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Abstract Several problems in computational biology require
the all-against-all pairwise comparisons of tens of thousands
of individual biological sequences. Each such comparison can
be performed with the well-known Needleman-Wunsch align-
ment algorithm. However, with the rapid growth of biological
databases, performing all possible comparisons with this
algorithm in serial becomes extremely time-consuming.
The massive computational power of graphics processing
units (GPUs) makes them an appealing choice for acceler-
ating these computations. As such, CPU-GPU clusters can
enable all-against-all comparisons on large datasets. In this
work, we present four GPU implementations for large-scale
pairwise sequence alignment: TiledDScan-mNW, DScan-
mNW, RScan-mNW and LazyRScan-mNW. The proposed
GPU kernels exhibit different parallelization patterns: we
discuss how each parallelization strategy affects the memory
accesses and the utilization of the underlying GPU hard-
ware. We evaluate our implementations on a variety of low-

and high-end GPUs with different compute capabilities. Our
results show that all the proposed solutions outperform the
existing open-source implementation from the Rodinia
Benchmark Suite, and LazyRScan-mNW is the preferred
solution for applications that require performing the trace-
back operation only on a subset of the considered sequence
pairs (for example, the pairs whose alignment score exceeds
a predefined threshold). Finally, we discuss the integration
of the proposed GPU kernels into a hybrid MPI-CUDA
framework for deployment on CPU-GPU clusters. In partic-
ular, our proposed distributed design targets both homoge-
neous and heterogeneous clusters with nodes that differ
amongst themselves in their hardware configuration.

Keywords Heterogeneous system . Sequence alignment .

GPU

1 Introduction

The pairwise sequence alignment algorithms, both local and
global [1, 2], are in many ways the core technology for the
study of biological sequences. They have key roles in multiple
sequence alignment [3], phylogenetics [4], and molecular
evolution studies [5]. In addition, heuristic improvements to
the basic dynamic programming approach are essential fea-
tures of sequence database search programs such as FASTA
[6] and BLAST [7, 8] and various forms of genome assembly
algorithms [9, 10]. At some level, these later approaches are
also related to more general approximate string matching
algorithms [11]: the link being that both types of approach
make assumptions about the maximum number of acceptable
mismatches between the sequences under consideration. Ac-
celeration of sequence searches is useful because, while the
dynamic programming approach to alignment is only O(n2) in
time complexity, biologists often wish to make millions or
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even billions of such comparisons [12]. However, these heu-
ristics depend on the assumption that the vast majority of the
sequence pairs being compared have essentially no similarity
and that, once this fact has been demonstrated for a sequence
pair, the computation of the alignment itself is unnecessary.

Increasingly a second class of problem is becoming rele-
vant. In this case, there is a requirement to compare very large
numbers of sequences that are all evolutionarily related. As a
result, it is not possible to omit the computation of any of the
alignments, making approaches such as that of BLAST inap-
propriate. One example is the computation of very large
multiple sequence alignments for analyses such as inference
of the “tree of life” [13–15]. A similar problem motivates our
work here, namely the analysis of complex microbial com-
munities through the sequencing of a particular microbial
gene, the 16S rDNA gene. Biologists have discovered that
many microbes cannot be cultured under laboratory condi-
tions but that it is possible to assess their presence through the
direct sequencing of the DNA in an environment [16–20]. To
compare microbial communities across environments, it is
helpful to survey a single gene: the 16S gene is useful in this
regard as it is essentially ubiquitous across prokaryotic life.
However, the sequencing of the gene is only a first step: it is
then necessary to compare the sequences generated to each
other and to other known 16S sequences to assess the taxo-
nomic diversity present in the sample. As there are hundreds
of thousands of 16S sequences in sequence databases and tens
of thousands of unique sequences among those [21], this
analysis can be daunting.

The problem as stated is clearly highly parallel, and, as
such, we sought to bring the massively parallel computing
potential of GPUs to bear on it. General-purpose graphics
processing units (GPGPUs) are advancements of hardware
originally developed to accelerate complex graphical render-
ing for applications like 3D gaming. These devices can be
programmed in several ways, including the CUDA frame-
work proposed by Nvidia. The design of parallel kernels for
GPU directly affects the utilization of the underlying hard-
ware: specifically its compute cores and memory hierarchy.
This usage, in turn, influences the performance achieved.

Our contributions can be summarized as follows.

& We propose four implementations of multiple pairwise
alignments using the Needleman-Wunsch (NW) algorithm
on GPU. Three of our parallel kernels (TiledDScan-mNW,
DScan-mNW and RScan-mNW) are general purpose. Our
forth implementation (LazyRScan-mNW) is optimized for
problems that require performing the trace-back operation
only on a subset of the sequence pairs in the initial dataset
(for example, the pairs whose alignment score exceeds a
predefined threshold).

& The methods considered differ in their computational
patterns, their use of the available hardware parallelism,

and their handling of the data dependences intrinsic in
NW. Our analyses give insights into the architectural
benefits and costs of using GPUs for bioinformatics,
insights likely applicable to other domains.

& We integrate our general purpose GPU kernels with an
MPI framework for deployment on CPU-GPU clusters.
Our distributed solution targets both homogeneous and
heterogeneous clusters, the latter having nodes with dif-
ferent hardware configurations and compute capabilities.

& We evaluate our framework on a dataset of about 25,000
unique 16S rDNA genes from the Ribosomal Database
[21]. We use a variety of Nvidia GPUs: from the low-end
Quadro 2000 to the high-end Tesla K20.We show that our
optimizations are effective on all of the considered
devices. Our experiments based on the general purpose
TiledDScan-mNW, DScan-mNW and RScan-mNW ker-
nels show a throughput in the order of 250 and 330
pairwise alignments/s on low- and high-end GPUs,
respectively. In addition, we achieve a throughput of
1,015 pairwise alignments/s on a 6-node commodity
cluster equipped with a low-end GPU on each node.
Finally, our LazyRScan-mNW kernel allows throughputs
up to about 4,000 and 6,000 pairwise alignments/s on low-
and high-end GPUs, respectively.

Our GPU implementations can be freely downloaded
at: http://nps.missouri.edu/nps_wiki/index.php/Code.

2 Related Work

In recent years GPUs and other accelerator devices have been
widely used to accelerate a variety of scientific applications
from many domains [22–24]. In particular, a number of bio-
logical applications, including BLAST [25], hidden Markov
models [26, 27] and structure comparisons [28], have been
ported to GPU or FPGA architectures. Most relevant to our
work are several sequence alignment algorithms implemented
on GPU [23, 29–31]. In Section 3, we will provide more
background on one of these: the NW implementation in the
Rodinia benchmark suite [23]. As an aside, we note that one
can also exploit bit-level parallelism to modestly accelerate
alignment algorithms [11]: unfortunately, such approaches
require assumptions about the scoring matrix and gap costs
used that would restrict the general applicability.

Among the alignment implementations, Liu et al., [32]
present an optimized sequence database search tool based on
the Smith-Waterman (SW) local alignment algorithm (in con-
trast to the NW global alignment problem considered here).
Compared to other implementations [29, 33, 34], their tool
provides better performance guarantees for protein database
searches. Li et al., [35] offer a GPU acceleration of SW
intended for a single comparison of two very long sequences;
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we focus on accelerating many pairwise alignments of shorter
sequences.We are interested in the NW problem, which rather
than being used for database search is more commonly ap-
plied to situations where all possible pairwise alignments are
required (e.g., alignments for phylogenetics or metagenomics
as described above). In their first phase (computation of the
alignment matrix), NW and SW share similar computation
patterns, so optimization techniques can be reused between
the two methods.

There are also distributed CPU-based implementations of
NW: for example ClustalW-MPI [36] aligns multiple protein,
RNA or DNA sequences in parallel using MPI. Biegert et al.,
[37] have introduced a more general MPI bioinformatics
toolkit in the form of an interactive web service that supports
searches, multiple alignments and structure prediction. Our
tool differs from these in combiningMPI and CUDA to allow
deployment on CPU/GPU clusters where multiple GPUs may
be employed simultaneously.

