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ABSTRACT

In the present contribution we present the preliminary results of
a black box nonlinear system (NLS) modeling. The NLS is com-
posed by a nonlinear sigmoid-type input-output relationship
(NLTF) followed by a linear system (LTI), as in a Hammerstein
nonlinear system. Here, the used NLTF is derived from a de-
formation of the Hyperbolic Tangent power expansion. The ad-
vantage of using the hyperbolic tangent function is that nonlinear-
ity depends on the linear and cubic terms that measure curvature
(and thus nonlinearity) of the transfer function. The hyperbolic
tangent model is extended to other types of nonlinear systems by
expanding the nonlinear system in linear and increasingly nonlin-
ear contributions, where the expansion parameters are deformed
to enhance or suppress specific nonlinear modes of the expansion.
Simulations were performed using Matlab 2012a. The preliminary
results show fairly good agreement between the system obtained
by parametric inference and a reference system, with mean square
error (MSE)=0.035.

1. INTRODUCTION

Linear Time Invariant Systems (LTI) have been extensively stud-
ied for decades [1], [2]. However, the nonlinearities in audio mu-
sical systems that are responsible for specific tone characteristics
desired by many musicians [3], [4].

The nonlinearities of the NLS can be weak (i.e the NLS can
be represented by a power series expansion of only a few terms)
or strong (higher order terms of the power series expansion must
be calculated for the modelling system) [5]. If the NLS is very
weak, a linear approximation can be used. On the other hand,
very strong nonlinear systems as samplers, switches and other sys-
tems with discontinuities in the system representation must use the
entire terms of its power series representation, which is rather in-
convenient for modeling purposes [6]. Then, in accordance to the
"strength" of the nonlinearities an appropriate and efficient tech-
nique to be used is in order. Guitar and bass vacuum-tube ampli-
fiers can be considered weakly NLS and most of NLS identifica-
tion techniques make this assumption.

By its own nature, when a weak nonlinear system related with
saturation (NLS) has as input a pure sine wave
x(t) = A1 cos(2πf1t + φ1), higher harmonics related to the in-
put frequency will appear in the output, according with the relation
y(t) =

∑
nBn cos(2πnf1t + φn). Accordingly, LTI identifica-

tion techniques as impulse response, convolution and Laplace or
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Fourier analysis cannot be used with NLS. Hence, many attempts
have been suggested to model such NLS [4].

The main techniques for NLS identification/modeling can be
classified in black box approaches, white box approaches or an-
alytic modeling techniques and grey box approaches. Black box
approaches involve no a priory knowledge on the NLS to be mod-
elled/identified. The NLS is excited with a set of test signals and
using obtained outputs, the coefficients of a polynomial or power
series relation are estimated in such a way as to minimize the error
between the true NLS system and the model. In this category one
finds the Volterra, Volterra-Wiener and Hammerstein model tech-
niques, for instance, [5], [7], [8], [9], [10], [11], [3], [12], [13]. On
the other hand, white box approaches involve total knowledge of
the system to be modelled. To achieve this, one needs to know the
circuit theory and the schematics of the devices to be modelled.
In possession of this information, the nonlinear differential equa-
tion set of the circuits involved can be obtained and solved. In
this category the models for SPICE Simulation, transient modified
nodal analysis, state-space representation and numerical methods
for solving nonlinear circuits techniques can be found as for in-
stance in refs. [14], [15], [16], [17], [18], [19], [20]. Grey box
approaches use polynomial models as in black box techniques, but
incorporating some knowledge about the nonlinear circuits used.
Good reviews of NLS modeling techniques can be found in [4],
[21].

In this work we propose a black box method where the NLS
is composed by a nonlinear sigmoid-type input-output relationship
(nonlinear transfer function, NLTF) followed by a LTI, as in Ham-
merstein nonlinear systems, [12]. This is shown in Fig. 1. The first
section shows the calculation of the output from the entire system
given a generic input. Then the developments based on the Hy-
perbolic Tangent series and its coefficients estimation are shown,
followed by a practical example.

