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Image Denoising via Sequential Ensemble Learning

Xuhui Yang, Yong Xu, Yuhui Quan*, Hui Ji

Abstract—Image denoising is about removing measurement
noise from input image for better signal-to-noise ratio. In recent
years, there has been great progress on the development of data-
driven approaches for image denoising, which introduce various
techniques and paradigms from machine learning in the design of
image denoisers. This paper aims at investigating the application
of ensemble learning in image denoising, which combines a set
of simple base denoisers to form a more effective image denoiser.
Based on different types of image priors, two types of base
denoisers in the form of transform-shrinkage are proposed for
constructing the ensemble. Then, with an effective re-sampling
scheme, several ensemble-learning-based image denoisers are
constructed using different sequential combinations of multiple
proposed base denoisers. The experiments showed that sequential
ensemble learning can effectively boost the performance of image
denoising.

Index Terms—Image denoising, Ensemble learning, Image
recovery, Ensemble denoiser

I. INTRODUCTION

MAGE denoising is about removing noise from image. De-

spite the great advance in sensing instruments and technolo-
gies, the signal-to-noise ratio of image remains unsatisfactory
in many scenarios. For example, taking pictures using low-
cost cameras at high sensitivities with low light conditions or
high ISO settings. The problem of image denoising is still of
great practical value to many low-level vision tasks, and its
importance keeps growing with the prevalence of webcams
and mobile phones. In addition, image denoising plays an
important role in many image recovery tasks, as it serves as
one fundamental module in many image recovery methods;
see e.g. [1], [2].

A noisy image, denoted by g, is usually modeled by

g=f+mn,

where f denotes the noise-free image, and m denotes the
measurement noise. To estimate f from its noisy observation
g, it is necessary to impose certain priors on both the image
and the noise. In most cases, the noise is modeled as the
realization of a random vector following some probability
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distribution. For instance, many existing methods assume
measurement noise of each pixel is independent and identically
distributed (i.i.d.) with zero mean. Then, the focus of designing
an effective denoiser is about how to define an accurate prior
of noise-free images so as to separate the image and the noise.

In the past, various image priors have been proposed for
denoising, e.g., the sparsity-based prior (or hyper-Laplacian
prior) of local variations of image intensities (e.g. [3], [4],
[5], [6]), and the recurrence of local image patches (e.g. [7],
[8], [9], [10], [11]). The advantages of such approaches lie in
their simplicity and fair generality, but there is a great room for
improvement considering the great variation of image content
in practice. In recent years, the data-driven (or learning-based)
approach has become more appealing as it allows the prior
to be adaptive to image content. The learning-based image
denoisers showed noticeable improvement over the image
denoisers that use manually-crafted image priors.

In the past, many machine learning techniques have been
introduced in the design of image denoisers, including

o Sparsity-based dictionary learning for denoising [12],
[13], [14], [15];

« Probabilistic generative models of pixel values or trans-
form coefficients of images, such as Gaussian scale
mixture model on wavelet coefficients [16], [17], Markov
random field in transform domain [18], and mixture of
Gaussians on image patch groups [19], [20], [21];

e Neural network based denoisers, such as convolutional
neural network (CNN) [22], [23], auto-encoder [24], [25],
[23], and multi-layer perception (MLP) [26];

« Trainable iterative denoising methods with strong moti-
vations from variational models [27], [28], [29].

All these learning-based denoisers have their merits and short-
comings.

Ensemble learning is an effective paradigm in machine
learning that combines multiple simple learning models to
produce a more accurate solution than a single model does.
Motivated by the success of ensemble learning in many appli-
cations, this paper aims at exploiting the potential of ensemble
learning in image denoising. In this paper, we proposed an
ensemble framework for removing noise from images, which
learns a set of transform-shrinkage-based simple denoisers,
and sequentially combines them to achieve good performance
on image denoising. The experiments showed performance
gain of the proposed method over several well-established
denoising methods. The study presented in this paper clearly
indicates the potential of sequential ensemble learning in
image denoising. In other words, we have an alternative
promising learning approach for boosting the performance of
image denoising.
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A. Motivation and rationale

An image, expressed as an array, can be viewed as a point
in a high dimensional linear space. It is widely accepted
that the set of noise-free natural images are concentrated
on a nonlinear low-dimensional manifold in such a high
dimensional linear space [30], [31]. The image prior imposed
on noise-free images, either manually-crafted or data-driven,
is about the characterization of the geometry of such an
underlying nonlinear manifold. Therefore, the denoiser derived
from an image prior can be viewed as the projection of an
noisy image onto a low-dimensional manifold characterized
by the image prior used in the denoiser. Considering the great
variation of image content in practice, the geometry of such
a low-dimensional manifold certainly is very complex. Thus,
it is very natural to consider using some machine learning
techniques to characterize the geometry of such a manifold.

Recall that the same phenomenon also happens in clas-
sification, where a weak classifier cannot accurately model
decision boundaries that have complex geometrical structure.
For example, a linear classifier can not effectively model the
decision boundary with large curvature. One approach of ad-
dressing such an issue is the so-called ensemble learning [32].
Ensemble learning provides a simple yet effective way to
increase the modeling capability of an classifier, which is done
by combining multiple weak classifiers to form a strong one
that can effectively represent the decision boundary that has
complex geometrical shape.

Motivated by the effectiveness of ensemble learning on
representing the decision boundary of an classifier with com-
plex geometrical shape, we propose an ensemble-learning-
based framework for more accurately modeling the geom-
etry of the low-dimensional manifold of noise-free images,
which is done by combining multiple simple denoisers to
form a powerful image denoiser. Indeed, many existing it-
erative image denoising methods (e.g. [30], [27]) can be
interpreted as sequential denoising ensemble, in which each
iteration of the method is a simple denoiser. Take the iterative
wavelet thresholding method for example. An iterative wavelet
thresholding method is done by iteratively thresholding the
wavelet coefficients of an image, which can be interpreted as
a sequential concatenation of many simple denoisers (wavelet
thresholding). See Fig. 1 for the denoising performance of such
an iterative wavelet shrinkage method, where the ensemble
size is equivalent to the number of iterations. It can be seen that
the performance gain in terms of PSNR supports the argument
that ensemble can help boosting the performance of denoising.