3 Background

3.1 Analysis of the Needleman-Wunsch Algorithm

The goal of the Needleman-Wunsch algorithm (NW) is to find
the alignment of two strings (generally protein or DNA) that
maximizes a cost function. That cost function consists of two
parts. The first is a match and mismatch scoring matrix that
gives the cost of aligning matching or mismatching sequence
elements (hereafter S(xi,yj)). For DNA alignments, simple
schemes such as rewarding matches (+4) and penalizing mis-
matches (−5) are often used. For protein alignments, it is more
common to use an empirical scoring matrix [e.g., BLOSUM;
38]. The second part of the function is a cost for “gaps:” i.e.,
regions of one sequence not aligned against regions of the
other. Here, we will apply a linear gap cost G. As input data,
NW takes two sequences of length m and n. The optimal
alignment is then computed within a 2-D matrix M of size
(m+1)×(n+1). Note that this matrix can be virtual: there are
linear space memory implementations of the algorithm (e.g.
Hirschberg’s algorithm [39]). Each element in M is then
computed according to equation (1).

M i; jð Þ ¼ max
M i−1; j−1ð Þ þ S xi; y jð Þ

M i−1; jð Þ þ G
M i; j−1ð Þ þ G

8
<

:
ð1Þ

Here, M(i,j) is the alignment score in the ith row and jth

column ofM. The first row and column ofM are initialized as
gaps of increasing length [1]: once this initialization is com-
plete, the remaining positions can be computed given the
values above them, to their left and to their left diagonal.

It is apparent from this description that the memory and
computing requirements of a naïve implementation of the
algorithm can be significant, as they scale as O(mn) (often
spoken of as O(n2)). For instance, in our experiments, we use
database of roughly 25,000 unique 16S rDNA genes from the
Ribosomal Database Project [21]. Performing all possible
pairwise alignments involves roughly 300 million compari-
sons. Moreover, the computation itself is somewhat memory
intensive: as equation (1) indicates, computing each new
element in the alignment matrix requires three reads from
memory and one write to store the new value. On the
other hand, the computation is relatively trivial, requiring
three additions and a comparison.

The NW algorithm can be broken into two phases: (1) the
computation of the alignment matrixM (described above), and
(2) the trace-back operation, which uses the alignment matrix
to reconstruct the sequence alignment itself. Unless linear-
space implementations of NW [39] are adopted, the trace-
back is a linear-time operation accounting for a small fraction
of the overall execution time. In Section 4, we focus on the
computation of the alignment matrix.

3.2 Brief Introduction to Nvidia GPUs and CUDA

Nvidia GPUs comprise a set of Streaming Multiprocessors
(SMs), where each SM in turn contains a set of simple in-order
cores. These in-order cores execute instructions in a SIMD
manner. GPUs have a heterogeneous memory organization
consisting of high latency off-chip global memory, low
latency read-only constant memory (which resides off-
chip but is cached), low-latency on-chip read-write shared
memory, and texture memory. GPUs adopting the Fermi
and Kepler architecture, such as those used in this work,
are also equipped with a two-level cache hierarchy. Judicious
use of the memory hierarchy and of the available memory
bandwidth is essential to achieve good performances. In par-
ticular, the utilization of the memory bandwidth can be opti-
mized by performing regular access patterns to global memory.
In this situation, distinct memory accesses are automatically
coalesced into a single memory transaction, thus limiting the
memory bandwidth used.

The advent of CUDA has greatly simplified the program-
mability of GPUs. With CUDA, the computation is organized
in a hierarchical fashion, wherein threads are grouped into
thread-blocks. Each thread-block is mapped onto a different
SM, whereas different threads are mapped to simple cores and
executed in SIMD units, called warps. The presence of
control-flow divergence within warps can decrease the GPU
utilization and badly affect the performance. Threads within
the same block can communicate using shared memory,
whereas threads within different thread-blocks are fully inde-
pendent. Therefore, CUDA exposes to the programmer two
degrees of parallelism: fine-grained parallelism within a
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thread-block and coarse-grained parallelism across multiple
thread-blocks.

3.3 Rodinia-NW: Needleman-Wunsch on GPU

The Rodinia benchmark suite [23] offers a GPU parallelization
of NW (hereafter, Rodinia-NW), that we will use as baseline.

Rodinia-NWoperates as follows. Since each element in the
alignment matrix depends on its left-, upper- and left-upper-
neighbors, a way to exploit parallelism is by processing the
matrix in minor diagonal manner. Each minor diagonal de-
pends on the previous one, thus leading to the need for
iterating over minor diagonals. However, at each iteration,
all the (independent) elements in the same minor diagonal
line can be calculated simultaneously. If the matrix is laid out
in global memory in row-major order, the involved memory
access patterns are uncoalesced, potentially leading to perfor-
mance degradation. Since each element in the alignment ma-
trix is used for calculating three other elements, performance
can be improved by leveraging shared memory and dividing
the alignment matrix in square tiles (each of them fitting the
shared memory capacity). Rodinia-NW performs tiling and
exploits two levels of parallelism: (i) within each tile elements
are processed in minor diagonal manner, and (ii) different tiles
in the same minor diagonal line can also be processed con-
currently by distinct thread-blocks. Threads within the same
thread-block manipulate the data and store elements in shared
memory temporarily. After the computation of a tile com-
pletes, all of the data are moved to global memory using
coalesced accesses. For square alignment matrices and tiles
of widthN and T, respectively, Rodinia-NW’s parallel kernel is
invoked 2×⌈N/T⌉−1 times (once for each minor diagonal of
tiles). After carefully analyzing Rodinia-NW, we found the
following limitations.

First, Rodinia-NW is designed for a single pairwise com-
parison. Applications such as those above require hundreds to
thousands of comparisons. As such, they introduce a second
exploitable level of parallelism, especially as each pairwise
comparison is independent. Moreover, the sequences general-
ly differ in length but Rodinia-NWonly supports sequences of
equal length, requiring padding to handle more general cases.

Second, Rodinia-NW requires three data transfers for each
alignment, an approach that can be improved. Before kernel
launch, the alignment matrix is initialized (with the gap infor-
mation) on the CPU. Next, alignment matrix and score matrix
are copied from CPU to GPU. The alignment matrix is proc-
essed on the GPU and then copied back to the CPU as a final
step. We note that the two copies of the alignment matrix are
O(nm) each. However, the first data transfer of the alignment
matrix can be avoided by initializing its 1st row and 1st column
directly on the GPU.

Finally, CUDA does not support global barrier synchroni-
zation among thread-blocks within a parallel kernel (an implicit

global synchronization takes place at the end of each kernel
execution). Since in Rodinia-NW each tile is mapped to a
thread-block and tiles must be processed in diagonal strip
manner, a global synchronization among thread-blocks oper-
ating on the same diagonal is required before proceeding to
the next diagonal. This is accomplished by invoking multi-
ple kernel launches from the host side. This approach has
two limitations: (i) each kernel launch has an associated
overhead (that depends on the GPU device), and (ii) the
GPU is underutilized by kernel launches that process small
numbers of tiles (i.e., those corresponding to the first and
the last diagonals).

4 Design of GPU-Workers

In this Section we describe four alternative implementations of
multiple pairwise alignments using NWonGPUs: TiledDScan-
mNW, DScan-mNW, RScan-mNW and LazyRScan-mNW. All
these implementations, exemplified in Figure 1, aim to over-
come the limitations pointed out above. In Section 5, we
describe the integration of these implementations in our distrib-
uted framework for large-scale sequence alignments.