Figure 1: The entire NLS proposed.
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2. A MODEL PROPOSAL FOR THE MODELING
SYSTEM

The NLS model (or cell) proposed here (Fig. 1) is half the sys-
tem proposed in [3] and is appropriate to model weakly NLS as a
vacuum tube amplifiers pre-amplifier or power stages and distor-
tion and overdrive devices. It is composed by an NLTF followed
by an LTI system as in a Hammerstein model [12]. The model-
ing procedure consists in applying appropriate test signals in order
to estimate both the NLTF and the LTI system that minimize the
error between the output of the NLS to be modeled and the NLS
model, by some minimization criterium of the error between the
true output signal against the NLS model output. Here we used
for simplicity the standard minimum square method as specified
further down in eq. (10). The modeling procedure is shown in
Fig. 2. One of the differences of this work is that the NLTF used

Figure 2: The modeling system and its variables.

is derived from a deformation of the Hyperbolic Tangent power
expansion. The development and identification of the coefficients
of this deformed expansion will be explained further below. As a
matter of fact, the harmonics produced for the NLTF are filtered by
the LTI system. This circuit section usually models the frequency
response of the amplifier stage to be modeled, including the para-
sitic capacitances, tone controls or a simplified output transformer
and speaker model.

Generally speaking, many LTI have the transfer function in
Laplace domain described as a quotient of polynomials by ([2],
[22]) :

H1(s) =
Y1(s)

X1(s)
= G

∑M
k=0Bks

M−k∑N
k=0Aks

N−k
, (1)

where G is the Global Gain of the LTI and Bk and Ak are the
coefficients of the differential equation that rules the LTI.

It is straight forward to show [2] that the differential equation
which relates the output y1(t) with the input x1(t) is

N∑
k=0

Ak
dN−kx1(t)

dtN−k
= G

M∑
k=0

Bk
dM−ky1(t)

dtM−k
, (2)

recalling that x1(t) is the response of the NLS to an input x(t).
The impulse response of eq. (1) can be analytically evaluated

by finding the Poles (roots of the denominator polynomial) of the
LTI, expanding eq. (1) in Partial Fractions and finding the inverse
Laplace transform to the expansion [2],[22]. Otherwise, a numer-
ical algorithm can be applied to eq. (2) to find a solution for that
differential equation.

The output y1(t) can be represented by the convolution

y1(t) =

∫ ∞
−∞

h1(τ)x1(t− τ) dτ , (3)

where x1(t) is the output of the NLTF for an input x(t), or for-
mally x1(t) = NLTF |x(t)(t), so that eq. (3) is

y1(t) =

∫ ∞
−∞

h1(τ)NLTF |x(t)(t− τ) dτ . (4)

For instance, if one estimate the NLTF as an arc hyperbolic sine
function, like the one that mimics diode distortion pedals and a
JCM900 preamp output voltage (ref. [15]), then eq. (4) can be
written as

y1(t) =

∫ ∞
−∞

h1(τ)arcsinh|x(t)(t− τ) dτ . (5)

To estimate this sub-system one has to apply an input signal x(t)
small enough in order that the NLS to be modeled may be consid-
ered a linear system. This is fairly true for many amplifiers and
distortion devices, and all techniques already developed for LTI
can be used, in time or in frequency domain. In the present case the
identification/estimation is performed by H̃1(ω) = Y (ω)/X(ω).