However, existing iterative denoising methods are not opti-
mized for fully exploiting the potential of ensemble learning.
In existing ones, the simple denoiser in each iteration is more
or less the same, which is against the diversity paradigm of
ensemble learning that makes the ensemble powerful, i.e., the
variations among simple classifiers (denoisers) to make them
complementary to each other for boosting the performance. In
addition, the resampling technique which is a powerful tool in
ensemble learning, cannot be applied to these methods. Thus,
there is certainly the need to design a class of image denoisers
that are specifically optimized for utilizing ensemble learning.
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Fig. 1: Performance of the ensemble of wavelet thresholding
operator versus the ensemble size on 12 natural images shown
in Fig. 8, in terms of PSNR value. The noise level is o = 15.
It can be seen that the the PSNR value of the denoising results
increases as the ensemble size becomes larger.

B. Contributions and significance

In recent years, the concepts and techniques in machine
learning, supervised or un-supervised, have been one main
driving force in the development of image denoisers. As one
important technique in machine learning, ensemble learning is
a simple yet efficient approach for performance boost in many
learning-based applications. This paper is the first one that
introduces ensemble learning to solve the problem of image
denoising. The proposed framework of constructing ensemble-
learning-based image denoiser, together with its concrete
implementation, not only shows the potential of ensemble
learning in image denoising, but also provides an effective
solution with solid performance.

Compared to other learning-based image denoising ap-
proaches, e.g. the probability generative models [16], [17]
or the variational-model-motivated trainable iterative meth-
ods [27], [29], the proposed ensemble-learning-based approach
allows the integration of different types of optimization models
corresponding to different types of image priors, while those
approaches are derived from certain variational models with
specific image priors. The flexibility and the simplicity of
integrating different types of image priors certainly make the
proposed ensemble-learning-based approach more appealing.
Compared to the neural-network-based approaches (e.g. [22],
[23], [24], [25], [23], [26]), our ensemble-learning-based
framework allows much easier incorporation of image priors
derived from specific domain knowledge. Such a property
can be very attractive in the case that there is no sufficient
amount of training image data. It also allows the integration of
some well-established powerful denoisers, e.g. the well-known
BM3D method, which can not be efficiently implemented in
the framework of neural network. Furthermore, the proposed
ensemble denoising framework has better interpretability than
neural networks, since each base denoiser is interpretable.

In addition, based on simple transform-shrinkage-based
denoisers, a practical denoiser ensemble is implemented in this
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paper. Different from [27], [29], the simple transform-based
denoiser is based on the shrinkage function represented by
the linear combination of Gabor functions. Two types of base
denoisers are proposed for constructing ensemble denoisers,
which exploit different characteristics of images. An effective
resampling scheme is developed for performance boost in
image denoising. Comprehensive experiments are conducted
to evaluate the performance of the proposed approach, and the
results showed that the proposed ensemble denoiser achieved
solid performance on several widely-used test datasets.

C. Notations and organization

Through this paper, bold upper letters are used for matrices
(e.g. A, W), bold lower letters for column vectors (e.g. a, w),
light lower letters for scalars (e.g. a,w), and hollow letters for
sets (e.g. R, Z). Given a sequence {y("};cz, y(?) denotes the
i-th element in the sequence. For a vector & € RY, let x[i]
denote the i-th element in @, and define ||z|2 = /> @(i)2.

The rest of this paper is organized as follows. Section II
gives a brief review on the related work. Section III is devoted
to the discussion of the proposed ensemble denoiser, and
Section IV is on the experimental evaluation. Lastly, the paper
is concluded in Section V.

II. RELATED WORK

In the past, many denoising methods have been proposed
with different motivations. They can roughly be classified
into knowledge-driven (i.e. image-prior-based) approaches and
data-driven (i.e. learning-based) approaches. In this section, we
only give a brief review on the image-prior-based approaches
and focus more on the learning-based approaches.

Using the image prior that the gradients of a noise-free
image are smooth, early work employed spatial smoothing
filtering or diffusion for suppressing noise; see e.g. [7] for
more details. In recent years, the sparsity of noise-free images
in certain transform domain and the patch recurrence within
an image are two dominant priors used in image recovery. The
sparsity prior assumes that images can be sparsified under
certain transforms, i.e., most transform coefficients are zero
or close to zero. Representative transforms for sparsifying
natural images include discrete cosine transform (DCT) [33]
and wavelet transform [34]. In addition to these transforms, the
data-driven transforms for sparsifying images could yield bet-
ter results, e.g. dictionary learning using K-SVD [12], orthog-
onal dictionary learning [35], data-driven tight frame [36], and
multi-resolution dictionary learning [37], to name a few. For
the patch recurrence prior, the BM3D method [38] is arguably
the most prevalent one with state-of-the-art performance. The
idea of BM3D is to first group similar image patches into
different stacks and then apply collaborative filtering on these
stacks. There are many variants of such an approach, e.g. local
PCA [39], low rank approximation [40], [41], Bayesian infer-
ence [42], smooth patch ordering on patch graph [43], patch-
graph Laplacian regularization [44], patch clustering [45],
and multi-scale patch-recurrence image denoising [10]. The
sparsity prior and patch recurrence prior are combined together
in [30], [46], [47], [48], [49] for better performance.