4.1 TiledDScan-mNW: Multiple Aligments with Tiling

The first method (TiledDScan-mNW) is a direct extension of
Rodinia-NW to multiple pairwise alignments. This approach
still uses tiling and operates in diagonal strip manner,
performing multiple kernel invocations to compute the align-
ment matrices. However, for each kernel invocation, multiple
alignment matrices are concurrently processed using different
thread-blocks (and SMs). This is illustrated in Fig. 1a, where we
concurrently perform three pairwise comparisons: (seq1, seq2),
(seq1, seq3) and (seq1, seq4). In the first iteration, the top-left
tiles of the three matrices are processed in parallel by three
thread-blocks, and thus mapped onto three streaming multipro-
cessors: SM1, SM2 and SM3. In the second iteration, the tiles of
the secondminor diagonal of the three matrices are processed in
parallel by six thread-blocks, and thus mapped onto streaming
multiprocessors SM1-SM6. Note that, for m pairwise compari-
sons, the number of kernel invocations of TiledDScan-mNW is
reduced by a factor m (as compared to Rodinia-NW); for each
kernel call, the number of thread-blocks is increased by a factor
m. This reduction has two advantages: (i) a limited kernel
invocation overhead, and (ii) an improved GPU utilization.
Execution configurations with a large number of threads allow
not only exploiting all the SMs and cores available on the GPU,
but also hiding the global memory access latencies (andNWis a
memory-intensive application). Being an extension of Rodinia-
NW, TiledDScan-mNW retains its advantages: regular computa-
tional patterns and coalesced memory access patterns when
storing alignment data from shared memory to global memory.
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4.2 DScan-mNW: Single-Kernel Diagonal Scan

TiledDScan-mNW still requires multiple kernel invocations to
performm pairwise alignments. Even if the parallelism within
each kernel call is improved by a factor m compared
with Rodinia-NW, some kernel invocations still exhibit
limited parallelism (and limited opportunity to hide memory
latencies). Our second implementation – DScan-mNW –
performs a diagonal scan with a single kernel call. As
illustrated in Fig. 1b, in this case each alignment matrix
is assigned to a thread-block (and mapped onto a SM). No
tiling is performed. The computation iterates over diago-
nals. For each diagonal, every element is processed by a
thread (and mapped onto a core).

To limit the number of expensive accesses to global mem-
ory, the computation is fully performed in shared memory.
The alignment matrix is stored in row-major order in global
memory and in minor diagonal order in shared memory.
According to equation (1), at each iteration three diagonal
lines are required: the first two diagonal lines cache previous
data and the third one contains the newly computed elements.
Once computed, this third line can be copied from shared to
global memory. At that point, the first diagonal line can be
discarded and the shared memory reused for the next iteration.
To summarize, the matrices are created in shared memory and
moved to global memory diagonally. The main disadvantage

of this approach is the uncoalesced memory accesses required
to store diagonal data to global memory. We found that the
latencies of such irregular access patterns can be effectively
hidden by using large numbers of threads.

The computational pattern of ourDScan-mNW is similar to
the SW intra-task parallelization proposed by Liu et al. [32].
However, [32] avoids uncoalesced memory accesses by
storing the alignment matrix in global memory in minor
diagonal order. We found that, when using large thread-
blocks to hide memory latencies (e.g., 512 threads/block),
the overhead due to uncoalesced memory access patterns is
reduced to 10 % and 7 % of the execution time on Fermi
and Kepler GPUs, respectively (the exact percentage de-
pends also on the clock-rate of the memory system). On
the other hand, storing the alignment matrix in row-major
facilitates the trace-back operation (which is not considered
in [32]) in two ways: first, it avoids the need for complex
index translation; second, the more regular data layout
leads to better caching properties.

4.3 RScan-mNW: Row Scan Via Single CUDA Core

Our third method – RScan-mNW – uses a fine-grained matrix-
to-core mapping and a row-scan approach. First, each align-
ment matrix is computed by a single GPU core. Second, to
allow regular compute and memory access patterns, each

(c) RScan-mNW (d) LazyRScan-mNW 

 (a) TiledDScan-mNW (b) DScan-mNW

(seq1, seq2)

(seq1, seq3)

(seq1, seq4)
core 3

core 2

core 1

core 1

core 1

Figure 1 Illustrations of our 4 GPU implementations of NW-based
parallel pairwise alignments and of the mapping to the underlying
GPU cores and SMs. In TiledDScan-mNW, the alignment matrices
are tiled, and each tile is processed by a thread-block (and mapped
onto a SM). In DScan-mNW, every alignment matrix is processed by

a thread-block (and mapped onto a SM). In RScan-mNW and
LazyRScan-mNW, every alignment matrix is processed by a thread
(and mapped onto a core). However, in LazyRScan-mNW, every
thread only writes to the global memory the last column of each
slice (denoted by darker blocks).
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alignment matrix is computed row-wise (rather than diagonal-
wise). This computational pattern is illustrated in Fig. 1c.

This method leverages shared memory in order to allow
data reuse and minimize the global memory transactions. The
parallel kernel iterates over the rows of the alignment matri-
ces. For each iteration, only two rows per matrix must reside
in shared memory: the previously computed one and the one
containing newly computed elements. Only the left-most ele-
ment of the new row must be loaded from global memory; for
the rest, the computation happens solely in shared memory.
Once the new row has been computed, it is copied from shared
to global memory. The previously computed row can be
discarded, and the new one can be cached for use in the next
iteration. The kernel has two phases: computation and com-
munication. In the computation phase, the threads within a
thread-block operate fully independently: each thread com-
putes the data corresponding to the row of an alignment matrix
and stores them in shared memory. In the communication
phase, threads belonging to the same thread-block cooperate
to transfer row data from shared to global memory in a
coalesced fashion (that is, each alignment matrix is transferred
cooperatively by multiple threads). In case of very long se-
quences, rows are split into slices so as to fit into shared
memory. The size k of these slices is configurable. Large slices
require more shared memory, which in turn limits the number
of active threads on each SM. Small slices (e.g. k<32 ele-
ments) lead to warp underutilization in the communication
phase, which in turn can hurt the performance. The usage of
shared memory is a major concern in the kernel configuration
process. The per-block shared memory can be calculated
using the following formula:

shmem ¼ BLOCK SIZE� k � 1char þ 2intsð Þ

Each thread stores three sets of data: the sequence data and
two sections of the alignment matrix. Each thread-block per-
forms BLOCK_SIZE pairwise alignments using slices of size
k. By setting the BLOCK_SIZE and k to 32, we use 12 KB of
shared memory with no warp underutilization. With this set-
ting, each SM can concurrently run up to four thread-blocks.

The advantages of this approach are twofold. First, the
computational pattern is extremely regular: unlike diagonals,
rows are all of the same size. Second, data transfers between
shared and global memory are naturally coalesced. The main
drawback to this approach is that the parallelism is limited by
the GPU memory capacity. For example, if the sequences to
be compared are of length 2,000 and the alignment matrices
contain 4-byte integers, then each matrix will be of size
32 MB. To fully utilize the cores of typical GPUs (say 480
cores), we should allow 480 parallel pairwise comparisons,
requiring a total of roughly 15GB of memory. This number
considerably exceeds the 1-5GB of memory present on most
GPUs. Therefore, on long sequences RScan-mNWwill tend to

underutilize the GPU resources. On the other hand, this ap-
proach is very promising for short sequences (e.g. <500). For
long sequences, an alternative optimization would be to break
the alignment matrices into smaller strips to reduce the mem-
ory footprint, and use dual-buffering to move previously
computed strips to the CPU while computing new ones.
Finally, we note that certain scoring schemes allow for linear
memory NW algorithms of minimal complexity: under these
limited and less-commonly used schemes, highly efficient
parallelism could be achieved using RScan-mNW.

The computational pattern of our RScan-mNW is similar to
the SW inter-task parallelization proposed by Liu et al. [32].
However, their proposal does not use shared memory in the
kernel and adopts a different data layout in global memory.
Specifically, to avoid uncoalesced global memory accesses,
Liu et al. place data corresponding to different alignment
matrices into continuous global memory space. For instance,
the ith element of global memory is from the ith alignment
matrix, while the (i+1)th element is from the (i+1)th align-
ment matrix. This memory layout leads to poor data locality
during the trace-back phase. As mentioned above, trace-back
is not considered in [32], but is a necessary operation in the
problem we consider.

4.4 LazyRScan-mNW: Whole Matrix Calculation via Single
CUDA Core with Lowered Global Memory Requirements

The three aforementioned methods share the same problem:
the maximum number of alignments that can be computed in
parallel is limited by the amount of global memory. As
discussed, this limitation is particularly significant in the case
of RScan-mNW, where each alignment is mapped onto a GPU
core. In this case, the limited number of alignment matrices
that can be accommodated in the available global memory
leads to severe core underutilization. However, several appli-
cations require the actual sequence alignment (computed
through the trace-back operation) only for a subset of the pairs
in the dataset. For these applications, it is possible to record
only the alignment score (rather than the whole alignment
matrix). This score can then be used as a filter to avoid
performing unnecessary trace-back operations on sequence
pairs that are too dissimilar. Exactly such a requirement
spawned our initial interest in this topic— namely computing
all possible pairwise comparisons among a large number of
sequences but retaining only those with a high level of simi-
larity. In this case, the lack of the need to have the whole
alignment matrix stored in global memorymakes it possible to
derive a method that can make full use of the computational
power of the GPU cores.

