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Abstract

We present a generative method for reconstructing 3D human motion from single images and monocular image sequences. Inadequate
observation information in monocular images and the complicated nature of human motion make the 3D human pose reconstruction challenging.
In order to mine more prior knowledge about human motion, we extract the motion subspace by performing conventional principle component
analysis (PCA) on small sample set of motion capture data. In doing so, we also reduce the problem dimensionality so that the generative pose
recovering can be performed more effectively. And, the extracted subspace is naturally hierarchical. This allows us to explore the solution space
efficiently. We design an annealed genetic algorithm (AGA) and hierarchical annealed genetic algorithm (HAGA) for human motion analysis
that searches the optimal solutions by utilizing the hierarchical characteristics of state space. In tracking scenario, we embed the evolutionary
mechanism of AGA into the framework of evolution strategy for adapting the local characteristics of fitness function. We adopt the robust shape
contexts descriptor to construct the matching function. Our methods are demonstrated in different motion types and different image sequences.
Results of human motion estimation show that our novel generative method can achieve viewpoint invariant 3D pose reconstruction.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The research into capturing 3D human motion from visual
cues has received increasing attention in recent years, due to
the drive from a wide spectrum of potential applications such
as behavior understanding, content-based image retrieval, and
visual surveillance. However, although having been attacked by
many researchers, this challenging problem is still long standing
because of the difficulties conduced mainly by complicated
nature of 3D human motion and incomplete information of 2D
images for 3D human motion analysis.

In general, tracking 3D human motion from image se-
quences can be considered as a problem of temporal state
estimation while we view the static images situation as the
special case of tracking. In the context of graphical models,
the state-of-art approaches can be classified as generative and
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discriminative [1]. Discriminative approaches [1–6] try to
model the state posterior distribution conditioned on observa-
tions directly. The models are constructed usually by finding
the direct mappings from observation space Y (image space) to
state space X (pose space) from the training pairs {(xi , yi )|xi ∈
X, yi ∈ Y, i = 1, 2, . . . , n}. Discriminative algorithms allow
to fast inference and flexible interpolate in trained regions by
absorbing computing expense into the training process. But
they may fail on novel inputs, especially if trained using small
data sets. Also, accurate learning of one-to-more mapping in
observation space is difficult because the conditional state dis-
tributions are inherent multimodal. The selection of training
samples is also an intractable problem of the approach, which
is derived from the difficult tradeoff between generalization
capability of the trained model and the training expense. Gen-
erative methods [7–13] is another typical approach which fol-
lows the prediction-match-update philosophy embedded into
the framework of bottom-up Bayes’ rule. Comparing with the
discriminative approach, generative approaches model the state
posterior density using observation likelihood or cost function.
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Given an image observation and prior state distribution, the
posterior likelihood is usually evaluated using Bayes’ rule.
This approach has a sound framework of probabilistic sup-
port and can achieve significant success for recovering complex
unknown motions by utilizing well-defined state constrains.
However, generative methods are generally computationally ex-
pensive because one has to perform complex search over the
state space in order to locate the peaks of the observation like-
lihood. Moreover, prediction model and initialization are also
the bottlenecks of the approach especially in tracking situation.

In this paper, we propose a novel generative approach in the
framework of evolutionary computation, by which we try to
widen the bottlenecks mentioned above with effective search
strategy embedded in the extracted state subspace. Consider-
ing the generalization of application scenario, the observation
information we utilized comes from an uncalibrated monocu-
lar camera. This makes the state estimation get into severe ill-
conditioned problem. That is to say, the found solutions could
be infeasible even if the search algorithm is powerful enough.
The rather that, we have to confront the curse of dimensionality
because there are more than 40 degrees of freedom (DOF) of
full body joints in our 3D human model. Therefore, the process
searching for optimal solutions should be performed in some
compact state space by the search algorithms which suit for the
characteristics of this space. In doing so, infeasible solutions,
namely, the absurd poses can be avoided naturally. To this end,
we consider to reduce the dimensionality of state space by prin-
cipal component analysis (PCA) of motion capture data. Actu-
ally, the motion capture data embody the prior knowledge about
human motion. By PCA, the aim of both reducing dimension-
ality and extracting the prior knowledge of human motion are
achieved simultaneously. And, from the theoretical view, PCA
is optimal in the sense of reconstruction because it allows the
minimal information loss in the course of state transformation
from the subspace to original state space. Different from the
previous works [14,15], we perform the lengthways PCA, by
which the subspace can be extracted from only single sequence
of motion capture data. Based on theconsistency of human mo-
tion, the structure of state subspace is explored with data clus-
tering and thus we can divide the whole motion into several
typical phases represented by the cluster centers. The cluster-
ing results are used to determine the global rotation of human
motion in our algorithm.

