
1. Introduction

1.1. Motivation
Convective flows play an important role in many different areas, as, for example, in geol-
ogy where these flows arise in the Earth’s mantle causing a movement of the continental
plates, the so-called continental drift. Convective flows are also used, to mention an ex-
ample from another area, in form of passive cooling systems in industrial applications to
reduce technical failures. Actually in everyday life, one can observe a convective flow, for
example, during cooking a soup. Regarding a possible climate change, the understanding
of these flows is especially important, because appearing as wind in the atmosphere they
can result in a twister or even hurricane due to a Coriolis acceleration of the Earth’s
rotation.

If the convection is only driven by local density changes resulting from temperature dif-
ferences inside the fluid, it is called a natural convection. In case of an additionally acting
mechanical force, e. g. blower or pump, which drives the convection from outside, one
would call it a forced convection.

1.2. Thesis purpose and outline
The main aspect of this thesis is the numerical investigation of a turbulent natural convec-
tion in air which is generated in different test case configurations between two opposite,
isothermally heated walls. The focus of the investigation lies, beside the numerical mod-
elling, on the understanding of the flow dynamic, the turbulence production and the fun-
damental fluid properties. Therefore, a compressible, 3-dimensional, transient, turbulent
Large-Eddy Simulation (short: LES) without a Boussinesq-approximation is performed
with help of the open-source software package OpenFOAM R©. “Compressible” means in
this case that density changes which are caused in the fluid by temperature differences
are considered by the numerical model. “Compressible” does not include a definition in
terms of the Mach number.

A compressible turbulence model is chosen, because, so far, incompressible models are
not able to reflect fully the influence of varying density gradients on the turbulence pro-
duction. Further, a compressible model is especially in one test case relevant due to an
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intensified gravitational force field in this case. As turbulence model, the compressible
model of Fureby is chosen which is a modification of the so called Smagorinsky model for
compressible flows. Temperature dependent fluid properties are considered in all simula-
tions by the Sutherland model.

The turbulent natural convective flows are analysed in three different test case configu-
rations. Two of these test cases are numerically analysed (VerCon and RayCon) while
the third one (CenCon) is investigated in an experimental study. The flow is limited in
all setups by an enclosed rectangular container whose aspect ratios vary in each test case
configuration. The container properties are chosen simplified to reduce especially com-
plexity aspects. Nevertheless, they are still sufficient and commonly used regarding the
investigation of fluid properties and flow structures in a turbulent natural convection.

The choice of the heated walls varies in all setups. The orientation of these walls relative
to the effective direction of gravity effects significantly the profile of the main flow field in-
side the test case. The first setup (marked by VerCon) is made of a rectangular container
where two of the vertical walls are heated isothermally, while both other cases (RayCon
and CenCon) consist of a rectangular container where both horizontal walls are heated
isothermally. Lateral walls of each setup are designed with different boundary conditions
to analyse possible influences on the flow field inside the container.

The configurations of RayCon and CenCon are also called a Rayleigh-Bénard problem
(short: RB problem). In contrast to RayCon, the setup of CenCon is additionally influ-
enced by a Coriolis acceleration. The effect of the Coriolis acceleration is realised by a
rotational movement of the test case under hyper-gravity in a large-scale centrifuge. While
CenCon is rotating uniformly, possible influences on the flow structures, turbulence pro-
duction and fluid properties due to the Coriolis acceleration should be investigated. All
test cases are based on each other. The gained information and results of both first test
cases, VerCon and RayCon, lead to the analyse of the third test case, CenCon.

The first main aspect in this thesis is the numerical investigation and understanding of the
test cases VerCon and RayCon. Therefore, several fluid properties are estimated between
the heated walls in each test case. Especially in the thermal boundary layer near these
heated walls, the temperature as well as the velocity and Nusselt number profiles are im-
portant in order to understand the structure and dynamic of the flow and its turbulence
production. The second main aspect is the numerical as well as experimental analysis of
the influence of the Coriolis acceleration on the RB problem in the setup of CenCon.

Due to the vertical orientation of the heated walls in VerCon, the flow reaches a quasi-
steady state after a while. This configuration of a turbulent natural convection represents
the basis for both other test cases. Hence, it is very important and essential to study and
understand first the flow dynamic and the behaviour of the fluid properties in this con-
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figuration. The gained information and the at this point also validated numerical model
of the chosen LES is required to analyse and understand both other cases.