With this relaxed requirement in mind, LazyRScan-mNW
optimizes our row-scan approach (RScan-mNW) so as to
minimize global memory reads and writes and at the same
time make better use of the shared memory available on the
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streaming multi-processors. The new method is based on the
following insight: much of the information in one slice of an
alignment matrix can be discarded safely during the compu-
tation of that slice. LazyRScan-mNW is extremely frugal about
global memory usage, and avoids accessing global memory
whenever possible. The computational pattern is illustrated in
Fig. 1d and presented in the pseudo-code in Fig. 2.

In a manner similar to RScan-mNW, in order to effectively
use shared memory even in the presence of long sequences,
LazyRScan-mNW divides the alignment matrix into vertical
slices of k columns. However, when copying the scores into
global memory, this method only retains the scores in the last
column of each slice (and discards the other scores). For each
matrix, the computation of the next slice resumes where the
last one left off, by taking the stored rightmost scores of the
last computation as its leftmost column’s scores. Given the
leftmost column’s scores, each iteration of vertical slice can
compute the rightmost column’s scores by performing the
standard NW computation. Thus, by carefully selecting k
(see section 6.3), we reduce the number of write operations
to global memory. Computing a slice of width k and height l
requires 2 l global memory operations (l reads and lwrites). In
addition, for each matrix, the global memory requirement is
limited to l scores, and the shared memory requirement is
linear in k. Limiting the shared memory utilization allows
more thread-blocks to be executed in parallel, thus hiding
global memory access latencies.

We further reduce the shared memory usage of each verti-
cal slice by implementing an optimization suggested byMyers
and Miller [40]. Specifically, instead of storing in shared
memory two distinct rows (the current and the previously
computed one), we store a hybrid row obtained by progres-
sively overwriting the last computed row with the current one.
This method requires recording an additional interim diagonal
look-back value, representing the conflicted array element that
would otherwise be overwritten by the next row’s value. We
store this additional value in a register. Figure 3 illustrates the
optimization.

LazyRScan-mNW inherits all the advantages of RScan-
mNW as well as some additional benefits. First, each thread

only requires a linear amount of global memory. Thus, the
global memory required will be equal to batch-size×l
integers, where l is the length of the longest sequence, and
batch-size the number of pairwise alignments computed in
parallel. Second, instead of reading and writing to global
memory at every cell, the method reads and writes to global
memory once every k cells. This allows the GPU scheduler to
alternate between warps that are performing calculation and
warps that are waiting on memory accesses, thus better hiding
the latency between global memory accesses. Third, the
amount of shared memory required to store the scores is
halved using the optimization described above.

However, this method has a drawback: it is no longer trivial
to restore the alignment matrix, making the trace-back opera-
tion challenging. LazyRScan-mNW is therefore more suitable
to applications that require the trace-back to be calculated only
for a subset of the sequence pairs (for example, those with a
similarity score above a predefined threshold).

4.5 Comparisons of Memory Usage Between Different
Methods

Table 1 summarizes the global and per-block shared memory
usage of the described methods. In the table, batch-size is the
number of pairwise alignments computed in parallel, l is the
length of the longest sequence, and k denotes the slice size,
and is a configurable value smaller than l.

LazyRScan-mNW 
1: Initialize matrix size (w, l) 
2: for each slice size (k, l): 
3:      calculate row scores for row 0 
4:      for row  1 to l: 
5:          load leftmost score for column 0 from global memory 
6:          for column  1 to k: 
7:              calculate value for(row, column) in shared memory 
8:          save rightmost score for column l to global memory  
9:       end for row 
10:     advance slice by k 
11: end for each slice 
11: returns final matrix score 

Figure 2 Pseudo-code version of LazyRScan-mNW.

?

Figure 3 Storing in shared memory a hybrid row consisting of cells
belonging to two contiguous rows allows saving half of the shared
memory required for row calculation. As computation (white cell) pro-
gresses from left-to-right horizontally, obsolete cells (cross-hatched in
red) are gradually evicted from shared memory. To complete the compu-
tation, only the solid grey cells as well as an interim diagonal look-back
value (denoted with the zig-zag pattern) are required. The diagonal
lookback value is stored in a register.

Table 1 Global and per-block shared memory requirements for different
methods (the amount of storage needed for actual sequence data is not
accounted for in global memory usage). A batch is a set of pairwise
alignments processed in parallel on the GPU.

Method Global memory Per-block shared memory

Rodinia-NW batch-size×2 l2 ints 2 k2 ints

TiledDScan-mNW batch-size × l2 ints k2 ints +2 k chars

DScan-mNW 3 l ints +2 l chars

RScan-mNW (2 k ints + k chars) ×
block-size

LazyRScan-mNW batch-size × l ints (k ints + k chars) ×
block-size
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5 Design of Our Distributed Framework

5.1 System Overview

Our framework follows a producer-consumermodel and con-
sists of two major components: a Cluster-Level Dispatcher
(CLD), and a set of Node-Level Dispatchers (NLDs). The
CLD operates at the cluster-level: it progressively distributes
work to the NLDs on the compute nodes and then later
aggregates the results back from them. At the node level, each
NLD distributes work to that node’s CPUs and GPUs. The
CPU workers and GPU dispatcher on each node compute the
NW alignments.

5.2 Cluster-Level Dispatcher

At the cluster level, the framework spawns a group of MPI
processes consisting of a root CLD process and a set of NLDs,
one per requested node. The CLD progressively distribute
jobs to NLDs and tracks their progress. The CLD is flexible
enough to distribute different amounts of work to different
NLDs depending on relative node performance.

Figure 5 shows the CLD’s architecture. It consists of two
functional units. One generates work to be performed and
tracks overall progress; the second distributes work to the
NLDs. When the NLDs return results, the distribution unit
passes them to the work-generating unit where a bookmarking
mechanism tracks overall progress. The pseudo-code for CLD
and NLD is shown in Fig. 4. In the pseudo-code, each work

list consists of a set of pairwise alignments to be performed.
As can be seen, the work is pulled from the NLDs and
distributed by the CLD upon request.

5.3 Node-Level Architecture

The NLDs consume data from the CLD and dispatch those
data to CPU and GPU-level workers (Fig. 5). When a NLD is
spawned on a node with c CPU cores, it generates c threads.
Of these, c-2 perform standard NW alignments. One of the
remaining two threads is responsible for alignment trace-back
(which recovers the sequence alignment itself): experimental
data suggest that one trace-back unit per node is sufficient.
The final thread acts as the GPU-dispatcher: it is aware of the
number and performance of the node’s GPUs. As such, it
asynchronously distributes work to different GPUs by invok-
ing a GPU worker function on them. GPU workers perform
parallel sequence alignments using one of the GPU
implementations described in Section 4. The GPU implemen-
tation selection is made based on the performance of the target
GPU. To simplify the implementation of the GPU workers, if
the two sequences to be aligned have different lengths, the
GPU dispatcher will pad the shorter one to the same length as
longer one so that the alignment matrix is always square. Both
the CPU workers and the GPU dispatcher continuously query
the NDL for work and return results until there is no work left
on the NLD. When the NLD itself is idle, it queries the CLD
for further sequence pairs to align. The NLDs are independent
of each other and communicate only with the CLD.