To explore the solution space efficiently, we design the an-
nealed genetic algorithm (AGA) combining the ideas of simu-
lated annealing (SA) and genetic algorithm (GA) [16]. In fact,
AGA is an evolutionary search strategy built on the base of
the evolution of single chromosome ((1+ 1)-ES. Namely, the
size of population always is kept as 1.) The convergence of
AGA is controlled by some annealing parameters. As the pro-
moted version of AGA, hierarchical annealed genetic algorithm
(HAGA) searches the optimal solutions more effectively than
AGA by utilizing the characteristics of state space. According
to the theory of PCA, in our problem, the first principle compo-
nent captures the most important part of human motion and the
rest of principle components capture the detailed parts of this
motion. And, in monocular uncalibrated camera situation, the

fitness function (observation likelihood function) is very sensi-
tive to the change of global motions. The HAGA performs hi-
erarchical search automatically in the extracted state subspace
by localizing priorly the state variables such as the global mo-
tions and the coordinate of the first principle component which
dominate the topology of state space. The detailed introduction
about both algorithms will be presented in the following sec-
tions. The HAGA is used dominantly to estimate human mo-
tion from the static images. In tracking situation, we develop
the optimal tracking algorithm on the base of (�/�, �)-ES [17]
in conjunction with the evolutionary mechanism ofAGA. As
for the fitness function, we adopt the shape contexts descriptor
[18] to construct the matching function, by which the validity
and the robustness of the matching between image features and
synthesized model features can be achieved.

1.1. Previous work

There has been considerable previous work on capturing hu-
man motion from image information. The earlier work on this
research topic had been reviewed comprehensively by the sur-
vey papers [19–21]. Generally speaking, to recover 3D human
pose configuration, more information are required than image
can provide especially in the monocular situation. Therefore,
much work focus on using prior knowledge and experiential
data in order to alleviate the ill-condition of this problem.
Explicit body model embodies the most important prior
knowledge about pose configuration and thus be widely used
in human motion analysis. Another class of important prior
knowledge comes from the experiential data such as motion
capture data acquired by commercial motion capture system
and some hand-labeled data. The combination of the both prior
information can produces favorable techniques for solving this
problem.

Agarwal et al. [11] distill prior information (the motion
model) of human motion from hand-labeled training sequences
using PCA and clustering on the base of a simple 2D human
body model. This method presents a good autoregressive-based
tracking scheme but has no description about pose initializa-
tion. In the framework of generative approach, the prior infor-
mation is usually employed to constrain or reduce the search
space. Urtasun et al. [15,22] construct a differentiable objec-
tive function based on the PCA of motion capture data and
then find the poses of all frames simultaneous by optimizing
a function in low-dim space. Sidenbladh et al. [8,14] present
similar methods in the framework of stochastic optimization.
For a specific activity, such methods need many example se-
quences of images to perform PCA, and all of these sequences
must keep same length and same phase by interpolating and
aligning. Ning et al. [12] learn a motion model from semi-
automatically acquired training examples which are aligned
with correlation function, and then, some motion constrains
are introduced to cut the search space. Unlike these methods,
we extract the state subspace from only one example sequence
of a specific activity using the lengthways PCA and thus have
no use for interpolating or aligning. In addition, useful motion
constraints are included naturally in the low-dim subspace.
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Fig. 1. The framework of our approach.

In recent years, particle filter [23] (also known as condensa-
tion algorithm) based optimization methods are used widely for
recovering human pose in generative framework [7–13]. How-
ever, as a stochastic search algorithm, we think that particle
filter is essentially similar with evolutionary algorithm (EA) if
having no explicit temporal dynamic model. The EA can pro-
vide more flexible evolutionary mechanism such as crossover
operator. This is the important motivation for us to solve this
problem in the framework of EA. A noticeable example show-
ing the relationship between particle filter and EA is the work
of Deutscher et al. [24]. By introducing the crossover operator,
the annealed particle filter proposed in their early work [7] get
remarkable improvement.

The methods mentioned above utilize the prior information
in generative fashion. By contrast, discriminative approaches
make use of prior information by learning mapping models di-
rectly from training examples. In Ref. [2], Agarwal and Triggs
present several regression-based mapping operators using shape
context descriptor. The direct prediction of poses from image
cues can be achieved using the learned regressor parameters.
Sminchisescu et al. [1] learn a multimodal state distribution
from the training pairs based on the conditional Bayesian mix-
ture of experts models. In Refs. [3,25], learning specialized non-
linear mappings from Hu moment representation of the input
shape and the pose space facilitated successful recovery of the
pose directly from the visual input. Elgammal and Lee [5] learn
viewbased representations of activity manifolds using nonlin-
ear dimensionality reduction method (LLE). Then, the nonlin-
ear mapping from the embedding space into both visual input
space and 3D pose space are learnt using the generalized radial
basis function. These methods can bring the interest of fast state
inference after finishing the training. However, they are prone
to fail when the small training database are used. The styles
of using prior information are multiform. Mori and Malik [13]
contain the prior information in the stored 2D image exemplars,
on which the locations of the body joints are marked manually.
By the shape contexts matching with the stored exemplars, the
joint positions of the input images are estimated. With this, the
3D poses are reconstructed by the Taylor method [26].

1.2. Framework of our approach

Comparing with the previous methods, extracting the com-
mon characteristic of a special types of motion from prior in-

formation and represent them with some compact forms are
of particular interests to us. At the same time, we ensure the
motion individuality of the input sequences with effective evo-
lutionary search strategy suiting for the characteristic of state
subspace.