The setup of RayCon is based directly on VerCon with its by 90◦ rotated heated walls.
The setup of CenCon results from RayCon in its layout and in the realised flow dynamic
as well as in the behaviour of the fluid properties regarding the state without a rotational
movement of the test case. But, in contrast to RayCon, a rotation is additionally im-
pressed on the setup which generates the additionally acting Coriolis acceleration. This
realised relative acceleration affects the generated vertical convective flow inside the RB
cell of CenCon. The conditions in the rotating setup of CenCon should simulate the at-
mospheric conditions in the beginning of a twister or hurricane. To generate these effects
in the experimental setup without the help of additional air blowers, as they are used in
other experimental setups, the radius of the centrifuge has to be sufficiently large, which
is fulfilled in our case. The effect of the Coriolis acceleration is realised in the simulation
by an implemented modified governing equation system (compared to the one of RayCon)
which considers the additionally acceleration. CenCon is analysed at the end of this thesis
on the basis of the beforehand obtained results of RayCon.

The numerical results of this thesis are validated to data of comparable experimental
test cases as well as theoretical and numerical data from the literature. The realised
Rayleigh-numbers lie in the range of 2.33 × 106 ≤ Ra ≤ 1.58 × 109. For VerCon it lies
at Ra = 1.58 × 109, for RayCon between 6.16 × 107 ≤ Ra ≤ 4.1 × 108 and for CenCon
between 2.33×106 ≤ Ra ≤ 4.32×107. The Prandtl number stays in each case at Pr = 0.71
which represents the used fluid, air, in the chosen temperature intervals.

In the beginning of this thesis, the Navier-Stokes equations of a general compressible un-
steady flow problem are presented. Outgoing from these equations, the governing equation
system is derived which describes the observed turbulent natural convection. Subsequently,
the computational methods and the mathematical model of the LES, which are used to
solve the afore stated equations, are discussed. Before the particular test case configura-
tions are explained in detail and the obtained results are demonstrated as main aspect of
this thesis, the required thermodynamic properties of a turbulent natural convection are
presented.

1.3. Related and previous studies
In the beginning of the 20th century, the French physicist Henri Claude Bénard (1874 -
1939) and the English physicist Lord Rayleigh (1842 - 1919) (former John William Strutt),
performed the first analyses of a natural convection between two, horizontal, heated walls
(see [Bénard1900], [Rayleigh1916]). This configuration of a natural convection is also called
Rayleigh-Bénard problem named after both scientists. Since then, numerous studies in-
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vestigating convective flow in different configurations were performed in an experimental,
as well as a theoretical and a numerical way.

[Dafa’Alla1996] and [Betts00], for example, perform an experimental investigation of a
low-level turbulent natural convection in air in a rectangular container with vertical
heated walls and an aspect ratio of Γ = 28.6. While in the study of [Dafa’Alla1996] a
Rayleigh number of Ra = 0.86 × 106 is realised, the study of [Betts00] investigates a
Rayleigh number of Ra = 1.43 × 106 and one of Ra = 0.86 × 106. The main aspects of
both studies lie on the temperature as well as velocity profiles between the heated walls.
Based on the experimental study of [Dafa’Alla1996], [Versteegh1998] implements a Direct
Numerical Simulation (short: DNS) for the same setup and for Rayleigh numbers between
5.4 × 105 ≤ Ra ≤ 5 × 106 and obtains an adequate approximation of the experimental
results.

Furthermore, [Ziai1983], [Mergui1993], [Lankhorst1991] and [Tian00a], [Tian00b] analyse
each a natural convection of a low-level turbulence in an experimental setup for different
Rayleigh numbers. In [Tian00a], [Tian00b] a Rayleigh number of Ra = 1.58 × 109 is re-
alised and in [Mergui1993] one of Ra = 1.7 × 109, while [Ziai1983] and [Lankhorst1991]
investigate smaller values of Ra = 5×108 and Ra = 3.9×108. All studies examine mainly
the profiles of the fluid properties between the heated walls in the vertical midplane, e. g.
temperature and Nusselt number profiles. The experimental data in [Tian00a], [Tian00b]
is used in the following to validate the numerical data of test case VerCon in chapter 5.