In our implementation, the trace-back operation is per-
formed on CPU. Our decision is motivated by the following
considerations. First, we experimentally verified that trace-
back is a reasonably fast process, accounting for less than
0.2 % of the execution time. Second, trace-back is in nature a
sequential operation, with no fine-grained data-structure par-
allelism: the only form of parallelism that can be exploited on
GPU is essentially inter-alignment coarse-grained parallelism.
The main reason for performing trace-back on GPU would be
to avoid large data transfers from GPU to CPU. In our imple-
mentation, we hide such data transfers by performing dual

Cluster-level Dispatcher (CLD) 
1: Initialize 
2: Distribute work lists to NLDs 
3: while there exist pairwise alignments to be performed do
4:     if work request from NLD do
5:         send work list to NLD 
6:         process returned results 
7:     end if
5: end while
Node-level Dispatcher (NLD)
1: Query compute resources (CPUs and GPUs) 
2: Receive work list from CLD 
3: while no stop signal from CLD 
4:     if work list is empty do 

          request new work list from CLD  
5:     end if
6:     if idle CPU available do

        assign a set of pairwise alignments to CPU 
7:     end if
8:     if GPU returns alignment matrices do
            trace-back on CPU 
9:     end if 
10:   if idle GPU available do
            assign a set of pairwise alignments to GPU 
            invoke alignment kernel  
11:   end if
12: end while

Figure 4 Pseudo-code of CLD and NLD. Figure 5 Design of our distributed framework for CPU-GPU clusters.

138 J Sign Process Syst (2014) 77:131–149



buffering and overlapping kernel execution with GPU-to-
CPU data copy. A different choice has been made by Gao
et al. [31], who generate a movement matrix in addition to the
alignment matrix and use that movement matrix to perform
trace-back in a straightforward manner. By keeping the com-
putation of the alignment matrix separated from the trace-
back, we allow our code to be reused by applications requiring
the SW algorithm. We note that the computation of the align-
ment matrix in NWand SW is almost identical (except for the
initialization and the handling of negative scores); the two
algorithms differ mainly in the trace-back operation.

5.4 GPU-Dispatcher Optmizations

Pinned Memory Generally each GPGPU computation con-
sists of three stages. First, the initial data are copied from the
host to the device’s global memory. Then, the CPU launches
the parallel kernel, allowing the calculation of the results on
the device. After this operation finishes, the data are copied
back to the host memory. With pageable memory, the memory
copy operations contribute a significant fraction of the execu-
tion time. This cost is partially due to the fact that pageable
memory is allocated in user space. When a memory copy is
invoked, the GPU driver will allocate some pinned memory in
kernel space, perform a memory copy from user to kernel
space, and then initiate a DMA transfer to the GPU. Using
pinned memory directly avoids this user-to-kernel space copy,
thus reducing the cost of memory transfers.

Dual-Buffering Dual-buffering is a common scheme for re-
ducing overhead by overlapping communication and compu-
tation. It requires that a non-blocking communication mecha-
nism be provided by the system. In our system, there are two
main operations that are time-consuming but can be executed
concurrently: kernel calls to calculate the alignment matrix,
and the memory copy operation to transfer the calculated
alignment matrix from device’s global memory back to the
host’s memory. Dual-buffering is employed in order to ensure
mutual exclusion in the access to the two alignment matrices,
one of which is being calculated and one copied. The result is
that the kernel always works on half of the available memory,
leaving the other half – the buffer that is already fully
calculated – free to be transferred back in a non-blocking
manner. By using dual-buffering, we can further exploit
the concurrency offered by the GPU by interleaving the
two operations (Fig. 6-a).

To implement dual-buffering, we used asynchronous
pinned memory operations and CUDA streams. As a result,
the total execution time can be less than the sum of the time for
kernel calls and for memory operations. Ideally, using dual-
buffering completely hides the faster operation. However, this
latency hiding is not free: the number of transfers and kernel
calls is doubled. This doubling results in a slight increase in

both kernel and memory transfer time due to function call
overhead. We have measured this effect on the GTX460 GPU
using a sequence length of 1536 and the DScan-mNW imple-
mentation. The results are shown in Fig. 6-b. As can be seen, if
all memory transfer operations could be hidden using dual-
buffering, then the time-savings compared to the non-dual-
buffering case would be:

1–2:13� 2= 3:85þ 1:43ð Þð Þ � 100% ¼ 19:31%:

Global Memory Access Pattern Optimization Parallel threads
in CUDA are grouped into thread-blocks, and the GPU coa-
lesces the global accesses into as few transactions as possible.
Misaligned memory operations cause delays in the computa-
tion as some threads have to wait for the misaligned reads to
complete. This issue however, can potentially be minimized. In
the LazyRScan-mNW implementation, global memory reads
and writes on the same position on different matrices of con-
secutive threads are also consecutive, enabling the hardware to
perform memory access operations in a coalesced fashion.

Caching Global Memory Reads into Shared Memory Global
memory is needed to store the sequences, however reading the
sequences from global memory is an expensive operation. In
LazyRScan-mNW, each slice of sequence of width k has a
relatively small number of bases that need to be repeatedly
accessed and compared against the other sequence. Thus, we
avoided reading the slice sequence from global memory by
caching the whole slice up front in sharedmemory. Given that,
in the inner loop (Fig. 2, line 6), each base of the slice is then
repeatedly compared to one base from the other sequence, the
base belonging to the other sequence could also be cached up
front to reduce global memory read latency.

b

2.13

3.85

0.73

1.43

2.13 0.732 batches

1 batch

Kernel Memory Transfer

a
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Figure 6 a Illustration of dual-buffering. b Measurement of kernel
execution and memory transfer time (using pinned memory) for nalign
sequence alignments on a GTX460 GPU. The number of alignments
performed (nalign) is selected so as to use 70 % of the global memory. In
the 1-batch case, we group the pairs in a single batch of size nalign. In the
2-batch case, we group them in two batches, each of size nalign/2.
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Device-to-Host Data-Level Optimization In the case of
LazyRScan-mNW, it is possible to only transfer the final score
instead of the whole alignment matrix, largely eliminating the
device-to-host transfer latency. In order to allow this simplifi-
cation, we derive a lower bound L on the potential alignment
score with a given percent identity. As an aside, the percent
identity statistic is a reasonable indicator of sequence related-
ness and is commonly employed in the biological literature.
Our bound guarantees that all pairs having identity score at
least as high as our threshold level are realigned and the
trace-back computed on the CPU. Given identity score
target MID (0<MID<1) and two sequences of length m
and n (where m > n), L is given by:

L ¼ m�MID � Smatch þ 2� m� Sgap � 1–MIDð Þ

Smatch is the alignment score for two matching bases and
Sgap is the penalty for a gap (recall we are using linear gaps).
For the required percentage identity is to be achieved, wemust
have at least m ×MID positions that match. The worst case of
an alignment with such a percent identity is then that all of the
remaining positions are gaps (Sgap), giving us our value of L.

6 Experimental Evaluation

In this Section, we present two sets of experiments: (i) single
GPU experiments, and (ii) cluster experiments. The former are
meant to evaluate our GPU implementations of NW, the latter
to evaluate our distributed framework.

6.1 Experimental Setup

Hardware Setup Single GPU experiments have been per-
formed on a variety of low-end and high-end GPUs, listed in
Table 2. Cluster level experiments have been performed on
two cluster settings (a low-end and a high-end cluster), whose
setups are summarized in Table 3.

Software Setup The CUDA 5.0 driver and runtime are
installed in all the machines used. The OS in use on the
high-end cluster is CentOS5.5/6 with g++4.1.2; the OS in
use on the low-end cluster is Ubuntu 12.04 with g++ 4.6.3.
We used MPICH2 (version 1.4.1p1) as the implementation of
MPI. Each data point represents the average across 3
executions.

Dataset Our reference dataset consists of about 25,000 unique
16S rDNA genes from the Ribosomal Database [21]. The
sequences are on average 1,536 bases long.

6.2 Performance on Single GPU for General use Cases

Our first set of experiments is meant to evaluate our GPU
implementations and compare them with Rodinia-NW. In
Section 3.3 we noted two limitations in Rodinia-NW: unnec-
essary memory transfers from CPU to GPU and inefficiencies
in the computational kernel and its invocations. Below, we
will show how we improve performance with respect to both
limitations.