The framework of our approach is illustrated in Fig. 1. We
define the state space X, in which a 3D human pose is repre-
sented by vector x corresponding to the motion capture data.
From given set consisting of n frames of motion capture data
{xi |xi ∈ X, i = 1, 2, . . . , n}, we extract the state subspace Xs

by performing conventional PCA. The high-dim state vectors
are projected onto the subspace Xs . Then, the k-means clus-
tering is performed in Xs for human pose estimation. Above
steps are introduced in Section 2. In Section 3, we construct the
fitness function on the basis of shape contexts descriptor. The
silhouettes of people in images are extracted to match with the
synthesized model features. Section 4 details the mechanism
of our algorithms, AGA and HAGA. How to incorporate the
characteristic of the subspace Xs into the framework of AGA
is the core of this section. The capability of HAGA is testi-
fied by the experiments where the 3D poses are estimated from
static images. In Section 5, we introduce an EA-based optimum
tracking algorithm. The initialization of tracking is completed
by HAGA. We present experimental results on different motion
type sequences. In both static and tracking situation, the opti-
mization process is performed in low-dim space. The final 3D
poses are outputted by the PCA injection. Section 6 concludes
with brief summary, some discussions and directions for future
work.

2. State space analysis

The state space X contains all of the legal and illegal 3D
poses, in correspondence with real human motion, represented
by the joint angles vectors of body model. The potential special
interests motivate us to analyze the characteristics and struc-
ture of this space. Such interests involve mainly modeling the
human activities effectively in the extracted state subspace and
eliminating the curse of dimension.

2.1. Pose representation

We use a explicit model that represent the articulated struc-
ture of the human body. Our fundamental 3D skeleton model
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Fig. 2. (a) The 3D human skeleton model. (b) The 3D human convolution
surface model. (c) The 2D convolution curves.

(see Fig. 2a) is composed of 34 articulated rigid sticks. The
pose is described by a 44D vector x= {xg, xj }, where 3D vec-
tor xg represents the global rotations of human motion and 41D
vector xj represents the joint angles.

Fig. 2b shows the 3D convolution surface [27] human model
which actually is an isosurface in a scalar field defined by con-
volving the 3D body skeleton with a kernel function [28]. Sim-
ilarly, the 2D convolution curves of human body as shown in
Fig. 2c are the isocurves generated by convolving the 2D pro-
jection skeleton. As the synthetical model features, the curves
are used to match with the edges of image silhouettes for con-
structing the likelihood function.

2.2. Extracting and analyzing the subspace

All of the 3D poses distribute in the state space X. The pose
set that belongs to a special activity, such as walking, running,
handshaking, etc., generally crowd in a subspace of X. We
extract the subspace Xs from motion capture data obtained
from the CMU database (http://mocap.cs.cmu.edu/).

Assuming {xt |xt ∈ X} is a given sequence of motion capture
data corresponding to one motion type, where t is the time tag,
the subspace Xs is extracted by PCA as follows:

(1) Centering the state vectors and assembling them into a
matrix (by columns): X= [(x1 − c)(x2 − c) · · · (xT − c)],
where c is the mean vector.

(2) Performing a singular value decomposition of the matrix
to project out the dominant directions: X= UDVT.1

(3) Projecting the state vectors into the dominant subspace:
each state vector is represented as a reduced vector
xs = UT

m(x − c), where Um is the matrix consisting of
first m columns of U, by which the m–D subspace Xs is
spanned.

1 PCA in this way is equivalent to that from a covariance matrix because
the left singular vectors of X are same as the eigenvectors of matrix XXT.

Table 1
The cumulative sum of principal component variance percentage

Motion type Cumulative sum of principal component variance
percentage (%) (the first five bases)

Walking 58.69 79.18 88.67 94.50 96.02
Running 54.85 77.18 93.01 95.21 96.95
Handshaking 51.04 69.09 81.17 85.94 89.12
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Fig. 3. The manifolds of walking sequences and running sequence in 3D
subspace. The bases of the extracted subspace construct the coordinate axes.

Therefore, the original state vector x can be reconstructed by

x = c + Umxs . (1)

The dimensionality m of subspace Xs is determined accord-
ing to the cumulative sum � of principal component variance
percentage. With our experiences, the value of � is set to
be not smaller than 0.95; accordingly, the value of m is not
greater than 6 generally. It means that the PCA injection from
xs only lose negligible information. This can be seen from
Table 1.

In this way, we extract the subspace Xs of one type of human
motion from single training sequence. Actually, similar low-
dim subspace can be extracted from the training sequences that
belong to the same type of motions but performed by different
subjects. And, the training sequences corresponding to differ-
ent type of motions produce different subspace. For example,
experiments demonstrate that different walking sequences gen-
erate similar manifolds in the 3D subspace, which is different
from that of running motion. See Fig. 3.

In subspace Xs , the special human motion shows the spe-
cial manifold structure which indicates the common identity of
the type of motion. Based on the consistency of human mo-
tion, we partition the manifolds into different subparts with
the k-means clustering and each subpart represents different
phase of human motion. Here, we choose the number of clus-
tering to be four and represent the four clustering centers as
xc1 , xc2 , xc3 , xc4 , respectively. Fig. 4 shows the clustering out-
come in Xs and the corresponding joint angles. Actually, the

www.//http://mocap.cs.cmu.edu/
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Fig. 4. The k-means clustering of low-dim state vectors and the corresponding
joint angles. The stepwise lines represent the clustering labels.