The opposite configuration of a natural convection between horizontal, heated walls, a
Rayleigh-Bénard problem, was also the subject of many numerical as well as experimen-
tal studies in the last decade of years. One of the experimental studies can be found
in [Funfschilling04] which investigates experimentally the plume motion and large-scale
circulation in a methanol-filled cylindrical RB convection for Rayleigh numbers between
7×107 ≤ Ra ≤ 3×109 and a Prandtl number of Pr = 6. One of the main goals of his study
is the understanding of the periodically plume emission in the system. In [Maystrenko07]
the boundary layer thickness in a RB convection in air in dependence on the fluid proper-
ties skewness and kurtosis is analysed. The convection cell has an aspect ratio of Γx = 5,
Γy = 1 and the investigated Rayleigh numbers are 6× 107 ≤ Ra ≤ 6× 108.

Complementary to the previously mentioned study of [Maystrenko07], [Ebert08] mea-
sures in the same setup the temperature distribution and local heat flux density in air
for Rayleigh numbers between 6.16× 107 ≤ Ra ≤ 6.02× 108 to obtain information about
the local and global heat flux distribution mainly in the regions near the heated walls.
In [Weiss11], a RB problem in a water-filled cylindrical cell with an aspect ratio of Γ = 1/2
is analysed for Rayleigh numbers between 2×108 ≤ Ra ≤ 1×1011 as to the measurement
of the Nusselt number and large scale circulation structures.
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An example for a numerical study of a RB problem can be found in [Seiter1995], who
models with help of a LES as well as a DNS a convective flow in air and in sodium gen-
erated between infinite horizontal channels. The Rayleigh numbers in this study lie at
Ra = 2.5× 106 and Ra = 107. [Seiter1995] discusses the analysis of flow structures in the
channels as well as the statistical evaluation of fluid properties for small Prandtl numbers.
[Reeuwijk08a] and [Reeuwijk08b] investigate, with help of a DNS and periodic boundary
conditions, the kinematic boundary layer and the heat flux in a RB configuration for an
aspect ratio of Γ = 4, different Rayleigh numbers between 105 ≤ Ra ≤ 108 and a Prandtl
number of Pr = 1.

Shiskina et al. concentrate in [Shishkina06, Shishkina08, Shishkina09] mainly on three-
dimensional, time-dependent DNS and well-resolved LES of turbulent RB problems in air
and water using a Boussinesq-approximation. The test case consists of a wide cylindrical
container. The realised Rayleigh numbers lie between 105 ≤ Ra ≤ 1010. The main goals
of these studies are the investigation of the thermal dissipation rate and the interaction
of thermal plumes.

Similar to the previous studies, the study in [Silano10] performs in his study a DNS,
using a Boussinesq-approximation, of a cylindrical cell with an aspect ratio of Γ = 1/2
for a range of Prandtl numbers between 10−1 ≤ Pr ≤ 104 as well as Rayleigh num-
bers between 105 ≤ Ra ≤ 109. The main goal of this study lies in the understanding of
Nusselt-Reynolds-number dependencies in relation to the chosen Rayleigh and Prandtl
numbers. Furthermore, van der Poel et al. investigate in [Poel13] differences between a
2- and a 3-dimensional RB convection in a cylindrical cell with varying aspect ratios for
Prandtl numbers of Pr = 4.38 and Pr = 0.7 up to a Rayleigh number of Ra = 108.
Therefore, numerical results are compared to experimental data. The main aspect in this
study are the Nu(Ra)- and also the Nu(Pr)-dependencies. Similarities between the 2D-
and 3D-convection can be found for some parameter ranges. But also large differences are
revealed, mainly for the case of Pr < 1 and low aspect ratios, which have a significant
effect on the Nusselt and Reynolds number distribution in the 2D-convection.

Complementary to the previously mentioned studies, [Ahlers06] searches experimentally
and theoretically for differences between a convection with and without a Boussinesq-
approximation. A natural convection for which a Boussinesq-approximation is assumed is
called Oberbeck-Boussinesq (short: OB) convection, while a natural convection without
a Boussinesq-approximation is called non-Oberbeck-Boussinesq (short: NOB) convection.
The realised Rayleigh numbers lie in [Ahlers06] between 108 ≤ Ra ≤ 1011. The cylindrical
cell has an aspect ratio of Γ ≈ 1. The study investigates the convection in water and in
glycerol.

Considering an analytical formulation describing a natural convection, the possibly first
approach to a formulated law of the turbulent boundary layer in the near wall region in a
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natural convection can be found in [George1979]. For the laminar region of the boundary
layer an analytical function can be found in [Pohlhausen1921]. Pohlhausen states in his
study a solution for a flow over an infinitely long plate.