Meanwhile, many approaches also have been proposed to
learn image priors from a set of training images. In [16], [17],
natural images are characterized by their multi-level wavelet
transform coefficients which are modeled by Gaussian scale
mixtures. The FoE method [18] learns a high-order Markov
random field for modeling natural images. In [19], image
patches are modeled by the mixture of Guassians, and this
method is extended to the multi-scale setting in [20]. By
grouping similar image patches together, the prior on such
groups is learned in [21].

Instead of learning image priors for separating noise-free
image and noise, an alternative is to directly learn the mapping
between noisy images and noise-free images. There has been
rapid progress along this line in the context of deep learning.
Many different architectures of neural networks have been
proposed to learn such a map. Convolutional neural networks
(CNNs) are implemented in [22], [23] and auto-encoders are
implemented in [24], [25] for image denoising. In [26], a
multi-layer perceptron (MLP) is trained for denoising image
patches. Based on Gaussian conditional random field, a deep
neural network is proposed in [50] for improving the appli-
cability of neural network to different noise levels. In [23], a
deep CNN with residual learning and batch normalization is
proposed for blind denoising.

An alternative approach of learning the mapping that maps
noisy images to noise-free ones is to convert the iterative solver
of some existing regularization methods into a data-driven
denoiser, which is done by making the parameters involved in
the iterative solver trainable. In [18], [27], [28], the Markov
Random Field (MRF) based image denoisers are expanded to
construct a random field-based architecture that combines the
image model and the optimization algorithm in a single unit.
In [29], the PDE diffusion process is converted to a data-driven
diffusion denoiser by making those pre-defined parameters
trainable.

The proposed method in this paper also learns the mapping
that maps the noisy images to their noise-free counterparts.
Different from the aforementioned learning-based methods,
our approach is based on ensemble learning. The proposed
ensemble-learning-based image denoisers have better inter-
pretability than those neural-network-based methods. Also,
they have more flexibility of utilizing image priors than those
iterative-solver-based methods.

III. ENSEMBLE DENOISER

A. Ensemble learning framework for denoising

Let f € RY denote a noise-free image, and g € R" denote
its noisy observation generated by the following process:

g=f+n, (D)

where n € N(0,0%I) denotes additive white noise. Given
the noisy image g, image denoising is about recovering
f from g. In this section, we first introduce a sequential
ensemble learning based framework for image denoising, and
then propose an implementation of such a framework using
transform-thresholding-based denoisers. In the following, such
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Fig. 2: Framework of proposed ensemble denoiser.

an ensemble denoiser, denoted by F : RY — RY is built from
L base denoisers, denoted by {B,}/;.

The proposed architecture of ensemble learning for denois-
ing is illustrated in Fig. 2. The architecture is similar to a
cascade classifier. In ensemble learning, the ensemble classifier
is constructed by the concatenation of several base classifiers.
Therefore, in the proposed framework of ensemble denoiser,
the base denoisers { B, }/_, are also sequentially concatenated,
and they cooperate in a cascade form such that E(f) =
Br(Br—1(---(B1(f)))). Recall that in a cascade classifier,
each base classifier accepts the results of the previous classifier
as well as the supervised information as input during training.
Analogously, each base denoiser By : RN x RV — RY takes
two inputs: the output £~ from the previous base denoiser
By_1 and the noisy measurement g, and outputs an estimate
FO of f:

By (£“7Y,9) — £

The first base denoiser By, f(©) is simply set as g. In the
proposed ensemble denoiser, the training of each base denoiser
is based on the denoised results of the previous base denoiser
and the ground-truth noise-free images.

In such a framework, each base denoiser B, aims at
improving the denoised result generated from the previous
estimator By_; by simultaneously suppressing the residual
error (remaining noise) and recovering the information of f
lostin (=1 The By is learned in the way that it is optimized
for minimizing the approximation error of the estimation
f® to the truth f. Indeed, the reason why inputing the
original noisy measurement g to the denoiser By is to provide
the source such that the denoiser B, is able to recover the
information of f lost in the previous estimate f(‘~1).

B. Base denoisers

Similar to many ensemble classifiers in which each base
classifier is a weak one such as the linear classifier, the
base denoisers in the proposed ensemble based denoiser are
also the ones that are of simple forms and have efficient
implementation. There are many such candidates. In this paper,
we consider the well-established shrinkage (attenuation) based
denoising technique. The basic procedure is as follows. Given
a noisy input y € RY, it is converted by the transform W into
another representation ¢ = Wy, followed by being applied
with a shrinkage operator I'. Then, the denoised result is

obtained by converting I'(c) back to an image using some
operator W . Such a process can be formulated as:

Yy =WIiIT(Wy: 8), 2)

where T'(-; 3) denotes the shrinkage operator with the param-
eter vector (3.

Indeed, many well-established denoising methods fall into
the category of shrinkage-based denoising methods. For exam-
ple, the Wiener estimator uses the discrete Fourier transform
(DFT) as W and its inverse as W T, and uses the attenuation
function as the shrinkage operator whose parameters are
determined by the signal-to-noise ratio. The wavelet shrinkage
methods use the discrete wavelet transform as W and its
inverse as WT. The shrinkage operator used in wavelet
shrinkage methods is either hard thresholding operator or soft
thresholding operator. Recall that a hard thresholding operator
sets small entries to zero, and a soft thresholding operator not
only sets small entries to zero but also attenuates large entries.