Fig. 5. The 3D human poses correspond to the clustering centers in low-dim
subspace Xs , which actually are the key frames of a walking sequence.

clustering centers correspond to the key frames of the motion
sequence because they are also the centers of the special motion
phases. This can be seen from Fig. 5, in which the clustering
centers of a walking sequence described by 3D human poses are
illustrated.

3. Fitness function

In generative framework, pose capturing can be formulated
as Bayesian posterior distribution inference:

p(xs |y) ∝ p(xs)p(y|xs), (2)

where xs indicates that the optimal solutions are searched
in state subspace Xs . The function p(y|xs) represents the
likelihood observing in image y, conditioned on a pose can-
didate xs . It is used to evaluate every pose candidate gen-
erated from p(xs) (in our algorithm, the AGA and HAGA).
In the context of EA, the likelihood function is just the fit-
ness function. This function is crucial for pose estimation
because as the interface between practical problem and search
algorithm, the fitness function influence the validity of the
found solutions and the search efficiency to a large extent.
We propose a fitness function on the basis of shape contexts
matching [18].

The problem of capturing human motion from images re-
quires a robust, discriminative representation of image observa-

Fig. 6. (a) Original image. (b) Image silhouette extracted by background
subtraction. (c) The sampled points on the edge of the silhouette.

Fig. 7. (a) The shape contexts computed from edge points of image silhouette
(right) and sampled points of convolution curves (left). (b) The example shape
contexts for reference samples showed in (a) of image silhouette (bottom)
and convolution curves (top).

tion. We choose the image silhouette of subject as the observed
image feature, which is extracted using statistical background
subtraction. In Fig. 6, we illustrate the process of extracting
the image feature. The shape context descriptor is used to de-
scribe the shape of image silhouette and convolution curves
generated by the pose candidate (see Fig. 2). Fig. 7 illus-
trate the shape contexts [18] (histograms of local edge pixels
into log-polar bins) of human shape. Our shape contexts con-
tain 12 angular × 5 radial bins, giving rise to 60D histograms
as shown in Fig. 7b. In the matching process, the regularly
spaced points on the edge of the silhouette are sampled as
the query shape. The point set sampled from the convolution
curves is viewed as the candidate shape. In the experiments,
we sample 100 points from image edges and model curves,
respectively. Before matching, the image shape and the can-
didate shape are normalized to same scale. We represent the
query shape and the candidate shape as Squery(y) and Sm(xs),
respectively. To this end, the matching cost function is for-
mulated as

F(Squery(y), Sm(xs))=
r∑

j=1

�2(H
j
query(y), Hm(xs)

∗), (3)

where H is the shape context, r is the number of sam-
ple point on the edge of image silhouette, and Hm(xs)

∗ =
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arg minu�2(H
j
query(y), Hu

m(xs)). Here, we use the �2 distance
as the similarity measurement. The value of matching cost
function F(Squery(y), Sm(xs)) denotes the extent of similarity
between query shape and candidate shape. In our problem, we
wish to find the optimal solutions corresponding to the mini-
mal matching cost by searching the state subspace Xs with the
optimization algorithm. In AGA, the optimization mechanism
are designed for searching the maximal value of object func-
tion. Therefore, according to Eq. (3), the fitness function can
be formulated as

F(Squery(y), Sm(xs))= C · exp(−F(Squery(y), Sm(xs))), (4)

where C is a constant for adjusting the value range of fitness
function.

4. Pose estimation from static images

In this section, we describe the key algorithms of the gen-
erative framework, namely, the AGA and HAGA, and their
adaption for pose capturing from static images. For clarity, we
redefine the full 3D pose vector as x = {xg, xs}, where xg is
the global motion of human body with respect to the camera
and xs is the pose vector in state subspace. We perform the
state posterior inference by optimizing the fitness function (see
Eq. (4)). The optimal pose can be represented as

x = arg max
x

F(y, x). (5)

We maximize the search efficiency by embedding the global
search capability of HAGA into the local conditions of state
subspace.

4.1. Annealed genetic algorithm

Combining SA and GA, we design the AGA, which actually
is a hybrid (1+ 1) evolutionary strategy. The fundamental idea
of SA is to allow moves resulting in solutions of worse quality
than the current solution (uphill moves) in order to escape from
local minima. The evolution of system state is controlled by the
termination condition and stop criteria. GA gains inspirations
from the language of natural genetics and biological evolution.
The capability searching for global optimal solutions in parallel
is the most attractive advantage of GA. Detailed introduction
about SA and GA can be found in Ref. [16].