Memory Transfers As explained in Section 3.3, Rodinia-NW
initializes the alignment matrix on CPU and copies it to GPU.
Also, to simplify memory access during computation, it cre-
ates a temporary substitution score table of size m x n during
CPU initialization. For problems of the size considered, data
transfer consumes considerable amount of time. An obvious
optimization is to move the initialization from CPU to GPU.
In addition, by omitting the creation of the temporary substi-
tution table, more alignment matrices can be accommodated
on the GPU, thus allowing for increased parallelism. In Fig. 7
we show the effect of these optimizations on different GPUs.
In all experiments, 64 pairwise alignments are performed. The
optimized version initializes the alignment matrices on GPU
and avoids the initial CPU-to-GPU data transfer. On top of
this, the optimized + pinned memory version uses pinned
memory. As can be seen, the proposed memory optimizations
lead to a 5–10 % and a 20–25 % decrease in execution
time on low-end and high-end GPUs, respectively. In
addition, the combination of the memory optimization with
the use of pinned memory leads to a decrease in execution
time in excess of 30 % and 50 % on low-end and high-
end GPUs, respectively.

Kernel Computation Wenow focus on the performance of our
compute kernels. Our analysis has two goals: (i) evaluating
the performance improvements over Rodinia-NW, and (ii)
devising criteria for selecting the optimal GPU implementation

Table 2 Characteristics of the GPUs used in our evaluation.

GPU Type Values

Low-end
GPUs

Quadro 2000 4 SM × 48 cores
~1 GB Global memory

GTX 460 7 SM×48 cores
~1 GB Global memory

GTX 480 15 SM×32 cores
~1.5 GB Global memory

High-end
GPUs

Tesla C2050 14 SM×32 cores
~2.6 GB Global memory

Tesla C2070/C2075 14 SM×32 cores
~5 GB Global memory

Tesla K20 13 SM×192 cores
~4.7 GB Global memory
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depending on the underlying GPU device. In Fig. 8 we show
the relative speedup in kernel computation time of DScan-
mNW and TiledDScan-mNW over Rodinia-NW (the speedup
is computed as the ratio between the compute time of Rodinia-
NW and that of our GPU implementations). We performed
experiments on all available GPUs and varied the number of
pairwise comparisons performed from 8 to 64. Given its fine-
grained alignment-to-core mapping, on these datasets RScan-
mNW underutilizes the GPUs and yields poor performance.
This behavior, in general, holds when comparing long se-
quences on GPUs with 1-5GB device memory. Therefore,
we focus on the other schemes.

Figure 8a reports the speedup of TiledDScan-mNW over
Rodinia-NW. Note that TiledDScan-mNW performs fewer
kernel calls (and therefore, has less kernel overhead) and
involves more per-kernel computation (thus leading to
increased parallelism). This difference is the source of
the performance improvement achieved by TiledDScan-
mNW over Rodinia-NW. Note that the speedup increases
with the computational power of the GPU (from 1.2x on

the Quadro2000 to 2x on the K20). In fact, the increased
parallelism in the TiledDScan-mNW kernel can be better
serviced by GPUs with more SMs and compute cores.

As can be seen in Fig. 8b, DScan-mNW also outperforms
Rodinia-NW on all devices and datasets. Its performance is
also generally better than that of TiledDScan-mNW, except
on Tesla C207× cards. It is somewhat surprising that our
approach does not show substantial speedup overRodinia-NW

Table 3 Cluster setup.
Cluster Nodes CPUs GPUs

Low-end Node-1

Node-2

Node-3

Node-4

1 × Intel Core 2 Quad Q9400, 2.66 GHz, 4 GB RAM 1 × Quadro 2000

Node-5 1 × Intel Core 2 Duo E8400, 3.0 GHz, 4 GB RAM 1 × Quadro 2000

Node-6 1 × Intel Xeon E5-1603,

2.8 GHz, 4 GB RAM

1 × GTX 460

High-end Node-1

Node-2

2 × Intel Xeon E5620,

2.4 GHz, 48 GB RAM

2 × Tesla C2050

Node-3 2 × Intel Xeon E5-2620,

2.0 GHz, 64 GB RAM

Tesla C2050

Tesla C2070

Tesla C2075

Node-4 2 × Intel Xeon E5620,

2.4 GHz, 48 GB RAM

4 × GTX 480
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Figure 7 Evaluation of memory optimizations on Rodinia-NW: original
implementation, optimized implementation with initialization of the
alignment matrices on GPU, optimized implementation with pinned
memory.
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on this device. It must be said that NW is an integer
application, and Tesla GPUs are optimized for larger
memory capacity (5GB vs. 1GB) and improved support
for double precision floating-point operations, and have a
reduced clock rate (1.15GHz vs. 1.4GHz in GTX 480 cards,
for example). We believe that the high number of uncoalesced
memory accesses performed by DScan-mNW may drive the
poor performances on Tesla C207× cards, which have a
slower memory clock.

Figure 9 reports the speedup of RScan-mNWover Rodinia-
NWon sequences of different lengths. The number of pairwise
comparisons performed in each experiment is reported on top
of each bar (all experiments have been configured so as to use
70 % of the global memory). As mentioned in Section 4.3, in
RScan-mNW each core computes an alignment matrix: in
order to fully employ the computational resources of the
GPU, RScan-mNW needs to perform a large number of paral-
lel sequence alignments. However, the number of parallel
pairwise alignments is limited by the available memory. For
example, on K20 GPUs, sequence length of 1536 limits the
number of parallel pairwise comparisons to 373, thus using
only 373 of the 2496 cores on the device (e.g., ~15 %
efficiency). On the other hand, sequences of length 512
allow 3356 parallel pairwise alignments, thus using all the
available cores.

There is therefore pressure on the global memory capacity
for long sequences, where the GPU global memory becomes
the bottleneck, penalizing the performance of RScan-mNW.
On the other hand, with shorter sequences, RScan-mNW’s
performance improves: for 512-base sequences it gives a
speedup of 5x over Rodinia-NW.

In general, Figs. 8 and 9 show that DScan-mNW and
TiledDScan-mNW are preferable to RScan-mNW on the
1,536-base sequences in the 16S rDNA gene dataset. In addi-
tion, these results show that our methods overcome the inef-
ficiencies of Rodinia-NW and suggest that DScan-mNW is
preferable on all devices except Tesla C207×. On such cards,
TiledDScan-mNW provides better performance. This finding

will be used to configure our GPU-workers. As next step, we
want to determine how to size the amount of work that each
GPU-worker should pull from the GPU-dispatcher to operate
at full capacity. In fact, we want to fully employ the GPUs
present in the system. The number of pairwise comparisons
that can be performed concurrently on each GPU is limited by
its memory capacity.We configured each GPU to operate with
its global memory 75 % full. For the sequence lengths being
considered, this leads to 79, 79, 119, 208, 417, and 372
parallel alignments onQuadro2000, GTX460, GTX480, Tesla
C2050, Tesla C207× and K20 GPU, respectively.

Figure 10-a shows the speedup reported by DScan-mNW
over an 8-threaded OpenMP implementation running on the
8-core CPU on Node-4 (see Table 3). The numbers over each
bar represent the throughput in number of pairwise
alignments/sec. For each GPU, we performed three experi-
ments: one using unpinned memory, one using pinned mem-
ory, and one using dual-buffering. We first define an “optimal
batch size” bSIZE for a particular GPU to be the number of
simultaneous alignments that can be performed given the
device memory (as above). For the first two versions, we ran
analyses consisting of a number of sequences equal to 3bSIZE
in order to effectively time the computation. For dual-
buffering, only half of the GPU memory performs alignments
at one time, so 6 batches of size bSIZE/2 were timed. The
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performance was measured as the number of sequence pairs
compared per second.

As can be observed from Fig. 10-a, switching to pinned
memory offers a gain of roughly 1.6x, consistent with previ-
ous findings [41]. The application of dual-buffering along
with pinned memory offers an additional average 1.2x speed-
up, with the exception of the GTX480 system, which does not
show significant speedup.We speculate that the reason for this
lack of improvement is that the GTX480 has a more restricted
handling of CUDA streams (it allows concurrent memory
transfer and kernel execution with a single copy engine) that
does not allow the same level of overlapping of memory
transfers and kernel computations possible on other devices
(with 2 copy engines). In general, it can be observed that
even inexpensive low-end GPUs (like the GTX460 and
GTX480) offer throughput in the order of 200–250
pairwise comparison/s.