In the proposed scheme, we consider an element-wise
shrinkage operator:

L(y; B)li] = h(ylil; B),
where the parameter vector 3 = [3'; 3?] with
/81 = [Bi,h cee 7ﬁinﬁé$17 R 5]13’Q
/62 = [ﬁ%,la s 75%,Q7ﬂ%,17 ) 6123,Q

In our approach, the attenuation function h(-, 3) is represented
by the linear combination of a set of Gabor atoms:

P Q P Q
hzB) =33 Bhady(2)+> > B, (2), 4

p=1g=1 p=1g¢=1

1

3)
]T

where

(&)

p.q

In our implementation, the grid points {1, }, are equi-spaced
in the interval [—310,310] with step size 10. Recall that the
range of image pixel value is [0,255], and thus the range
of the output with respect to a normalized high-pass filter
is [—255,255]. As the intermediate results in the ensemble
denoiser might exceed the range [—255,255], a larger range
[—310, 310] is then used such that most entries fall into such an
interval in practice. As the distance between two adjacent grid
points is 10, the standard deviation p of Gaussian function used
in (5) is then also set to 10, so that the resulting atoms have
sufficient polynomial reproducing capacity while they are not
too redundant. The parameters in 3 are randomly initialized
and learned from training data.

Note that in many existing works (e.g. [27], [51]), Gaussian
functions are used for representing the shrinkage operator. In
contrast, our approach uses Gabor functions for the represen-
tation of the shrinkage operator. The main motivation comes
from the powerful capability of Gabor functions on local time-
frequency analysis that allows more fine-grained operations on
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image details. To verify the benefit of using Gabor functions
over Gaussian function, two base denoisers are learned on
68 natural images from [27] with the same configuration,
except that one uses Gabor functions (P = 63, = 2) and
the other uses Gaussian functions (P = 63,Q = 0)!. The
results using these two denoisers on the classic natural images
given in Fig. 8 show that the one using Gabor functions has
the average 0.06dB PSNR improvement over the one using
Gaussian functions. Such an improvement on a base denoiser
will be further magnified in the resulting ensemble denoiser.

Recall that a base denoiser takes two inputs: the original
noisy measurement f and an estimate of noise-free image
FU1 from the base denoiser in the previous stage. Based on
how the previous estimation is used in the current denoising,
there are two possible types of base denoisers that can be used:

« Shrinkage after merging. The denoised image f(‘~")
from the previous base denoiser is first merged with the
noisy image g to take back the details, and then the
shrinkage is applied to removing the residual noise. In
this case, the base denoiser is formulated by

By(f“7.9) = WIT(W((1 -0 +2g): 8).
(6)
« Shrinkage before merging. Shrinkage is first applied to
the denoised image f(“~1) from the previous base de-
noiser for removing residual noise, and then the denoised
result is merged with the noisy image g for fetching the
details. In this case, the base denoiser is formulated by

By(f""V,.g) = 1= AW T(WFD:8) + Ag, (7)
or equivalently
By(fV,g) = WHT(W =1 8) + Mg - f1).

It is empirically observed that shrinkage after merging yields
better performance. Thus, we use shrinkage after merging
in our implementation. In Section IV, some results using
shrinkage before merging are given for comparison.

C. Local base denoiser

The base denoiser discussed above relies on the design
of the transform W. Motivated by the success of wavelet
transforms and convolution neural networks in image recovery,
we also use the filter-bank-based computational scheme for
constructing W. Consider a filter bank {a1,as,...,ax}
which can be either pre-defined or learned. The corresponding
transform, denoted by W : RV — RVK is defined as follows.

Wi iy —a®yay;.. . ag Qyl, ®)

where ® denotes the discrete convolution operator. The re-
construction operator, denoted by W : RNKE _ RN s the
adjoint operator of W of the form:

K

W+Z[61;02;...;CK]—>26k®0k, )
k=1

1t is noted that Gaussian functions with P = 53 and with P = 63 are
used in [27], [29] respectively

where {aj,@s,...,ax} denotes another filter bank for re-
construction. In our implementation, ay, is the reverse order
of ay, denoted by ar(—-). Such a transform is closely related
to un-decimal single-level wavelet transform [36].
Plugging (8) and (9) into (2) leads to the following base
denoiser:
K
Yioe = Y an(—) @ T(ar ® y; Br), (10)
k=1
where the same shrinkage operator I' but with different pa-
rameters is used for different filters. It is noted that the pair
of transforms (W, W) defined by (8) and (9) are based on
the convolutions using the filters of small support. Thus, the
transform W only measures local variations of the input over
different locations. Thus, we call the base denoiser defined by
(10) as the local base denoiser.
When a local base denoiser is learned from data, the first
filter in both filter banks is a pre-defined low-pass filter a{”) =

%1, where #a(z) is the length of age). Moreover, each

#a
filter in {ay }5_, is expressed as

ak:Dﬁykvk:2a"' aKv

where the columns of D are the filters in DCT except the
low-pass one, and - is the coefficient vector to be learned.
Note that the learned filters can be normalized by rescaling.

D. Nonlocal base denoiser

The local base denoiser exploits local variations of its
input for denoising, e.g., the wavelet shrinkage method takes
advantage of the sparsity prior of local tensity variations
of image. To utilize another powerful image prior, nonlocal
patch recurrence prior of images, we define another type of
base denoisers called nonlocal base denoiser. Given an image
Yy € RV, let Vy € RNV*N denote the nonlocal similarity
matrix of y, whose element Vj, (7, j) is defined by

| Riy — Rij%)

7252 ’
where R; : RY — RZ’* denotes the operator that extracts
the i-th patch (i.e. the patch centered at the i-th location) of
size Z x Z from y, and o is the noise level of image y. The
transforms W € RNVEXN W+ ¢ RVXNEK jn our nonlocal
base denoiser are defined by

Vy (i, j) = exp( Y

Wiy — (a1 ®y);...;(ak @y)], (12)
K

Wl i) — Y ar @ (Vyer), (13)
k=1

where {ay,ay}f_, is the pair of filter banks defined in Sec-
tion III-C. Due to the existence of V,,, the pair of transforms,
W and W, relates the pixels far away so that the mapping
is no longer local. See Fig. 3 for an illustration.