In our algorithm, the local optimal solutions are avoided
by introducing several genetic evolutionary principles. We em-
ploy the mechanisms which is analogous to the termination
condition and stop criteria in SA to control the evolutionary
process but not set explicit temperature parameters. We repre-
sent the chromosome as z = [z1, z2, . . . , zn], where the genes
{zi | i=1, 2, . . . , n} are random numbers uniformly distributed
in the interval (0, 1) and n is the dimensionality of state vector.
For our problem, each gene of the chromosome corresponds to
a component of the pose vector. Here, we use real encodings.
The algorithm searching for optimal solutions with the AGA is

Table 2
The genetic operators in AGA

Operators Example

Exchange z= [z1, z2, z3, z4, z5, z6] −→ z′ = [z1, z6, z3, z4, z5, z2]
Segment reversion z= [z1, z2, z3, z4, z5, z6] −→ z′ = [z1, z6, z5, z4, z3, z2]
Segment shift z= [z1, z2, z3, z4, z5, z6] −→ z′ = [z1, z6, z2, z3, z4, z5]
Point mutation z= [z1, z2, z3, z4, z5, z6] −→ z′ = [z1, z2, z

′
3, z4, z5, z6]

Segment mutation z= [z1, z2, z3, z4, z5, z6] −→ z′ = [z1, z
′
2, z
′
3, z
′
4, z
′
5, z
′
6]

described as follows:

Parameter initialization set values for evolution control
parameters.
St—stop criteria;
Nt—termination condition;
Et—times for searching a equation state;
for st = 1 to St do:

NonImproveNum← 0;
Generate the genes of z uniformly at random in the in-
terval (0, 1);
Evaluate the fitness function F(z) by mapping z
into the problem domain;
while (NonImproveNum < Nt ) do

for et = 1 to Et do:
Evolution of z driven by the genetic opera-
tors; (see Table 2)
Evaluate F(z);

end for
If the value of fitness function is improved,
NonImproveNum← 0, else
NonImproveNum← NonImproveNum+ 1;

end while
Record the optimal z;

end for

We design five genetic operators, which are executed orderly
in AGA. We introduce the operators by evolving a example
chromosome z = [z1, z2, z3, z4, z5, z6]. The new chromosome
generated by the operators is denoted as z′. Assuming the po-
sitions generated randomly are numbers 2 and 6 or 3 (for point
mutation operator), for example, the five operators are illus-
trated in Table 2. (The new genes are represented as z′.) The
application order of the genetic operators in the algorithm just
is as that listed in Table 2.

4.2. Hierarchical annealed genetic algorithm

An effective method to reduce computational efforts required
in searching a high dimension space is state space decomposi-
tion. In practice, some components of state vector play more
important roles than others. Accordingly, the fitness function
is more sensitive to these components. Partitioning the state
space into several sections according to the “importance” of
state components can reduce the cost of searching the space
to one that increases linearly with the number of partitions in-
stead of one that increases exponentially with the number of
state space dimension.
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other components have been reduced with a slighter extent. In graph (c), the variances of the principal components have been reduced to very small values
indicating advanced localization after coming through two rounds of state evolution.

On the basis of AGA, we develop a HAGA by utilizing
the characteristics of state space X. In our model, the use of
PCA produces naturally the hierarchical state space. Both soft
partition and hard partition of X can be incorporated into the
framework of HAGA. The concept of soft partition in HAGA
is similar to that demonstrated in Ref. [24]. Under the soft par-
tition, one need not know which state components are more
important in advance. The state space is decomposed automat-
ically by computing the variances of state components which
are generated in each annealing run. The smaller variances cor-
respond to the state components that have more influence on the
fitness function. Therefore, according to the variances of state
components, the state space is partitioned by localizing down
the important components to a small area in their range. It is
explainable in theory because the important state components
dominate the topology of the state space and the little changes
of their value can produce great effect whereas the values of
other state components had little influence on whether they
were selected or not. The theory of soft partition is illustrated in
Fig. 8. Comparing with the soft partition, the hard partition de-
composes state space in a more direct way, where the topolog-
ical dominance of state components are known beforehand. In
our work, the state space is decomposed by soft partition.

The detailed description of HAGA under soft partition is pre-
sented as follows. Because the framework of HAGA is identi-
cal with that of AGA, we focus only one annealing run of sate
evolution (st → st+1). Preserving the symbol system of AGA,
each round of state evolution can be broken down as follows:

(1) Generate initial chromosome z=[z1, z2, . . . , zn] at random,
where {zi | i = 1, 2, . . . , n} are random numbers uniformly
distributed in the interval (0, 1). Map it linearly into the
variance domain:

z �→ zt ∈ (min zt , max zt ). (6)

In the first round of state evolution, (min z1, max z1) =
(0, 1), where t is the mark of state evolution round. By
mapping zt into the problem domain, the fitness function
F(z) is evaluated.

(2) Evolve the chromosome according to the state evolution-
ary mechanism of AGA. Before evaluating the fitness func-
tion, every new chromosome needs to be mapped into the
variance domain as formulated in Eq. (6).

(3) Store N best chromosomes and computing the covariance
matrix:

Vt+1 = 1

N

N∑
i=1

(zi
t+1 − zc

t+1)(z
i
t+1 − zc

t+1)
T, (7)

where zc
t+1 is the mean vector, and the covariance matrix

Vt+1 is a diagonal matrix on the assumption that the state
components are independent each other. To this end, the
variance domain can be formulated as{

min zt+1 = zc
t+1 − Vt+1ct+1,

max zt+1 = zc
t+1 + Vt+1ct+1,

(8)

where ct+1 = [ct+1, ct+1, . . . , ct+1] is used to adjust the
variance domain and ct+1 is a positive constant.

(4) The variance domain (min zt+1, max zt+1) is used to cut
down the state space in the next round of state evolution.