Figure 10-b shows the effect of varying the GPU’s memory
use on the performance of DScan-mNW. The data shown are
based on using a GTX460 GPU with 1GB of memory and a
sequence size of 1536. Recall that DScan-mNW’s memory
usage is of the order of l2*batch size, meaning that selecting a
memory footprint determines the batch size to be used. This
fact would tend to imply that we expect performance to drop
when less global memory is employed because the batch size
may be smaller than the number of available cores. However,
when we actually test the effects of changing the memory size,
the results are somewhat surprising: performance is rather
similar over a range of memory sizes. This observation is
not specific to the GTX460: it is also seen with the Tesla
C2075 (data not shown). As we explore further in Section 6.4,
this behavior seems to be due to saturation of memory band-
width resulting from this kernel’s numerous uncoalesced
memory accesses.

6.3 Performance Analysis of LazyRScan-mNWon Single
GPU

As discussed in Section 4, thanks to its optimized global and
shared memory usage, LazyRScan-mNW can potentially offer
some speedup over the other three GPU kernels.

The critical parameter affecting the performance of this
method is the slice size k, that is, the number of columns
calculated by a thread before writing a column of the
alignment matrix to global memory. Importantly, this
parameter can influence the performance of the kernel
in two conflicting ways. On one hand, larger values of
k help threads to avoid expensive global memory read
and write operations. On the other hand, smaller values
of k reduce shared memory use so that the GPU can
schedulemore threads to run simultaneously, hiding the global
memory latencies by alternating between warps waiting on
memory and on computation operations.

We explored how the performance varies with k. In partic-
ular, we considered kernel configurations that fully use the
global and shared memory available on the GPU. To this end,
we set the batch size (that is, the number of alignments
performed in a single kernel calls) so to utilize 80 % of the
global memory. We recall (Table 1) that LazyRScan-mNW
stores in global memory l integer scores per alignment (l being
the length of the longest sequence). Therefore, the batch size
can be computed by dividing the amount of global memory
used by l×4 bytes. In addition, in this method every thread
performs a full alignment: thus, the kernel is invoked with a
number of threads equal to the batch size. In our analysis, we
started with thread-blocks of the size of a warp (32 threads),
and performed several experiments by progressively doubling
the thread-blocks’ size until reaching 512 threads per block.
Finally, we wanted to see if having multiple thread-blocks
concurrently executing on one streaming multi-processor
(SM)would improve performance. Thus, we varied the shared
memory utilization between 25 % (12 KB), 50 % (24 KB),
and 100% (48 KB), respectively resulting in 4, 2 and 1 thread-
block concurrently scheduled on the same SM. The parameter
k can then be calculated from the formula on shared memory
use in Table 1: namely, by dividing the amount of shared
memory per SM by the block-size times 5 bytes (that is, the
amount of storage required for 1 integer and 1 char). To
simplify this operation, we provide to potential users a
spreadsheet along with our open-source code to help deter-
mine k for each of the scenarios above.

Table 4 shows the performance achieved on a GTX 480
GPU when varying the shared memory use, the block size,

Table 4 Performance of LazyRScan-mNW with different shared mem-
ory, block size, and slice size settings. Bold values represent the best
results reported for each shared memory configuration.

Concurrent blocks
per SM

Block size Slice size (k) Performance
(Pairs/sec)

4 32 75 777

64 37 1943

128 18 3987

256 8 3691

512 3 1317

2 32 152 742

64 75 768

128 37 1935

256 18 3924

512 8 3527

1 32 306 315

64 152 740

128 75 768

256 37 1924

512 18 3840
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and the slice size k. As can be seen, the performance of
LazyRScan-mNW is relatively consistent for fixed k when
the shared memory and block size settings are changed. Spe-
cifically, the performance peaks at k=18. When we repeated
this same experiment on different GPU devices, we again
found the same value of k to be optimal (Fig. 11). These
results can be explained as follows. In all configurations with
k=18, 512 threads are scheduled concurrently on each SM
(that is, 4 blocks×128 threads or 2 blocks×256 threads or 1
block×512 threads). This suggests that scheduling 16 warps
per SM is enough to hide the memory latencies, and, at the
same time, a value of k=18 is large enough to reduce the
amount of expensive global memory operations. As the char-
acteristics of k remain relatively constant among different
GPU devices, there seems to be some generality to these
results. We also notice that the peak performances of
LazyRScan-mNW (from about 4000 pairwise alignments/s
on low-end GPUs to about 6000 pairwise alignments/s on
high-end GPUs) are far better than those reported by the other
three GPU kernels. Interestingly, the Kepler K20 GPU does
not offer substantial performance improvements over Tesla
C20XX devices. This observation can be explained by the fact
that the memory latencies are in all cases sufficiently hidden
by context switching between 16 warps. The K20 GPU,
however, offers more favorable performance for small values
of k. In this case, the more frequent global memory operations
are better hidden by the massive multi-threading of the Kepler
architecture.

6.4 Detailed Analysis of Bottlenecks in Kernel Performance
with the Nvidia Profiler

As mentioned in Section 6.2. B, the lack of performance
improvements seen when the memory use is increased
(Fig. 10-b) is interesting. We would like to understand why
limiting the amount of global memory used did not reduce the
performance of DScan-mNW.

To answer that question, we took a deeper look at potential
bottlenecks for two of these implementations: DScan-mNW
and LazyRScan-mNW. We selected these two because they are

at opposite ends of the spectrum of memory use:DScan-mNW
makes frequent access to global memory while LazyRScan-
mNW does not intensively use global memory but relies
heavily on shared memory. Using the Nvidia profiler nvprof,
we produced execution profiles of both implementations on
the GTX460 and visualized those profiles with the Visual
Profiler.

Figure 12-a shows the proportion of time the GPU spends
in compute and in memory operations, respectively, for
DScan-mNW in the case of 75 % memory utilization. The
device spends much more time in memory operations than in
compute ones. When we investigated the same metrics in the
case of 30 % global memory utilization, the results are very
similar (data not shown). The program’s memory accesses
tend to induce stalls due to their execution dependence
(Fig. 12-b), suggesting performance is being limited by mem-
ory access patterns. When we analyzed these memory ac-
cesses more closely, we found that cache memory was only
being used lightly but that the global memory was being
heavily accessed, as reported by the profiler. We conclude that
this implementation suffers from a global memory bandwidth
capability problem, such that the GPU-to-global memory
bandwidth is saturated even when only part of the GPU
memory is being used to store alignment matrices. Thus, the
implementation is unable to efficiently employ the available
cores due to the limitations of memory bandwidth. This hy-
pothesis clarifies the results shown in Fig. 8-b, where GPUs
with very different numbers of cores did not differ greatly in
their performance.

Since LazyRScan-mNW does not use global memory to
store alignment matrices, it can potentially avoid memory
bandwidth limitations. And indeed, Figure 13 shows that
the proportion of time spent in compute operations is
much higher than that seen for DScan-mNW. Moreover,
the majority of the memory accesses are now to fast
shared memory rather than to (slower) global memory.
However, this change does introduce a new limiting factor:
even in cases where many more cores are available per
streaming processor, we cannot efficiently employ them due
to the fixed amount of shared memory.

Figure 11 Effect of slice size k
on performance of LazyRScan-
mNW.
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6.5 Performance Analysis on a Single Node, Using GPU
Kernels as Filtering Methods

To evaluate our special case of computing all possible
pairwise alignments but only retaining them if they meet a
predefined percent identity threshold, we carried out perfor-
mance tests on large-batch pairwise comparisons. These ex-
periments differ from the ones presented in Section 6.3 in two
ways. First, the dataset has a small number of sequences but
leads to a large number of comparisons due to the large
number of pairwise combinations. Second, after the alignment

score is known, we need only perform the trace-back (on the
CPU) to recover the actual alignment if a given sequence pair
has an alignment score greater than the value of L above.

In the experiment, we created a FASTA file consisting of
the first 200 sequences in our initial dataset (thus, making
200×199/2=19900 pairwise comparisons). The identity cut-
off score is set to 97% (a common value). Only sequence pairs
that have identity ≥97 % are selected for performing higher-
quality trace-back and alignment on the CPU. In our dataset,
the number of such pairs is 6095. As such, with an ideal
filter that takes no time to do computation, the expected
speedup assuming that all pairs take the same time to
align is 4950/6095=3.26x.