In the last years, the studies of [Hölling05, Hölling06] discuss analytical functions describ-
ing the turbulent thermal and velocity boundary layer in a natural convective flow for
different ranges of Rayleigh as well as Prandtl numbers. The theory is valid for a configura-
tion with vertical or for one with horizontal, heated walls. [Grossmann00, Grossmann01]
describe in their studies possible Rayleigh-Nusselt-number-dependencies of strong RB
problems valid in different regimes in the Rayleigh number versus Prandtl number phase
space. The resulting power laws and defined regimes are discussed and updated in the
study of [Stevens13].

Regarding studies which deal also, as it is the case in this thesis, with a Coriolis force
influence, the studies of [Brown08a] and [Brown08b] can be mentioned. In both studies
measurements of large-scale circulations are performed in several water-filled cylindrical
convection cells of an aspect ratio of Γ = 1 and for Pr = 4.38. In [Brown08a] the anal-
ysed Rayleigh numbers lie between 3 × 108 ≤ Ra ≤ 1011, while they lie at Ra ≥ 1010

in the second study [Brown08b]. The experiments in [Brown08a] investigate the angular
orientation of a turbulent large scale circulation as a function of time. In [Brown08b] the
influence of a Coriolis force (caused by the Earth’s rotation) on the development of large-
scale structures is investigated over several days periods. The results show clockwise and
counter-clockwise revolutions of the circulation plane orientation.

In the study of [Horn11], on the one hand, a three-dimensional DNS of a NOB convection
is compared to one of an OB convection in a cylindrical cell of an aspect ratio of Γ = 1.
The cell is filled with water (Pr = 4.38) and the investigated Rayleigh number lies at
Ra = 108. The results show an asymmetrical temperature profile in the NOB convec-
tion as well as higher mean temperatures in the geometry centre than in case of the OB
convection. On the other hand, an additional influence of a rotational movement of the
NOB convection is analysed. The rotational movement of the cell leads to higher Nusselt
numbers compared to a non-rotating cell.

To model mathematically a turbulent natural convection in a numerical simulation, dif-
ferent approaches can be found in the literature. The American meteorologist Joseph
Smagorinsky was the first who formulated a turbulence model based on a formulation
of the eddy viscosity, see [Smagorinsky1963]. The model uses also the assumption of a
Boussinesq-approximation. The Smagorinsky model is widely used in LES methods and it
is also the basis for several other turbulence models, as in [Germano1991, Lilly1992]. Both
studies modify the Smagorinsky model to a dynamic version. In the study of [Fureby1996]
a modified version of the Smagorinsky model is formulated for compressible flows. The
study of [Deardorff1973] discusses the choice of the grid filter length in connection with
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the Smagorinsky model concerning the use of subgrid transport equations for atmospheric
turbulence.

To obtain a successful performance of a LES, the turbulent Prandtl number has to be cho-
sen carefully in the turbulence model. Therefore, several studies on this topic can be found.
For example, a suggestion of a turbulent Prandtl number in combination with an unstruc-
tured grid can be found in [Okong’O 00] or also in [Kosović02, Sergent03, Erlebacher1992]
who develop new subgrid scale models. In [Kosović02, Erlebacher1992] turbulence models
are presented which can be applied on compressible flows without using a Boussinesq-
approximation. Furthermore, [Kenjereš1999, Sergent03] demonstrate turbulence models
which use additional force terms to describe a turbulent natural convection.

In comparison to the mentioned related studies, in this thesis a compressible well-resolved
LES is performed to model numerically a turbulent natural convection in air in three
different test case setups. In each test case a different Rayleigh number range is analysed.
In one test case, the natural convection is generated between two vertical, heated walls.
In both other test cases a RB convection is realised (two horizontal, heated walls). The
chosen computational grid of each test case is high-resolved, especially in the near wall
regions. But all used computational grids consists of a smaller number of cells than it
would be the case in a DNS.

The used compressible turbulence model is based on the mentioned model of Fureby in
[Fureby1996]. Compared to most of the above related studies, the mathematical model
of this thesis deals with the assumption of a non-Boussinesq fluid to investigate possible
differences to the studies which consider a Boussinesq-approximation. Outstanding is the
third test case, in which the influence of a Coriolis force on the development of turbulent
as well as large-scale structures inside the fluid is analysed numerically as well as in an
experimental study. The influence of the Coriolis acceleration is realised in the experiment
by a rotational movement of the test case in a large scale centrifuge.