4.3. Experiments

In this section, we describe the adaption of HAGA for pose
estimation from static images. The results are provided with
various experiments to test the effectiveness of the proposed
generative algorithm in generalizing to different types of mo-
tions and different image sequences. For each type of motion,
we distill the general prior information about this motion from
only one sequence of motion capture data. The translation mo-
tion vector is discarded because it is inessential in our model.
As for the image feature, we focus only on the shape topology
described by the shape contexts.

4.3.1. Global motion
The global motion of human body is very important for its

visual appearance in an image and is also critical in disam-
biguating the left–right confusion. Determining this motion ac-
curately makes our method being viewpoint invariant. In state
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Fig. 9. Results of recovering the poses of a subject walking straight (the images are part of a sequence from http://www.csc.kth.se/∼hedvig/data.html). The top
row shows the original images and the bottom row shows the reconstructed 3D poses. The second pose demonstrated the left–right confusion in the silhouette.

vector x={xg, xs}, the global motion xg={xrx, xry, xrz} include
the rotation of the full body about the coordinate axes X, Y, Z,
respectively. With the aim of both cutting the search space
and determining the motion direction roughly, we design the
following computation steps that can be incorporated into the
framework of HAGA.

(1) In the first round of state evolution (st = 1), we only actu-
ally search the optimal solutions of global motion. Other
state components of x are taken as one of the clustering
centers xc1 , xc2 , xc3 , xc4 randomly. The variance domain
(min xg, max xg) of xg is computed by storing the N best
chromosomes. N is determined empirically according to the
threshold value of fitness function.

(2) In the rest rounds of state evolution, the chromosome is
evolved normally as described in Section 4.2.

In doing so, we can get the coarse scopes of global motion in
the first round of state evolution and the fine tuning of these
parameters can be achieved in the followed evolution rounds.

4.3.2. Walking motion: straight walk and turning walk
To extract the motion subspace of walking, a data set con-

sisting of motion capture data of a single subject was used.
The total number of 316 frames was used. It was found that
the different subject and different frame numbers can produce
generally identical subspace. To keep the ratio of information
loss lower than 0.05, the dimensionality of the subspace was
choose to be 5. We test the algorithm in two image sequences,
including one straight walk sequence and one turning walk se-
quence. The purpose of the experiments is to test the capabil-
ity of the method to cope with limb occlusion and left–right
ambiguity.

For the sequence of one subject walking in a straight line,
the parameters of HAGA are set as St = 2, Nt = 2, Et = 5.

The results are shown in Fig. 9. It can be seen that the esti-
mator is successful in determining the correct global motion
as well as the 3D pose of the subject. The occlusion problem
are tackled by searching the optimal pose in the extracted sub-
space because the prior knowledge about walking motion is
contained in this space. The left–right confusion is mostly dis-
ambiguated because of the special step for searching the global
motion. However, in few frames, the left–right confusion con-
duced by silhouette ambiguity still exist. This can be seen from
Fig. 9.

The second sequence tests the capability of generalization
of our method in estimating the 3D pose of turning walk. In
this sequence [29], a subject is performing a continuous turning
walk around a circle, therefore the global motion is changed in
a wide range. We found that setting the parameters of HAGA
as St =3, Nt =2, Et =5 is adequate for estimating this motion.
The results are shown in Fig. 10. We note that the estimator is
sensitive to the change of global motion and the special steps in
searching for global motion play a important role in the process
of pose reconstruction.

4.3.3. Running motion
We will demonstrate that our algorithm is efficient for run-

ning motion. According to the reconstruction framework, the
algorithm can be generalized to any other types of motions as
long as the corresponding subspace can be properly extracted
from training data. We extend the types of motion to running
motion to test the efficiency of the estimator. The subspace of
running motion is extracted from motion capture data consist-
ing of 130 frames. This subspace extracted is more compact
than that of walking motion. To keep the ratio of information
loss lower than 0.05, it is enough to set the dimensionality of
the subspace to be 4.

In the test image sequence, a subject is performing
running motion toward the camera therefore the scale of

http://www.csc.kth.se/hedvig/data.html
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Fig. 10. Results of recovering the poses of a subject performing a turning walking motion.

Fig. 11. Results of recovering the poses of a subject performing a running motion. The images are extracted from the video taken from the web site
http://mocap.cs.cmu.edu/.

subject is gradually bigger. The scale invariance of the shape
context descriptor ensures that the pose estimation is inde-
pendent on the change of scale. We set the parameters of
HAGA as St = 2, Nt = 2, Et = 3. The results can be seen in
Fig. 11.