Table 5 compares the performance gains obtained by using
either LazyRScan-mNW or one of our traditional NW
implementations (dual-buffering pinned-memory DScan-
mNW) as a “filter” over the original method of performing
all pairwise comparisons on the CPU. To ensure the fairness of
the comparison, we have eliminated the matrix transfer oper-
ations fromDScan-mNW. The experiment was done on Node-
6 (Table 3). Note that this workstation is equipped with a
single low-end GPU card (GeForce GTX 460).

LazyRScan-mNW is the fastest implementation. As can
be seen, both methods serve relatively well as a crude
filter to avoid unnecessary alignments and offer a signif-
icant time saving even in the presence of a high-end CPU.
However, the even greater performance improvement seen
with LazyRScan-mNW is quite encouraging because it
gives speedups that approach the maximum expected
(3.26x, see above).

While LazyRScan-mNW is very applicable to our specific
use case and provides significant speedup on a single node, it
is also less flexible compared to the other three GPUmethods,
as the alignment is necessarily recomputed on the CPU (al-
though we are currently studying mechanisms to efficiently
perform trace-back on the GPU). Even with the trace-back not
in place, the approach does still allow avoiding potentially
expensive CPU operations or CPU/GPU communication and
offers a considerable amount of time saving, proving to be a
practical solution for important biological problems.

a. Compute and memory bounds for DScan-mNW. 

b. Stall sources for DScan-mNW. 

Figure 12 a Compute and memory bounds for DScan-mNW. b. Stall
sources for DScan-mNW.

Figure 13 Compute and memory bounds for LazyRScan-mNW.

Table 5 Speedup on a single node as a result of using DScan-mNWand
LazyRScan-mNWas a preliminary filter for sequence analysis.

Method Action Time
(secs)

Overall
(pairs/sec)

CPU Standalone Alignment 2071.71 24.0

CPU + GPU
DScan-mNW

Filtering 51.27 65.2
(2.71x)Alignment 645.95

CPU + GPU
LazyRScan-mNW

Filtering 5.18 76.8
(3.2x)Alignment 645.95

J Sign Process Syst (2014) 77:131–149 145



6.6 Performance on CPU-GPU Clusters

In this section, we use the 16S rDNA gene dataset [21] to
evaluate the performance and scalability of our distributed
framework described in Section 5. Our evaluation consists of
experiments on single node and on two clusters (see Table 3).
In all experiments, we set the size of the work-lists sent by the
CLD to the NLDs to 5,000 pairwise alignments; this figure
allows full use of all available CPUs and GPUs. Load-
balancing across nodes with different compute capabilities is
automatically achieved by our pull-model: NLDs associated
with slower nodes will request work-lists from the CLD at
lower frequency. In these experiments we use our general-
purpose GPU kernels and perform trace-back on CPU for all
considered sequence pairs (that is, without filtering).

6.7 Experiments on Single Nodes

6.7.1 Heterogeneity

There are many levels of heterogeneity that we must consider
in our framework. The lowest level occurs within a node.
Taking one node in our high-end cluster as an example,
node-3 has 12 CPU cores and 3 different types of GPU: Tesla
C2050, C2070 and C2075. These GPUs have the same num-
ber of CUDA cores with the same clock speed but different
memory capacities. Our framework will read the GPUs’ con-
figuration in the initialization phase and set the appropriate
parameters for launching the NW kernel and transferring data
according to each GPU’s memory capacity. In this way, the
framework load balances between these GPUs. Node-3
achieves 149 pairwise alignments/s (CPUs only), 359 pairs/s
(GPUs only) and 487 pairs/s (CPUs+GPUs). Thus, the
throughput when using both CPUs and GPUs increases
roughly by a factor 3.3x and 1.4x compared to when using
CPUs and GPUs alone, respectively. We conclude that our
framework is able to handle the heterogeneity within nodes.

6.7.2 Vertical Scalability

Vertical scalability is another important metric for the system.
It reflects the framework’s ability to efficiently use added

resources (e.g. RAM, CPUs, GPUs) to increase performance
on a single node. Figure 14 shows the scalability of node-4,
which has 8 CPUs and 4 GTX 480 GPUs. The x-axis is the
number of GPUs while the y-axis shows processing speed
(pairs/s). When we increase the number of GPUs from 1 to 3,
the performance scales reasonably well from 313 pairs/s to
657 pairs/s (e.g., greater than 2x speedup). However, when the
fourth GPU is employed, only a slight improvement is seen
(36 extra pairs/s): a bottleneck has clearly been reached. One
source of such bottleneck is the PCI-E controllers, each of
which controls two PCI-E slots and hence two GPUs. Thus,
when moving from one to two GPUs that share a controller, a
performance gain of only 125 pairs/s is achieved. When the
third GPU (with an independent controller) is added, perfor-
mance increases by 219 pairs/s. Given that the fourth GPU
competes in bandwidth with the third, we speculate that both
the CPU process that dispatches work to these GPUs and their
controllers may be becoming overloaded.

6.8 Experiments on Clusters

The next level of heterogeneity in our cluster is the differences
in CPU-GPU capacity between nodes. To explore this issue,
we considered two clusters: (1) a high-end commodity cluster
of four workstations with multiple GPUs per node and (2) a
low-end cluster with six desktops and a single GPU per node.

6.8.1 High-end Cluster

Figure 15 shows the performance of the framework on the
high-end cluster. The blue, red and green bars show the
processing speed for CPU only, GPU only and CPU-GPU,

Figure 14 Vertical scalability on Node-4 from Table 2.
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Figure 15 Performance on our high-end cluster.
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Figure 16 Performance on our low-end cluster.
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respectively. When the framework only uses the available
CPUs, the processing speed is between 200 and 400 pairs/s.
When the GPUs are included, the processing speed jumps to
1000~1700 pairs/s (a 4 to 5-fold speedup). Surprisingly,
the use of only the available GPUs has relatively little
performance cost. Scalability is also reasonably good from
one all the way to four nodes, with 250~350 pairs/s
added per new node.

6.8.2 Low-end Cluster

Figure 16 presents similar results from the low-end cluster.
Again, the addition of GPUs to CPUs in the framework yields
a speedup of 5~6x over the CPU-only configuration. Inter-
estingly, the high-end cluster is only 0.6x faster than the low-
end one (although this limited difference is partly due to there
being more total nodes on the low-end cluster). It is encour-
aging that even relatively modest hardware coupled with
GPUs can dramatically improve the processing speed of se-
quence alignments.

7 Conclusion

In this work, we have designed four implementations of
multiple pairwise alignments using the Needleman-Wunsch
algorithm on GPU. Three of our parallel kernels (TiledDScan-
mNW, DScan-mNW and RScan-mNW) are general purpose.
Our forth implementation (LazyRScan-mNW) is optimized for
problems that require performing the trace-back operation
only on a subset of the sequence pairs in the initial dataset
(for example, the pairs whose alignment score exceeds a
predefined threshold). We have highlighted how the different
computational patterns affect the employment of the underly-
ing hardware. We have integrated our general-purpose GPU
kernels with an MPI framework for deployment on homoge-
neous and heterogeneous CPU-GPU clusters. We have eval-
uated our framework on a real-world dataset and on a variety
of low-end and high-end Nvidia GPUs. Our experiments
based on the general purpose TiledDScan-mNW, DScan-
mNWand RScan-mNW kernels show a throughput in the order
of 250 and 330 pairwise alignments/s on low- and high-end
GPUs, respectively. In addition, we achieve a throughput of
1,015 pairwise alignments/s on a 6-node commodity cluster
equipped with a low-end GPU on each node. Our LazyRScan-
mNW kernel allows throughputs up to about 4,000 and 6,000
pairwise alignments/s on low- and high-end GPUs, respec-
tively, and shows to be a very effective filtering method.
Finally, we have performed an extensive experimental evalu-
ation on the impact of the slice size on the performance of the
LazyRScan-mNW method on a variety of GPU devices with
distinct compute capabilities (2.0, 2.1 and 3.5). Our results can

be used in a production setup to tune the code to the underly-
ing hardware.
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