Note that some of the presented contents of this thesis are also discussed in extracts in the
articles [Zimmermann12], [Zimmermann14a], [Zimmermann14b] and [Zimmermann15].

1.4. Conservation of mass

To describe a flow problem by a mathematical model, the flow properties and its move-
ment have to be formulated by appropriate equations. These equations have to determine
the kinematic as well as transport and thermodynamic properties of the flow. The first
mentioned group includes properties of the flow field, e. g. velocity and angular velocity,
while the two other mentioned groups describe properties of the fluid itself, e. g. fric-
tional tensions or thermal diffusion and pressure, density or temperature. Next to the
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description of the continuity motion also the thermodynamic properties like diffusion,
momentum and heat transfer have to be formulated. The equations of viscous flows are
well known in fluid dynamics. At this point, they are presented in their basic form for
a three-dimensional flow problem. The following demonstrations are based on [Spurk07],
chapter 1 and 2 and [White1991], chapter 1 and 2. The governing equations which model
the flow properties and its movement are derived in the following from an infinitesimal
small and finitely large fluid control volume Ω, as is indicated in figure 1.1. The following
evaluations are done based on the information in [Spurk07], chapter 1, 1.2.1-1.2.5.

The control volume is separated from the rest of the fluid by a closed surface ∂Ω. The vol-
ume consists of a set of infinitely many fluid particles, which are denoted by the set M̃ . To
model the movement of the flow, it has to be possible to identify the set of fluid particles
in time and space. From the movement of the fluid particles in Ω, the movement of the
whole flow can be concluded on the macroscopic level. The fluid volume is assumed to be
celestial. Further, it is assumed as continuum. Hence, each fluid particle can be considered
as material particle and the density as continuous function of time and position. Note,
that the continuity assumption must not be fulfilled in every technical flow problem.

Figure 1.1.: Fluid control volume Ω (as seen in [Oertel06]).

The form of each fluid particle is variable in time and can change continually. Therefore,
one particle has to be identified not by its form, but by a specified vector χχχ, which is
characteristic for each particle. The movement of one particle can then be characterised
at a time instant t0 by its position vector xxx in relation to a chosen origin of a particular
three-dimensional coordinate system

χχχ = xxx(t0) . (1.4.1)

Or for the whole flow

xxx = xxx(χχχ, t) , or xi = xi(χj , t) with i, j = 1, 2, 3 . (1.4.2)

Note, that χχχ is a time independent vector. Equation (1.4.2) formulates a mapping be-
tween the referenced configuration at a time instant t0 to the actual one at time t. The
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formulation with χχχ and time t is called material description or Lagrangian description,
where χχχ is the material coordinate. The velocity and acceleration of one fluid particle can
be formulated in terms of χχχ by

ui(χj , t) =
[

∂xi

∂t

]
χj

, ai(χj , t) =
[

∂ui

∂t

]
χj

, with i, j = 1, 2, 3 . (1.4.3)

The index χj specifies the deviation for the χj-th point in the material. The first equation
in (1.4.3) is called the material deviation of the velocity.

For the most problems in fluid mechanics, the above material notation is modified, to
describe the flow at a specific location xxx and time t and not any longer in the material
coordinate. With (1.4.3) each material coordinate can be transformed to the independent
variables of a field coordinate xxx and time t. This transformation between both vectors is
a bijective function (one-to-one correspondence). Equation (1.4.2) can then be rewritten
as

χχχ = χχχ(xxx, t) , (1.4.4)

which describes the material point, which is at the place xxx at time t. The transformation
for the velocity between both vectors is then

uuu(χχχ, t) = uuu [(χχχ(xxx, t), t] = uuu(xxx, t) . (1.4.5)

The notation in the field coordinate xxx and time t is called field or Euler’s description.
This notation describes the path of one particle at a time instant t and hence its position
at t.