The construction of an optimal V,, is computationally
expensive. Instead, we adopt a simple patch matching scheme
that is often used in the nonlocal denoising methods (e.g. [38],
[21]). For each patch R;y, we find its top-7' (I' = 8 in
practice) similar patches within an R x R neighborhood and
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(a) Local W

(b) Nonlocal W

Fig. 3: Examples of local / nonlocal version of W on image
’Lena’. For constructing W, we set T'= 8 and R = 33. For
clarity we only show a 100 x 100 submatrix of W.

then calculate the pair-wise distances between R;y and each
similar patch. The distance between two unmatched patches
is set to infinity such that the similarity coefficient is 0. With
a GPU-acceleration implementation, such a patch matching
scheme only takes around 2.55 seconds for a 256 x 256 image
using a PC with i7-6700K CPU and Nvidia Titan V GPU. It is
noted that the resulting matrix V,, is sparse which is efficient
in both memory usage and related numerical computations.

By substituting (12) and (9) into (2), we have another base
denoiser:

Zak

In comparison to local base denoiser, the nonlocal one encodes
the nonlocal patch recurrence similarity structure of image
with the additional nonlocal operation V. It is noted that
V,, is not a shift-invariant operator, and it varies for different
images. For computational efficiency, instead of running patch
matching for intermediate results, all nonlocal base denoisers
use the same V, to construct nonlocal W in one pass.

® (Vyl((ax @9): Br)). (14

E3
Ynloc =

E. Training

The proposed ensemble denoiser E(-; ©) is defined on the
set of base denoisers, By(-,;©®®), ¢ = 1,.., L, where ©©)
contains the parameters of By. The full set of parameters ® =
Ur_, ©©. Define A = (v, 4 9). Then, regardless
the type of base denoiser, the parameters to be learned in each
base denoiser BY) are

0 — {A(e),,B(Z), )\(f)}.

To efficiently train ensemble denoiser, we use a sequential
scheme which is widely used in training cascade ensemble
classifiers [52]. That is, sequentially training each base clas-
sifier from the beginning to the end.

Given a set of training image pairs {f;, g; }‘j]:1 where f;
is a noise-free image, and g; is its noisy measurement. Let
1; 0 — = g; for all possible j and _f( ) be the output of the /-th
base denoiser B, that takes g; as input. The loss function for
learning the ¢-th base denoiser is then defined as

J

Z\Ifj Bu(£“V, g;;00)|2.

j 1

min F; (@) :=

iy (15)

6

An alternative gradient descend scheme [53] is called to solve

(15). The iteration is done as follows. Given @ ) at the i-th
iteration, update the estimation, denoted by @7( 4_)1,
A =2 — 2 v 0 B, 89, A,
B =B — s/ Vg0 Fu(n 54%/3( A, ae)
A§?1 = A('Z - S?VA“)F(’( 5(4) A @ )
fori =0,1,---, where s, s?, s{* > 0 are the step sizes. The

iteration stops when there is no noticeable gain in PSNR.

F. Resampling

To further boost the performance, we propose to introduce
the resampling technique in ensemble learning for training.
In the training of the base denoiser B® where ¢ > 1, we
randomly discard a small percentage of the input images
{ f](e_l)} j which are the outputs of the previous base denoiser
B=1) Then, new noisy images are created by re-adding noise
to the ground truths of those discarded images. These new
noisy images are denoised by passing them to the previous
trained base denoisers, and the previous denoisers are not
retrained. Then the new denoised images from BU¢~1 are
added to the set of images for training of B(). See Fig. 4
for an illustration of our resampling scheme.

/(“)
Truth Noise J B - B
Images Corruption 1 r1

Sufficient
PSNR
Gain ?,

B

Fig. 4: Tllustration of proposed resampling scheme.

G. Ensemble structure

By stacking multiple local base denoisers or multiple non-
local base denoisers, we can get two different ensemble
denoisers shown in Fig. 5 (a)-(b). In practice, the nonlocal
ensemble denoiser performs better than the local one, since
it can exploit additional image prior (i.e. patch recurrence).
However, it is also much more computationally expensive as
it requires a patch matching process for constructing nonlocal
matrix. In other words, these two ensemble denoisers have
their own merits and suitable applications.

With these two types of base denoisers in hand, we have the
flexibility of using different combinations of local and nonlocal
base denoisers to construct an ensemble denoiser that fits the
need of target application in terms of denoising effectiveness
and computational efficiency. In Fig. 5 (c)-(d), we illustrate
two different structures of ensemble denoiser: (i) a half-and-
half structure in which the first half is concatenated using local
base denoisers and the second half is concatenated using non-
local ones, and (ii) an alternative structure in which local base
denoisers and nonlocal ones are alternatively concatenated.
Furthermore, an adaptive construction of ensemble denoising
can be employed as follows. At each stage of the training,
we train a local base denoiser and a nonlocal base denoiser
separately, and select the one with higher PSNR value on the
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training data to be the base denoiser of the current stage.
The drawback of such an adaptive construction is its very
high computational cost. We will investigate such an adaptive
construction in future.

1 Local || 2 Local || 3 Local || 4 Local || § Local

Base Base Base Base Base

Denoiser Denoiser Denoiser Denoiser Denoiser

(a) fully local structure

1 Non-Local || 2 Non-Local || 3 Non-Local || 4 Non-Local || 5 Non-Local

Base Base Base Base Base

Denoiser Denoiser Denoiser Denoiser Denoiser
(b) fully nonlocal structure

1 Local || 2 Local || 3 Local || 4 Non-local || 5 Non-local

Base Base Base Base Base

Denoiser Denoiser Denoiser Denoiser Denoiser
(c) half-and-half structure

1 Local || 2 Non-Local || 3 Local || 4 Non-local || § Local

Base Base Base Base Base

Denoiser Denoiser Denoiser Denoiser Denoiser

(d) alternative structure
Fig. 5: Candidates of ensemble structure.

