.

– If there exists some activity that neither has a predecessor nor a successor,
it is completely independent from the rest of the instance. We process this
activity at the maximum possible profit, and remove it from the instance.
From now on we assume that each activity has at least one predecessor
or successor, and that consequently the partition into A-activities and
B-activities is unique.

– We remove all realizations with profit −∞ from the instance.
– Assume that there is an A-activity Ai with profit function pi, and that

there are two realizations (x, y) and (u, v) for it with y ≤ v and
pi(x, y) ≥ pi(u, v). Then the realization (x, y) imposes less restric-
tions on the successors of Ai and at the same time it comes at a higher
profit; so we may disregard this realization (u, v) for Ai. By a symmetric
argument, we may clean up the realizations of any B-activity Bj .

– Assume that Ai ≺ Bj and that there exists a realization (x, y) of Ai that
collides with all surviving realizations of Bj (that is, the endpoint y lies
strictly to the right of all possible starting points of Bj). Then we remove
realization (x, y) for Ai, since it will always collide with the realization
of Bj . Symmetrically, we clean up the realizations of the B-activities.

Lemma 3.2. (i) The original instance has a realization with profit p if and
only if the preprocessed instance has a realization with profit p.

(ii) The surviving realizations for Ai can be enumerated as
(x1

i , y
1
i ), . . . , (x

a(i)
i , y

a(i)
i ) such that they are ordered by strictly in-

creasing right endpoint and simultaneously by strictly increasing profit
for Ai. Similarly, the surviving realizations for Bj can be enumerated as

(u1
j , v

1
j ), . . . , (u

b(j)
j , v

b(j)
j ) such that they are ordered by strictly decreasing

left endpoint and simultaneously by strictly increasing profit for Bj .

(iii) If the original instance has a realization with non-negative profit, then
for every activity Ai (respectively, Bj) there exists a realization in the pre-
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processed instance that does not collide with any realization of a successor
of Ai (respectively, of a predecessor of Bj).

Proof. Statements (i) and (ii) are clear from the preprocessing. To see (iii),
consider the realization (x1

i , y
1
i ) that has the smallest right endpoint over all

realizations of Ai. Suppose that it collides with some realization (u�
j , v

�
j)

of some successor Bj of Ai. Then this realization of Bj collides with all
realizations of Ai and would have been removed in the last step of the
preprocessing. ��

From now on we assume that the conditions in (iii) in Lemma 3.2 are
satisfied. We translate the preprocessed instance into a bipartite graph with
weights on the vertices. The max-profit problem will boil down to finding
an independent set of maximum weight in this bipartite graph.

– For every realization (xk
i , y

k
i ) of Ai with profit function pi, there is

a corresponding vertex Ak
i in the bipartite graph. If k = 1, then the

weight of Ak
i equals pi(x1

i , y
1
i ). If k ≥ 2, then the weight of Ak

i equals
pi(xk

i , y
k
i ) − pi(xk−1

i , yk−1
i ). Note that all weights are non-negative and

that the weight of the first k realizations of Ai equals pi(xk
i , y

k
i ).

– Symmetrically, the bipartite graph contains for every realization (u�
j , v

�
j)

of activity Bj a corresponding vertex B�
j . The (non-negative) weights of

the vertices B�
j are defined symmetrically to those of the vertices Ak

i .
– Finally, we put an edge between Ak

i and B�
j if and only if Ai ≺ Bj

holds and if the interval [xk
i , y

k
i ] does not lie completely to the left of the

interval [u�
j , v

�
j ].

Lemma 3.3. The profit p of the most profitable realization of the prepro-
cessed project equals the weight of the maximum weighted independent set
in the bipartite graph.