Sometimes it is more important to describe the changes of a material particle, and not
the change in time at a given location. The change of uuu(xxx, t) at xxx is not in every case the
acceleration, which the material point felt in xxx at time t, e.g. for the case of a steady flow
where the change of the velocity is zero at a specified location. If a material point proceed
from xxx to xxx + dxxx, where dxxx is an element of the path line, it felt a change in uuu(xxx, t), If the
velocity is given in material coordinates, then the material derivative is given by (1.4.3),
as mentioned before. If the velocity is described in field coordinates uuu(xxx, t), the material
derivative with respect to t can be formulated for a fixed χχχ as

duuu

dt
=

[
∂uuu (xxx(χχχ, t), t)

∂t

]
χχχ

. (1.4.6)

In equation (1.4.6), the position xxx in uuu(xxx, t) is replaced by the path coordinates of the
fluid particle which is located in xxx at time t. The conservation of mass, momentum and
energy have to be fulfilled in the following. The evaluation of the continuity equation is
discussed in the following based on [Spurk07], chapter 1, 1.2.5 and chapter 2. The form
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of the control volume varies during the motion. The region in space to which the volume
is extended at time t, is denoted by Ω(t). The total mass m in the bounded volume Ω is
determined by the sum of the particular material elements dm over the set of all material
particles M̃

m =
∫

M̃

dm =
∫
Ω(t)

ρ(xxx, t) dΩ (1.4.7)

with the continuous function of space of density ρ(xxx, t). Note, that M̃ should consists the
whole time of the same set of material points. Equation (1.4.7) can also be formulated for
an arbitrary continuous function ϕ over a region Ω(t) in space

∫
M̃

ϕ(χχχ, t) dm =
∫
Ω(t)

ϕ(xxx, t)ρ(xxx, t) dΩ. (1.4.8)

In the following, the dependence on the coordinates is omitted and it infers from the range
of each given integral. The mass in the bounded fluid volume has to be constant in time
due to the conservation of mass. Hence, this is fulfilled for each mass particle in M̃

D

Dt
m = 0 ,

D

Dt
(dm) = 0 , (1.4.9)

where D

Dt
denotes the material derivative in time. With the connection in (1.4.9), the fact,

that ϕ is continuously differentiable and regarding the Leibniz rule (for further information
see [Heuser09], chapter 4), the variation rate in time of equation (1.4.8) is subsequently

D

Dt

∫
M̃

ϕ dm = D

Dt

∫
Ω(t)

ϕρ d Ω =
∫
Ω(t)

D

Dt
(ϕρ) d Ω. (1.4.10)

Due to the Leibniz rule, the derivation of a continuously differentiable function can be
done “under” the integral. An equivalent expression to (1.4.10) is

D

Dt

∫
Ω(t)

ϕ d Ω =
∫
Ω

D

Dt
ϕ d Ω +

∫
Ω

ϕ
D

Dt
( d Ω). (1.4.11)

Without loss of generality, the variable domain Ω(t) can be replaced by a fixed domain Ω
which coincides with Ω(t) at time t, for the detailed derivation of (1.4.11) see [Spurk07],
chapter 1, 1.2.5. Regarding equation (1.4.11), also the following formulation is valid

D

Dt

∫
Ω(t)

ϕ dΩ =
∫
Ω

(
∂ϕ

∂t
+ ∂ϕui

∂xi

)
dΩ , (1.4.12)

where ∂

∂t
denotes the partial derivative in time. Due to the fact, that ϕ is continuously

differentiable in Ω, application of the theorem of Gauss (for further details to Gauss’s
theorem see [Amann08], chapter 3) on (1.4.12) produces the so-called Reynolds’ transport
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D

Dt

∫
Ω(t)

ϕ dΩ =
∫
Ω

∂ϕ

∂t
dΩ +

∫
∂Ω

ϕuuu · nnn dA , (1.4.13)

where ∂Ω is the orientated bounded surface of Ω and nnn its normal vector. The Reynolds’
transport theorem expresses the variation rate in time of the material volume integral to
the rate of change of an arbitrary quantity ϕ, which is expressed in terms of the integral
over Ω and in terms of its flux trough the bounded surface ∂Ω of Ω. At a time instant t,
both control volumes Ω and Ω(t) coincide with each other (see [Spurk07], chapter 2, 2.1).