The overall computational cost of an ensemble denoiser
is determined by those of local base denoisers and nonlocal
base denoisers. For local base denoisers, the complexity of
W defined in (8) is O(KM?2N), as it only involves K
convolutions with filter size M x M. The same is true for
W defined in (9). The complexity of the shrinkage operator
T is O(PQKN). Then, the total computational complexity
of a local base denoiser is O((M? + PQ)K N). For nonlocal
base denoisers, in addition to the two processes above, there
are two more operations: the patch matching for constructing
V and the matrix multiplication with V. The complexity of
patch matching is O(Z?R%N) where Z x Z is the patch
size, and the complexity of nonlocal matrix multiplication
is O(TKN) since V is a sparse matrix. Then, the total
computational complexity of a nonlocal base denoiser is
O((M?K + PQK + Z*R? + TK)N). Suppose an ensemble
denoiser contains L local base denoisers and Lo nonlocal
base denoisers. Then, the overall computational complexity of
the ensemble denoiser is

O((Ly + Ly)(M? + PQ)KN + LyN(Z’R? + TK)).

IV. EXPERIMENTS
A. Datasets and settings

To evaluate the performance of the proposed method, we
use the same training/test datasets as [29]. The training dataset
contains 400 cropped images of size 180 x 180 from the
Berkeley segmentation dataset [54], and the test dataset (called
BSD68) contains 68 natural images of various sizes. See
Fig. 6 for the illustration of some samples of the training/test
images. In addition, we use 12 widely used images in existing
literature for the test, as shown in Fig. 8. To train the proposed
ensemble denoiser, we generated the noisy images by adding

i.i.d. Gaussian white noise with standard derivation (the so-
called noise level) o, to noise-free images. Five noise levels,
o = 10, 15, 20, 25, 30, are tested in the experiments.

(b) Samples of images in test

Fig. 6: Samples of images from training and test datasets.

We use NLEDY,. ,;, (NonLocal Ensemble Denoiser) to
denote the proposed ensemble denoiser that employs the
fully nonlocal ensemble structure with the configuration pa-
rameters (M, L), where L is the number of base denoiser
and M x M corresponds to the filter size. Accordingly, the
proposed ensemble denoiser with the fully local structure,
half-and-half structure and alternative structure are denoted
by LED%, . ,,, HLED%,  ,,, and ALED%,  ,, respectively. In
our implementation, considering the balance between running
time and denoising performance, we set the number of base
denoisers to 6. The filters used in W are initialized by DCT
and the ones in W are initialized as the inverse DCT, both
with the normalization factor M2. As a result, the number of
filters is M x M.

B. Performance evaluation

Recall that in Section III-B, we have two possible or-
ders of shrinkage and merging when constructing transform-
shrinkage-based denoisers. An experimental evaluation is done
to see which yields better performance. It is shown in Fig. 7
that the one using shrinkage after merging has better perfor-
mance. Thus, as described in Section. III-B, we selected the
strategy of shrinkage after merging in our implementation.

Next, we run an evaluation on which ensemble structure of
ensemble denoising performs best. In terms of PSNR value,
the comparison of the results on the BSD68 dataset from
NLEDZ, -, LED}, s, HLED:, ., ALED}, ; is summarized in
Table I. It can be seen that NLED performs the best. This is
not surprising. By exploiting nonlocal patch recurrence prior,
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nonlocal base denoisers are generally more effective than those
local ones, and thus the ensemble denoiser with the fully
nonlocal structure is the best performer. The second best is
ALED, which is slightly better than HLED, and the last one
is LED.

These results showed that nonlocal base denoisers are
more powerful than local ones. When the percentage of
nonlocal based denoisers increases, the performance of the
resulting ensemble denoiser is improved. Nevertheless, despite
its relatively-weak performance, LED still has its value in
practice, especially in those real-time applications, as its
computational cost is the lowest among all. The proposed
framework allows a flexible combination of local and nonlocal
base denoiser to balance denoising performance and compu-
tational efficiency to fit the needs of real applications.

T T
I shrinkage after merging
I:lShrinkage before merging

1 2 3 4 5 6 7 8 9
Ensemble size

Fig. 7: Comparison of shrinkage before merging and shrinkage
after merging.

TABLE I: PSNR (dB) of the denoised results by the proposed
ensemble denoiser with different ensemble structures.

o NLED} , LED3, . HLEDZ . ALED ;.
15 31.27 3113 31.20 3121
25 28.79 28.67 28.68 28.71

Lastly, the results from our best ensemble denoiser
NLEDS,, . is compared to that from several popular denoising
methods, including BM3D [38], WNNM [41], EPLL [19],
MLP [26], CSF [27], and TNRD [29]. See Table II for the
comparison of the average PSNR on the BSD68 dataset. It can
be seen that NLEDS, ., is the best performer?. In Table III, the
comparison of the PSNR values on the 12 test images shown
in Fig. 8 is listed for two noise levels. It can be seen that our
method yielded very competitive results, with top performance
on at least half of the images. See Fig. 9 for visual inspection
of some examples, and it can be seen that that our results show
better edge preservation and sharper image details than other
methods do.

C. Performance in different configurations

1) Performance vs. ensemble size: The performance of
ensemble denoiser is evaluated with different numbers of base
denoisers. The results by NLEDS,, ,, (M = 3,5,7) on the
BSD68 dataset are shown in Fig. 10. It can be seen that the
increase of PSNR is fast at the beginning and becomes slower

2The results from MLP are missing for several noise levels. The reason is
that the trained models of MLP are published online only for 2 noise levels,
o = 10, 25, among all tested noise levels in Table III.

Barbara

Monarch Parrot Peppers Starfish

Fig. 8: Twelve widely-used images.