4.3.4. Performance
We conducted performance analysis by recovering the poses

in simulated images that are synthesized by our body model (see
Section 2). The motion capture data is viewed as ground truth,
by which the body model is activated. To evaluate the results

of pose recovering, we use the evaluation metrics introduced in
Ref. [29]. The average error over all joint angles (in degrees)
is defined as

D(x, x̂)=
M∑

m=1

‖xm − x̂m‖
M

, (9)

where x = {x1, x2, . . . , xM} and x̂ = {x̂1, x̂2, . . . , x̂M} are
ground truth pose and estimated pose, respectively. For the
sequence of T frames, the average performance and the stan-
dard deviation of the performance are computed using the

www.//http://mocap.cs.cmu.edu/
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Table 3
Ground truth and estimated results of some joint angles for walking and running motion

Joint Walking Running

Ground truth Estimated value Ground truth Estimated value

LFemur (−35.8261, 10.5333, −18.9678) (−31.9459, 8.9614, −16.0432) (−10.2279, 0.2993, −26.6616) (−14.0521, 2.7866, −21.3780)
RFemur (−6.2589, −1.4334, 31.2542) (−3.2185, −4.0614, −31.0695) (−30.1766, −6.5652, 17.7752) (−23.4473, −3.8051, 23.2758)
LKnee (58.2190, 0, 0) (55.4119, 0, 0) (42.1629, 0, 0) (46.5631, 0, 0)
RKnee (21.5282, 0, 0) (25.2662, 0, 0) (104.6430, 0, 0) (99.0714, 0, 0)
LHumerus (−36.0573, 10.4688, 81.2025) (−38.4567, 5.5417, 83.8051) (−14.8225, −20.1244, 85.3866) (−18.1869, −16.7721, 87.4147)
RHumerus (−31.6909, 19.3908, −86.8909) (−31.3147, 12.6874, −82.4944) (−54.1141, 8.7512, −89.8125) (−50.6856, 11.7029, −85.4006)
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Fig. 12. Mean error of individual joint angle.

following [29]:

�seq =
1

T

T∑
t=1

D(xt, x̂t), (10)

�seq =
√√√√ 1

T

T∑
t=1

[D(xt, x̂t)− �seq ]2. (11)

Table 3 shows the ground truth and estimated values of some
joint angles in a example frame. Three values in each cell are
the rotation angles of the joints around X, Y, Z axes, respec-
tively. The values come from a frame on the level of average
error. Actually, other frames show generally the similar com-
parison results. We also reported the mean errors for each in-
dividual joint angle over all test frames, which are shown in
Fig. 12. The mean errors of some joint angles are more larger
than others because they have more wider range of variation
or less observability related to 2D image features. Our results
are competitive with others reported in the related literatures.
However, the pose estimation still suffers from unsmoothed
temporal transfer, which can be reduced by utilizing contextual
observation information.

5. Pose tracking from image sequences

We have reconstructed 3D human motion from static images
where the pose estimation problem is of static nature. However,
in most of the cases, recovering 3D human pose from image
sequences can be viewed as a problem of temporal inference
with dynamic nature and should be solved in tracking frame-
work. In tracking situation, the previous estimation results can
be used to cut the current search space. And, for our problem,
the usage of previous observation information is advantageous
for disambiguate the left–right confusion shown in Fig. 9. From
the Bayes’ view, we can formulate the pose tracking problem as

p(xt |yt ) ∝ p(yt |xt )p(xt |xt−1), (12)

where {xt , t = 1, 2, . . . , T } and {yt , t = 1, 2, . . . , T } rep-
resent temporal states and observations, respectively. How to
determine the conditional distribution p(xt |xt−1) effectively is
the core problem for 3D human pose tracking. In this section,
we work with a model of generative pose tracking to find the
conditional distribution within the framework of hierarchical
evolution strategy.

5.1. Hierarchical pose tracking algorithm

To track 3D human pose, we develop an optimal tracking
algorithm on the basis of (�/�, �)-ES in conjunction with the
evolutionary mechanism of AGA. The (�/�, �)-ES [17,30] is
a evolution strategy for optimization of real-valued functions
f : RN �→ R that is popular both due to its proven good
performance and its relative mathematical tractability. The basic
idea of (�/�, �)-ES is to select � states from � candidate states
to create next state solution. The double appearances of the
parameter � indicate that all parents participate in the creation
of every single offspring of candidate.

One of the most important issues of the (�/�, �)-ES is how to
generate the candidate states. In general, we must ensure that the
true solution is in the space spanned by the candidate states. On
the other hand, the space from which the candidates states are
generated should be as small as possible so that we can enhance
the computing efficiency. We deal with this tradeoff by means
of the mechanism of AGA and the hierarchical characteristic of
state space. We have introduced that the pose subspace extracted
by PCA is naturally hierarchical. Given the estimated state xt ,
the next state xt+1 is reasonably in a super-ellipsoid whose
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Fig. 13. Results of 3D human pose reconstruction from an image sequence in which a subject is performing a walking motion at a stride. The images are
extracted from the video taken from the web site http://mocap.cs.cmu.edu/.

centroid is xt .2 We can find the distribution p(xt+1|xt ) in this
super-ellipsoid. To this end, we design the hierarchical pose
tracking algorithm on the base of (�/�, �)-ES and AGA. This
algorithm can be considered as repeatedly updating a search
point x using the following steps:

(1) Determine the diagonal matrix C according to the practical
applications. Each diagonal element in C corresponds to a
axis length of the super-ellipsoid. In our problem, C is rel-
evant to the frame rate of image sequence and the topology
dominance of the state components.

(2) Generate the initial mutation vector z consisting of d inde-
pendent, standard normally distributed components, where
d is the dimensionality of state space.

(3) Map z to problem domain: x′t = xt + Cz. Determine the
fitness function value F(x′t ).