Proof. (Only if) Consider the most profitable realization, and consider the
following set S of vertices. If activity Ai is realized as (xk

i , y
k
i ), then put the

vertices A1
i , A

2
i , . . . , A

k
i into S. The weight of these k vertices equals the

profit pi(xk
i , y

k
i ) of realization (xk

i , y
k
i ). If Bj is realized as (u�

j , v
�
j), then

put the vertices B1
j , . . . , B�

j into S. The weight of these � vertices equals
the profit of the realization of Bj . By construction, the total weight of S
equals the total profit p of the considered realization. Moreover, the set S
is independent: If in S some As

i was adjacent to Bt
j , then Ai ≺ Bj and Ak

i

and B�
j would be adjacent. But this would yield a collision in the execution

of Ai and Bj , and the realization would be infeasible.
(If) Consider an independent set S of maximum weight in the bi-

partite graph. For an activity Ai, consider the intersection of S with
{A1

i , . . . , A
a(i)
i }. By Lemma 3.2.(iii), this intersection is non-empty. Let



92 A. Grigoriev, G.J. Woeginger

k denote the largest index such that Ak
i is in S. Since the neighborhood of

A1
i , . . . , A

k−1
i is a subset of the neighborhood of vertex Ak

i , also these k −1
vertices are contained in S. Then we realize activity Ai by (xk

i , y
k
i ); the

resulting profit pi(xk
i , y

k
i ) equals the total weight of the vertices A1

i , . . . , A
k
i

in S. For activity Bj , we symmetrically compute a realization that is based
on the maximum index � for which B�

j is in S. Since Ak
i and B�

j are not
incident in the bipartite graph, the chosen realizations of Ai and Bj do not
collide. Hence, this realization is feasible. By construction, the total profit
equals the total weight of S. ��
Theorem 3.4. Max-profit and min-cost project scheduling with irregular
costs are solvable in O(n3T 6) time when restricted to precedence con-
straints of height one.

Proof. By Lemma 3.3, these problems are polynomial time equivalent to
finding a maximum weight independent set in a bipartite graph with non-
negative vertex weights. Here, the preprocessing and instance translation
require O(n2T 4) time and the resulting bipartite graph has O(nT 2) ver-
tices. Using max-flow min-cut techniques, see Ahuja, Magnanti & Orlin
(1993), maximum weight independent set in bipartite graphs can be solved
in O(|V |3) time, where |V | is a number of vertices in bipartite graph. Thus,
max-profit and min-cost project scheduling with irregular costs are solvable
in O(n3T 6) time when restricted to precedence constraints of height one.

��

4 Orders of bounded width

In this section, we will show that if the width of the precedence constraints
is bounded by some fixed constant d, then max-profit PSIC is solvable in
polynomial time. For technical reasons, we assume throughout this section
that all realizations of length 0 have profit −∞ and hence are forbidden;
all our arguments would also go through without this assumption, but the
presentation would become more complicated.

In an ordered set, two elements Ai and Aj are called incomparable if
neither Ai is a predecessor of Aj nor Aj is a predecessor of Ai. A set
of tasks is an anti-chain, if its elements are pairwise incomparable. The
width of the order is the cardinality of its largest anti-chain. A well-known
theorem of Dilworth (1950) states that if the width of an ordered set with
n elements equals d, then this set can be partitioned into d totally ordered
chains C1, . . . , Cd. Moreover, it is straightforward to compute such a chain
partition in O(nd) time.

For a given instance of max-profit PSIC of width d, we first compute a
chain partition C1, . . . , Cd, and we denote the number of activities in chain
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Cj by nj (j = 1, . . . , d). Now let us consider some feasible realization of the
project, and let us look at some fixed moment t+ 1

2 in time with 0 ≤ t ≤ T .
As the chain Cj is totally ordered, at time t + 1

2 , at most one of its activities
is under execution. Chain Cj is called inactive at time t + 1

2 if none of its
activities is under execution, and otherwise it is active at time t + 1

2 .

Definition 4.1. For a feasible realization, the snapshot S taken at time t+ 1
2

with 0 ≤ t ≤ T contains the following information:

(S1) For every chain Cj , one bit of information that specifies whether Cj is
active or inactive.

(S2) For every inactive chain Cj , a number inj with 0 ≤ inj ≤ nj that
specifies the last activity in Cj that was executed before time t + 1

2 . If
no activity has been executed so far, then inj = 0.

(S3) For every active chain Cj , a number actj with 1 ≤ actj ≤ nj that
specifies the current activity of Cj . Moreover, the starting time xj of
the current activity with 0 ≤ xj ≤ T − 1.