TABLE II: Average PSNR (dB) of denoised results by different
methods on BSD68 dataset.

o BM3D WNNM EPLL MLP CSF TNRD NLED? %7
10 3332 33.56 33.37 33.49 3325 33.62 33.62
15 31.07 3137 31.21 - 3124 3142 3143
20 29.62 29.84 3025 - 2955 2997 29.98
25 28.57 28.83 28.68 28.96 28.74 128.92 28.93
30 2775 2797 2784 - 2750 28.07 28.10

<Y

Noisy(o = 25) BM3D(29.25dB) WNNM(29.84dB) EPLL(29.39dB)

e

MLP(29.61dB) CSF(29.62dB) TNRD(29.85dB) Ours(30.03dB)

oL »

Fig. 9: Visual comparison of denoised results.

as the number of base denoisers increases. This is because at
the latter stages, the input images is less noisy, and thus the
improvement on SNR is less too.

2) Performance vs. filter size: The performance of the
proposed ensemble denoiser NLEDS,, ,, is evaluated with
different filter size M. Some of the learned filters are shown
in Fig. 11. It can be seen that larger filter encodes richer local
image patterns. The PSNR results on BSD68 using different
filter sizes with different noise levels are listed in Table IV,
where better performance is obtained by using larger filters. It
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TABLE III: Performance comparison of different methods on
individual images in terms of PSNR (dB).

o=15
Images BM3D WNNM EPLL MLP CSF TNRD Ours
Airplane 31.07 31.39 31.19 - 31.33 31.46 31.59
Barbara 33.11 33.60 31.38 - 31.92 32.13 32.53
Boats  32.14 3227 31.93 - 32.01 32.14 32.16
C.man 3191 3217 31.85 - 31.95 32.19 32.28
Couple 32.11 3217 31.93 - 31.98 32.11 32.13
House 3494 3513 34.17 - 3439 34.53 34.76
Lena 3427 3427 3392 - 34.06 3424 34.35
Man 31.93 32.11 32.00 - 32.08 32.23 3222
Monarch 31.85 3271 32.10 - 32.33 3256 32.71
Parrot  31.37 31.62 31.42 - 31.37 31.63 31.70
Peppers 32.70 3299 32.64 - 32.85 33.04 33.10
Starfish  31.14 31.82 31.13 - 31.55 31.75 31.75

o=25
Images BM3D WNNM EPLL MLP CSF TNRD Ours
Airplane 2842 28.69 28.61 28.82 28.72 28.88 28.99
Barbara 30.71 31.24 28.61 29.54 29.03 29.41 30.11
Boats 2990 30.03 29.74 29.97 29.76 29.91 29.90
C.man 2945 29.64 29.26 29.61 29.48 29.72 29.75
Couple 29.71 29.82 29.53 29.73 29.53 29.71 29.74
House 32.85 33.22 32.17 32.56 32.39 3253 3281
Lena 32.07 3224 31.73 3225 31.79 32.00 32.18
Man 29.61 29.76 29.66 29.88 29.71 29.87 29.86
Monarch 29.25 29.84 29.39 29.61 29.62 29.85 30.03
Parrot  28.93 29.15 2895 29.25 2890 29.18 29.29
Peppers 30.16  30.42 30.17 30.30 30.32 30.57 30.66
Starfish 28.56 29.03 28.51 28.82 28.80 29.02 29.09

is noted that larger filter size increases the computational cost
in learning.

Ensemble size

(b) 0 =25

Ensemble size
(a) o =15

Fig. 10: Performance of proposed ensemble denoiser versus
ensemble size. We trained NLEDS,, ,, (M = 3,5, 7) for noise
level 0 = 15, 25.

TABLE IV: PSNR (dB) of the denoised results by the pro-
posed ensemble denoiser with different filter sizes.

o NLED§,, NLEDS . NLEDS, .,
15 31.10 31.36 3143
25 28.56 28.88 28.93

3) Performance vs. number of training samples: It is nat-
ural to ask whether more training samples can improve the
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Fig. 11: Learned filters in the /th base denoiser of the ensemble
denoiser NLED?MX s trained with the noise level o = 25. The
results by different ¢ and M are shown. Note that we do not
learn the first low frequency pass filter in each base denoiser.

performance of ensemble denoiser. We conducted an experi-
ment to uses 20, 50, 100, 200 and 400 training images to train
an ensemble denoiser respectively. In the experiment, the noise
level is set to 25 and the BSD68 dataset is used for test. See
Table. V for the summary of the results. It can be seen that
using a larger dataset gives little improvement on performance.
Indeed, similar phenomena were also observed on other com-
pared methods. One hypothesis for such phenomena is that the
dimension of the manifold of noise-free small image patches
is not very high. As image denoising essentially can be viewed
as the mapping of small image patches to small image patches,
the tens of image patches contained in the training images with
sufficient diversity are sufficient for avoiding over-fitting.

TABLE V: PSNR (dB) of the denoised results by the proposed
ensemble denoiser with different numbers of training images.

Number of images

Average PSNR (dB) | 28.44

| 20 50 100 200 400
28.63 28.68 28.71 28.72

D. Evaluation of computational cost

We implemented the proposed method using Matlab 2017a
and evaluated its running time on a PC with i7-6700K CPU
and Nvidia Titan V GPU. The GPU-based implementation was
used to accelerate the patch matching and represent V' opti-
mized for sparse matrix. Regarding the shrinkage operation,
we used a look-up table for further acceleration. See Fig. 12
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for the list of running time of using our ensemble method to
process an image, including: (1) the running time of two types
of base denoisers (i.e. LED' and NLED'); (2) the running time
of our ensemble denoiser vs. filter size; (3) the running time of
our ensemble denoiser vs. different ensemble structures. It can
be seen that ALED® and HLED® have nearly the same running
time, as both have the same number of local/nonlocal base
denoisers. We also calculated the elapsed time for processing
one image of size 256 x 256 using Matlab code of all compared
methods codes under the same environment. The results are
listed in Table VI. Regarding training time, it takes around
8.5 hours to train a local base denoiser and 9.5 hours for a
nonlocal base denoiser, when filter sizes are both set to 7. The
entire training process of NLEDS, ., takes about 2.5 days.