(4) Evolve the chromosome z according to the state evolu-
tionary mechanism of AGA and store the � best states
{zi | i = 1, 2, . . . , �}.

(5) Compute thearithmetic mean:

〈z〉(t) = 1

�

�∑
i=1

zi , (13)

where, 〈z〉(t) refers to progress vector.
(6) Update the search point by

xt+1 = xt + C〈z〉(t). (14)

2 The isotropic assumption of the search space is not suitable for our
problem because the principle components of state vector x dominate the
topology of the state space.

Among the above steps, the determination of step length diag-
onal matrix C is very important for successful pose tracking
and needs to be evaluated carefully.3

5.2. Experiments

We demonstrate our tracking algorithm in different image
sequences. As mentioned in Section 4.3, before performing the
pose tracking, we extract the pose subspace from only one
sequence of motion capture data for each motion type. The
process of pose tracking is then executed in the subspaces. Al-
though the using of subspace extracted from single sequence,
the generative tracking framework ensures the generalization
capability of our algorithm because of the effective state pre-
diction and correction.

Generally speaking, prediction and correction are decisive
steps for successful tracking. In our algorithm, there is no need
to train or learn an explicit state prediction model. We generate
the eligible state candidates by the usage of known hierarchical
characteristic of state subspace. The super-ellipsoid topology
of predictive space makes the prediction more accurate. The
candidates that are agreed greatly by image observation are
selected to produce next state. Another important problem of
state tracking is initialization. How to begin the tracking process
from a good starting point sometimes is a intractable problem.
We achieve the automatic initialization by determining the pose
of the first frame in the framework of HAGA, where we just
view the first frame as a single image.

We test the pose tracker in image sequences describing dif-
ferent types of motion. The first type of motion we tested is

3 There are some mechanisms [17] that is employed for the adaptation of
the step length. Here, we do not introduce the mechanisms to our algorithm
because of the known hierarchical characteristic of state space.

http://mocap.cs.cmu.edu/
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Fig. 14. Results of 3D human pose reconstruction from an image sequence in which a subject is performing a running motion. The images are extracted from
the video taken from the web site http://mocap.cs.cmu.edu/.

Table 4
Error measures for the full body DOFs over whole sequence

Error (in degrees)

Average error Standard deviation

Walking Sequence 1 2.8451 1.0013
Sequence 2 2.6325 0.9710

Running Sequence 1 2.7270 0.7095
Sequence 2 2.9866 1.0574
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Fig. 15. The variation of mean error in test sequences.

walking. Total 316 frames of motion capture data are used to
extract the motion subspace. The dimensionality of subspace is
5. The parameters of HAGA are set as St = 3, Nt = 3, Et = 5
for careful search of the state space in initialization. To demon-
strate the ability of the tracker in generalizing to different walk-
ing styles, we track the walking motion with long steps. This
style is different from that of motion capture sequence from
which the subspace is extracted. Fig. 13 shows the performance
of pose tracking.

The second type of motion we tested is running. The frame
number of motion capture data used to extract the subspace is
130. The dimensionality of subspace is 4. The parameters setup
of HAGA is similar with walking motion. The tracking results
can be seen in Fig. 14. Despite the coarse edges of extracted
silhouette, the 3D pose tracker does a good job.

Table 4 summarizes the performance of the test sequences
in walking motion and running motion. For each motion type,
two sequences performed by different subjects with different
frame numbers are tested. The average errors and the standard
deviations over all joints angles are near 3◦ and 1◦, respectively,
in general. The mean errors over all joint angles of the test
sequences are shown in Fig. 15. It can be found that the change
of mean error in whole sequence is small. Our algorithm can
achieve stable tracking of 3D human pose.

6. Conclusions

In this paper, we presented a novel generative approach to
reconstruct 3D human pose from a single monocular image

http://mocap.cs.cmu.edu/
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and monocular image sequences. Our approach is a step to-
ward describing motion characteristic of high dimensional data
spaces by extracting its subspace. From motion capture data,
we not only distilled the prior knowledge about human mo-
tion, but also reduced the dimensionality of problem. In the
compact subspace, we perform effective search for finding the
optimal poses. In static image situation, to explore the solu-
tion space efficiently, we designed the AGA and HAGA, by
which the optimal solutions can be searched effectively by uti-
lizing the characteristics of state subspace. In tracking sce-
nario, we found the conditional state distribution p(xt+1|xt )

in the super-ellipsoid determined according to the hierarchi-
cal property of state space. We embedded the evolutionary
mechanism of AGA into the framework of (�/�, �) evolu-
tion strategy for adapting the local characteristics of fitness
function. The robust shape contexts descriptor is adopted to
construct the matching function. Therefore, the validity and
the robustness of the matching between image features and
synthesized model features can be ensured. The approaches
were tested on different human motion sequences with good
results.

In terms of future work, we plan to accelerate reconstruction
speed by introducing vectorize representation of human silhou-
ette. In addition, our algorithms will be extended to cover a
wilder class of human motions. The switch mechanism between
different subspaces need to be explored because it is very im-
portant to deal with more complicated human motion scenario.
Naturally, after coming back to 3D world from 2D images, how
to recognize human motion according to the results of pose re-
construction is a considerable problem. It is also the next work
we plan to investigate particularly.
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