As mentioned above, the mass in the fluid volume should be time independent and con-
stant. Regarding equation (1.4.12) with ϕ = ρ the conservation of mass in (1.4.9) is
transformed to

Dm

Dt
= D

Dt

∫
Ω(t)

ρ dΩ =
∫
Ω

(
∂ρ

∂t
+ ∂ρui

∂xi

)
dΩ = 0 . (1.4.14)

Because the range of the integral Ω is chosen arbitrarily, it can be concluded, that the
continuous integrand must vanish and the conservation of mass can be formulated in its
differential form

∂ρ

∂t
+ ∂ρui

∂xi
(1.4.15)

or
∂ρ

∂t
+∇ · (ρuuu) . (1.4.16)

Equation (1.4.15) is also called continuity equation. If the fluid is a steady flow, it is
∂ρ

∂t
= 0 and equation (1.4.16) becomes

∇ · (ρuuu) = 0 . (1.4.17)

If the volume is not variable in time ∂ρ

∂t
= 0 and space ∂ρ

∂x
= 0, the fluid is called

incompressible and it is
∇ · uuu = 0 . (1.4.18)

1.5. Conservation of momentum
The next step in this section is the derivation of the momentum balance in the fluid volume
Ω. Therefore, preliminary considerations are made. A fluid particle is able to perform
four different types of motion or deformation as translation, rotation, shear strain and
extensional stresses. The first two motions change only the location of the fluid particle,
while both last motions modify also its form. The following demonstrations are based
on [White1991], chapter 1, 1-3 (especially 1-3.3) and chapter 2, 2.4 as well as [Spurk07],
chapter 2, 2.2. The motion is always associated to a change in time. The translation is
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1. Introduction

characterised by a displacement from one to another location ux dt, uy dt, uz dt of the
particle (see as well figure 1.1). A rotation can be described by a motion of the fluid
volume around a specified rotation axis in a particular angle α. Hence, the rate of the
rotation is determined as

∂Ω̃x

dt
= 1

2

(
∂uz

∂y
− ∂uy

∂z

)
,

∂Ω̃y

dt
= 1

2

(
∂ux

∂z
− ∂uz

∂x

)
,

∂Ω̃z

dt
= 1

2

(
∂uy

∂x
− ∂ux

∂y

)
.

(1.5.1)

Expression (1.5.1) can be summarised as follows

ω̃̃ω̃ω = 2dΩ̃̃Ω̃Ω
dt

. (1.5.2)

ω̃̃ω̃ω is called vorticity of the fluid and can be connected to the velocity by

ω̃̃ω̃ω = ∇× uuu , [ω̃̃ω̃ω] = 1
s

. (1.5.3)

Then it is
∇ · ω̃̃ω̃ω = ∇ · (∇× uuu) = 0 . (1.5.4)

If ω̃̃ω̃ω = 0, the flow is called irrotational.

The shear strain is characterised as the averaged angle between two lines of the fluid
volume which were normal orientated to each other in the unstrained state. The shear
strain rate is defined by

εxy = 1
2

(
∂uy

∂x
+ ∂ux

∂y

)
, εyz = 1

2

(
∂uz

∂y
+ ∂uy

∂z

)
, εzx = 1

2

(
∂ux

∂z
+ ∂uz

∂x

)
. (1.5.5)

Consequently, the strain rates are symmetrical εij = εji. The extensional strain can be
explained as an increase in the fluid particle’s length

εxx = ∂ux

∂x
, εyy = ∂uy

∂y
, εzz = ∂uz

∂z
(1.5.6)

or

εij =

⎛
⎜⎝εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎞
⎟⎠ . (1.5.7)
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1.5. Conservation of momentum

εij is a symmetric second-order tensor with the following invariants

I1 = εxx + εyy + εzz,

I2 = εxxεyy + εyyεzz + εzzεxx − ε2xy − ε2yz − ε2zx,

I3 =

∣∣∣∣∣∣∣
εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

∣∣∣∣∣∣∣ . (1.5.8)

In Newton mechanics, a system is denoted as inertial, if its axes are fixed and Newtons
first law of motion is satisfied. This implies, that the velocity of an object is constant in
the system, if the object is not affected by any forces. Either the object is at a rest or it is
moving linearly with a constant velocity (see [Nolting13], chapter 2, 2.2.3). In an inertial
system, the variation rate in time of the momentum III = muuu equals the sum of all forces
FFF k, which are acting on the system. Thus, for the fluid volume it has to be

DIII

Dt
= Dmuuu

Dt
= FFF =

∑
k

FFF k , ⇒ maaa = FFF , (1.5.9)

which is Newtons second law. aaa is the acceleration of the fluid particle of mass m. Regarding
the density instead of the mass, equation (1.5.9) is written as