20 T

-
o
T
<
oo
&
I

Time (s)

3]
T
I

ALED®  HLEDS

1 1 6
I'EDMXM NLEDMxM I'EDMxM MxM MxM

Structure

6
NLED v 1

Fig. 12: Running time (seconds) vs. different filter sizes and
different structures for processing a 256 x 256 image. Each
result is the average over 10 runs on different images.

TABLE VI: Average running time (seconds) for processing an
input image of size 256x256.

Method | BM3D WNNM EPLL MLP CSF TNRD LED§, , NLEDS, ,
Time (s) | 0.28

108.80 25.52 2.56 220 094  0.79 16.94

E. Observations

In ensemble learning, the diversity among base learners
is crucial to the performance. In this subsection, we use
NLEDﬁ/IX a to study the behavior of individual base denoisers.

1) Learned shrinkage functions: Some examples of the
shrinkage functions learned on the base denoisers of NLEDS, ,
are shown in Fig. 13, in which some diversities among the
base denoisers can be found. In the early base denoisers,
the range of coefficients that are set to zero is larger than
that of the subsequent ones. In the subsequent denoisers, the
shrinkage functions tend to only fine-tune the input, since most
of noise has already been removed. In other words, for the
last few denoisers, the image patches are just to be “rectified”
so that they look more similar to the patterns of filters. This
partially explains why the ensemble denoiser using larger filter
size yields better performance, i.e., more interesting patterns
encoded by filters are involved for fine tuning the result.

2) Learned filters: In this study, the diffe;rence of two filter
banks from two base denoisers B;, B;, {f,ﬁ”}szl, {f;g])}szl’

10
40 40
20 20
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-20 -20
-40 -40
-400 -200 0 200 400 -400 -200 0 200 400
(a) Base denoiser B (b) Base denoiser B
40 6 40 6
0 0
20 20 {
-6 -6
50 0 50 50 0 50
0 0
-20 -20
-40 -40
-400 -200 0 200 400 -400 -200 0 200 400
(c) Base denoiser B® (d) Base denoiser B
40 6 40 6
0 0
20 20
-6 -6
5 0 50 50 0 50
0 0
-20 -20
-40 -40
-400 -200 0 200 400 -400 -200 0 200 400

(e) Base denoiser B® (f) Base denoiser B®

Fig. 13: Learned shrinkage functions of each base denoiser in
NLED$,,; for the noise level o = 25.

is quantified by both the maximal correlation and the average
correlation of all possible pairs:

R S 1<K >
7 7 ) 2 7 7 .
Pa || £ 2l £5712 K2 L= £ | £ 2

Lower correlation of two filter banks implies higher diversity
between two base denoisers. See Fig. 14 for the results. It can
be seen that overall, the correlations of filter banks among base
denoisers are not high. Thus, although the base denoisers are
initialized with the same filters, the diversity of filter banks of
the base denoisers can be improved during learning. Also, both
maximal and mean correlation coefficients between adjacent
base denoisers tend to decrease as ¢ becomes larger, after
ignoring the results related to Bj.

3) Tendency of the parameter \: Recall that the parameter
A determines the percentage of residuals that should be merged
into the last estimate of clear image. The values of \ at
different base denoisers, namely )\(Z), is listed in Fig. 15 in
different configurations. It can seen that A(“) tends to become
smaller with the increase of ¢. The reason is that as the
estimates on noise-free images becomes more accurate, the
estimates should be trusted more.

4) Effectiveness of resampling: To verify the effectiveness
of the proposed resampling strategy in training ensemble
denoisers, we constructed two baseline methods by (i) training
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Fig. 14: Correlation matrices of filters of base denoisers in
NLEDY,, .. The ensemble denoiser NLEDS,,; is trained on the
noise level o = 25.

1 1
0.8 0.8
0.6 0.6

< <

0.4 0.4
0.2 I II 0.2 IIH

0 0

1 2 3 4 5 6 1 2 3 4 5 6
Base denoiser Base denoiser
(@) o =15 (b) o =25

Fig. 15: Learned )y, for all k in NLEDS,, ,, with different M.

ensemble denoisers without resampling; and (ii) identifying
the images that yield large prediction loss in the previous base
denoiser and then increasing the weights of these images in
the loss function of current base denoiser. The second scheme
is an ad-hoc way to do resampling that makes current base
denoiser focus more on hard samples. The comparison of
the results in PSNR using different resampling schemes is
shown in Fig. 16. It is interesting to see that using the ad-
hoc reweighing based resampling scheme is harmful to the
performance of ensemble denoisers, which demonstrates that
resampling cannot be casually designed for performance boost.
In contrast, our proposed resampling scheme does lead to
performance gain in denoising.

28.8 1

28.7 1

No resampling
Reweighting
Proposed scheme

283 \ L L L L L L L I
1 2 3 4 5 6 7 8 9

Ensemble size

Fig. 16: Comparison of different resampling schemes.

V. CONCLUSION

This paper introduced sequential ensemble learning to the
design of image denoiser. An ensemble framework for con-
structing effective denoiser from a set of base denoisers
is presented, including various types of base denoisers and

different ensemble structures. A resampling scheme is also
proposed for further performance improvement. Comprehen-
sive experiments were conducted to study most aspects of
proposed ensemble framework, as well as to evaluate the
performance of the proposed ensemble denoiser. The ex-
perimental results showed the effectiveness of the proposed
method, which indicates the potential of ensemble learning
in image recovery. In future, we would like to investigate the
extension of the proposed ensemble framework to other image
recovery problems. In addition, we would like to investigate
more image priors for designing diverse base denoisers, as
well as develop adaptive construction schemes for constructing
ensemble denoisers with better performance.
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