For the data in (S1) there are at most 2d possibilities, for all the numbers
inj and actj in (S2) and (S3) there are at most O(nd) possibilities, and for
all the starting times in (S3) there are at most O(T d) possibilities. Since d
is a fixed constant, this yields that there are at most O(ndT d) snapshots at
time t + 1

2 .

Definition 4.2. For any t with 0 ≤ t ≤ T and for any possible snapshot
S, we denote by F [t; S] the maximum possible profit that can be earned
on activities completing before time t + 1

2 in a feasible project realization
whose snapshot at time t + 1

2 equals S.
If no such feasible realization exists, then F [t; S] = −∞.

We compute all these values F [t; S] by a dynamic programming ap-
proach that works through them by increasing t. The initial cases with t = 0
are trivial, since F [0;S] can only take the values 0 (if there exists a feasi-
ble realization with snapshot S at time 1

2 ) or −∞ (otherwise). To compute
F [t; S] for t ≥ 1, we check all possibilities for a compatible predecessor
snapshot S′ at time t − 1

2 in the following way by considering all the chains
separately (the data from snapshots S and S′ is represented by un-primed
and by primed variables, respectively):

– Chain Cj might be active in S′ and inactive in S. Then inj = act′
j . The

additional profit comes from realizing the act′
j-th activity in chain Cj

from time x′
j to time t.

– Chain Cj might be inactive in S′ and active in S. Then actj = in′
j + 1

and xj = t. No additional profit is generated.
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– Chain Cj might be inactive in S′ and S. Then inj = in′
j . Since no activity

can simultaneously be started and completed at time t, no additional profit
is generated.

– Chain Cj might be active in S′ and S. There are two cases: If the same
activity is executed at time t − 1

2 and at time t + 1
2 , then actj = act′

j

and xj = x′
j , and no additional profit is generated. And if the executed

activities at times t − 1
2 and t + 1

2 are distinct, then actj = act′
j + 1

and xj = t must hold. The additional profit comes from realizing the
act′

j-th activity in Cj from time x′
j to time t.

If snapshots S and S′ are of this form for all d chains, then we say that S′
is a predecessor of S. Moreover, we denote the total additionally generated
profit over all the chains by profit(S′, S). It can be verified that any snapshot
S at time t+ 1

2 has at most O(T d) predecessors at time t− 1
2 . Then the value

F [t; S] can be computed as

F [t;S]:= max{F [t−1; S′]+profit(S′,S)|S′ is a predecessor of S}. (1)

In the end, the solution to the instance of max-profit PSIC can be found in
F [T ; S∗] where S∗ is the snapshot at time T + 1

2 where all chains are inactive
and where inj = nj holds for j = 1, . . . , d. The time complexity of this
dynamic programming algorithm is O(ndT 2d+1): Since there are O(ndT d)
snapshots at time t + 1

2 , we altogether compute O(ndT d+1) values F [t; S].
Each value can be computed in O(T d) time by checking all predecessors in
(1). By storing appropriate auxiliary information and by performing some
backtracking, one can also explicitly compute the optimal feasible realiza-
tion while increasing the running time only by a constant factor. Since these
are standard techniques, we do not elaborate on them.

Theorem 4.3. Max-profit and min-cost project scheduling with irregular
costs are polynomially solvable in O(ndT 2d+1) time when restricted to
precedence constraints of width bounded by the fixed constant d. ��

5 Series parallel orders

Precedence constraints are called series parallel if (i) they contain a single
vertex, or (ii) they form the series composition of two series parallel order,
or (iii) they form the parallel composition of two series parallel orders.
Only orders that can be constructed via rules (i)–(iii) are series parallel.
Here the series composition of two orders (V1, ≺1) and (V2, ≺2) with V1 ∩
V2 = ∅ is the order that results from taking their union and making all
elements in V1 predecessors of all elements in V2, whereas the parallel
composition of (V1, ≺1) and (V2, ≺2) simply is their disjoint union. Series
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parallel precedence constraints are a proper generalization of tree precedence
constraints; see e.g. Möhring (1989).