ρ
Duuu

Dt
= fff = fffbody + fff surface (1.5.10)

with the velocity uuu of the fluid particle and the applied force per unit volume fff , which
acts on the fluid particle. The forces which impact on the fluid particle are divided in
two classes, body forces and surface forces. A body force is usually applied to the entire
mass and is impressed by an external field, e. g. the gravitational force ggg. The surface
forces are applied by external stresses which result from the surrounding fluid. The whole
force, which is acting on the observed fluid volume can be described with help of equation
(1.5.10) by an integration over the volume and its surface. The following demonstrations
are based on [Spurk07], chapter 2, 2.2. It is

F =
∫
Ω(t)

kkkρ dΩ +
∫

∂Ω(t)
ttt d∂Ω . (1.5.11)

The vector kkk stands for the body forces and the vector ttt is the so-called deformation
tensor which compromises the surface forces. The deformation tensor is dependent on
space, time and from the orientation of the normal vector nnn of the surface element. The
deformation tensor is a linear combination of the components of nnn. With the Einstein
notation it is

tj(xxx,nnn, t) = τij(xxx, t)ni with i, j = 1, 2, 3 , (1.5.12)
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1. Introduction

which is illustrated in figure 1.2. τji stands for the magnitude of the i-th component of
the deformation tensor, which effects the element of the coordinate plane with the normal
vector, which points in the j-th direction.

Figure 1.2.: Fluid volume with notation for stresses, heat and work exchange
(as seen in [White1991]).

The deformation tensor is a second-order tensor and its matrix notation is

ttt = nnnTTT = nnn

⎛
⎜⎝

τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

⎞
⎟⎠ . (1.5.13)

The elements at the main diagonal are the normal stresses, the remaining elements are
the shear stresses. If the fluid is at rest, the velocity is zero and the shear stresses have to
vanish, solely the normal stresses remain. Thus, it is

τij = −pδij, where δij =
{

1 i = j,

0 i �= j,
(1.5.14)

where the tensor δji is the so-called Kronecker-Delta. This case equals the hydrostatic
pressure

ti = −pni, (1.5.15)

where the pressure p which is independent of nnn, is its absolute value. In general, the
deformation tensor can be separated in

τij = −pδij + Pij , (1.5.16)

where Pij determines the tensor of frictional tension. In all common fluids the applied
shear is a function of the strain rate

τij = f(εij) with i, j = 1, 2, 3. (1.5.17)
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1.5. Conservation of momentum

For the so-called Newtonian fluids, which are considered in this thesis, it is

τij = 2μεij = μ
duj

dxi

with i, j = 1, 2, 3 (1.5.18)

and the dynamic viscosity μ [kg/ms]. The transport property of the dynamic viscosity
μ yields a relation between momentum flux and velocity gradient. As a thermodynamic
property it is dependent on temperature and pressure. Its properties are further discussed
in section 1.9.

The easiest assumption for the variation of viscous stresses with strain rate is a linear law
which was first stated by Sir George Gabriel Stokes in 1845 in form of three assumptions
(see [Stokes1845] and [White1991], chapter 2, 2-4). Regarding the first assumption, the
stress tensor τij of a continuous fluid is a linear function of the strain rates εij. Second, the
fluid is isotropic, hence its properties are independent of direction. And third, if the strain
rates are zero, the deformation law equals the hydrostatic pressure, which was already
mentioned above. From these three assumptions, Stokes derived the following deformation
law which is fulfilled for all gases and mostly fluids (see [White1991], chapter 2, 2-4)

τij = −pδij + μ

(
∂ui

∂xj

+ ∂uj

∂xi

)
+ λ

(
∂uk

∂xk

)
δij = 0 (1.5.19)

with the thermal conductivity λ. Stokes assumed, that the sum of the normal stresses
τxx, τyy, τzz are also a tensor invariant, analogously to the invariants of the strain rate in
equation (1.5.8). Then, the mechanical pressure p can be supposed to be

p̄ = −1
3(τxx, τyy, τzz) . (1.5.20)

With the deformation law in (1.5.19), one obtains

p̄ = −1
3(τxx, τyy, τzz) = p−

(
λ + 2

3μ

)(
∂uk

∂xk

)
δij . (1.5.21)

From this expression follows, that the mean pressure in a deforming viscous fluid does
not equal the thermodynamic pressure. Stokes solved this problem by assuming, that

λ + 2
3μ = 0 . (1.5.22)

Furthermore, the assumption of an incompressible fluid with
(

∂uk

∂xk

)
δij = 0 (1.5.23)

resolves the problem of inequality between both pressure terms. In compressible flows the
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problem is probably avoided, if the viscous normal stresses are negligible which is the case
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