It is well known that a series parallel order can be decomposed in poly-
nomial time into its atomic parts according to the series and parallel com-
positions; see e.g. Valdes, Tarjan & Lawler (1982). Essentially, such a de-
composition corresponds to a rooted, ordered, binary tree where all interior
vertices are labeled by s or p (series or parallel composition) and where all
leaves correspond to single elements of the order. We associate with every
interior vertex v of the decomposition tree the series parallel order SP(v)
that is induced by the leaves of the subtree below v. Note that for the root
vertex root of the decomposition tree, the corresponding order SP(root) is
the whole ordered set.

Our goal is to design a polynomial time algorithm for max-profit PSIC
with series parallel precedence constraints. The usual tool for dealing with
series parallel structures is dynamic programming.

Definition 5.1. For a vertex v in the decomposition tree, and for integers x
and y with 0 ≤ x ≤ y ≤ T , we denote by F [v; x, y] the maximum possible
profit that can be earned on the activities in SP(v), subject to the condition
that all these activities are executed somewhere during the time interval
[x, y] such that they obey the precedence constraints.

If no such feasible realization exists, then F [v; x, y] = −∞.

We compute all these values F [v; x, y] by a dynamic programming ap-
proach that starts in the leaves of the decomposition tree, and then moves
upwards towards the root.

– If v is a leaf, the order SP(v) consists of a single activity A,
and F [v; x, y] is easily computed.

– If v is a p vertex with left child v1 and right child v2,
then F [v; x, y] := F [v1; x, y] + F [v2; x, y]

– If v is an s vertex with left child v1 and right child v2,
then F [v; x, y] := max{F [v1; x, z] + F [v2; z, y] : x ≤ z ≤ y}

In the end, the solution to the instance of max-profit PSIC can be found in
F [root; 0, T ]. The time complexity of this dynamic programming algorithm
is O(nT 3): To compute the values F [v; x, y] for the O(nT 2) leaves, it is
sufficient to look once at every possible realization of every activity; this
altogether costs O(nT 2) time. And for the inner vertices v, the correspond-
ing O(nT 2) values can be computed in O(T ) time per value. By standard
techniques, one can also explicitly compute the optimal feasible realization
while increasing the running time only by a constant factor.

Theorem 5.2. Max-profit and min-cost project scheduling with irregular
costs are polynomially solvable in O(nT 3) time when restricted to series
parallel precedence constraints. ��
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6 PSIC with compactly encoded inputs

In all the sections above, we assumed that the cost and profit functions are
specified pointwise, that is, that the input lists for every possible realization
(x, y) ∈ R of every project the corresponding non-negative cost, respec-
tively the corresponding non-negative profit. In this section, we briefly dis-
cuss the variant where the cost and profit functions can be encoded compactly
via a fast oracle algorithm.

We present a pathological example for the min-cost version of this vari-
ant; a pathological example for the max-profit version can be derived in a
similar fashion.

Theorem 6.1. The special case of the DEADLINE problem with only two
activities A ≺ B and with compactly encoded cost functions is NP-hard in
the ordinary sense.

Proof. The proof is done by a reduction from the NP-hard THREE-
SATISFIABILITY problem; see Garey & Johnson (1979): Given a collec-
tion C = {c1, c2, . . . , cm} of clauses over a finite set U = {x1, x2, . . . , xn}
of logical variables such that every clause contains exactly three literals,
does there exist a truth assignment for U that satisfies all the clauses in C?

With every n-bit integer F with bits f1, f2, . . . , fn, we associate a
corresponding truth assignment for the variables x1, x2, . . . , xn that sets
xk =TRUE if fk = 1, and xk =FALSE if fk = 0. Consider the following
instance of the DEADLINE problem with time horizon T = 2n, and with
two activities A and B where A ≺ B:

– If activity A is realized at a length of � with 0 ≤ � ≤ T , then the resulting
cost cA(�) equals 2T − 2� if the true assignment corresponding to �
satisfies the given THREE-SATISFIABILITY instance, and otherwise
the cost equals 2T − 2� + 1.

– For any � with 0 ≤ � ≤ T , the cost cB(�) of realizing activity B at a
length of � equals 2T − 2�.

Note that the defined cost functions are strictly decreasing in �. The cost
function cA is compactly encoded via the clause set C, and for any given
value � it can be evaluated in polynomial time. If there is a satisfying truth
assignment, then the optimal cost is 2T . If there is no satisfying truth as-
signment, then the optimal cost is 2T + 1. ��
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