3. THE NONLINEAR SUB-SYSTEM MODEL

As a starting point for modeling the weakly nonlinear properties
of an audio-system, we start from a mathematical function, i.e. the
hyperbolic tangent

x1 = tanhα

=
eα − e−α

eα + e−α
, (6)

that in certain limits of α (the input signal and amplification) ex-
hibits predominantly linear properties and beyond these limits, then
the full nonlinear characteristics as can be seen in Fig.3. The

−3 −2 −1 0 1 2 3

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

x 1

x
1
=tanh(x)

Figure 3: x1 = tanhx.

choice for this specific function resides in the fact that a represen-
tation by exponential functions may be easily implemented com-
putationally. Then, the normalized output signal y1(t) of the non-
linear sub-system may be described by the input signal x(t) and
the response of the nonlinear sub-system

x1(t) = tanh

κ(x(t) + x0)︸ ︷︷ ︸
α

− tanh (κx0) , (7)
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where κ plays the role of an amplification factor and for a sym-
metric NLTF x0 ≡ 0, whereas for asymmetric NLTF x0 6= 0.
Note that besides the translation of the argument of the hyperbolic
function there is also necessarily a shift in the function such as to
match a zero input signal with a zero output signal. In this kind
of approach the nonlinearity is a unique one which may be seen
from the constituent differential equation that has the hyperbolic
tangent as solution.

∂2ξ(α)

∂α2
= 2

(
ξ3(α)− ξ(α)

)
(8)

The “beauty” of the hyperbolic tangent function is that the sec-
ond derivative and its dependence on the linear and cubic signal
is a direct measure for the curvature of the transfer function and
thus for the nonlinear behavior. In order to extend this nonlinear
model to other types of nonlinear systems we proceed in two steps,
first expand the nonlinear system in linear and increasing nonlin-
ear contributions, and second, extend the expansion by introduc-
ing new parameters that allow to tune the balance of the linear
and nonlinear character, in other words, allow to enhance or sup-
press specific nonlinear modes of the expansion. For signals x(t)
sufficiently small most of the audio systems show a linear behav-
ior, which corresponds to the first term of a small signal expansion,
where including nonlinear terms nevertheless restricting generality
we truncate at the fifth term that represents a nonlinear character.
If x1 = tanh(κx) with κx = α, then

ξ(α =)


∞∑
n=0

1

n!

∂n tanh(α)

∂αn

∣∣∣∣
α=κx0︸ ︷︷ ︸

an

α
n

− tanh (κx0)

=
(
1− tanh

2
(α)
)∣∣∣
α=κx0

α

− tanh(α)
(
1− tanh

2
(α)
)∣∣∣
α=κx0

α
2

−
(

1

3
− tanh

2
(α)

)(
1− tanh

2
(α)
)∣∣∣∣
α=κx0

α
3

+

(
2

3
−

1

2
tanh

2
(α)

)
tanh(α)×

×
(
1− tanh

2
(α)
)∣∣∣
α=κx0

α
4

+

(
2

15
−

21

30
tanh

2
(α) +

1

2
tanh

4
(α)

)
×

×
(
1− tanh

2
(α)
)∣∣∣
α=κx0

α
5

+O(α
6
) (9)

It is noteworthy that all terms of the expansion are linearly inde-
pendent so that one may modify the original factors an → an +
δan by an increment or decrement δan and thus adjust the linear to
the nonlinear proportions beyond that given by the hyperbolic tan-
gent function and additionally shape the nonlinearity since
[2
(
y3(α)− y(α)

)
] is no longer the original curvature.

Recalling that we are considering a black box modeling, nev-
ertheless focus on specific audio system characteristics the con-
nection between a system with measured total response function
(microphone, amplifier and speaker characteristics) may be deter-
mined using parametric inference techniques as laid out for in-
stance in [23]. To this end the input signal x(t) as well as the de-
sired output signal y(t) is discretized in T times
ti (i ∈ {0, . . . , T}) and the factors δan are adjusted such as to
minimize the difference of the model and the experimental data.

min
{x0,{δan}Nn=1}

(
T∑
i=0

∥∥∥∥y(ti)− ∫ ti

0

h(ti − τ)ξ(τ) dτ
∥∥∥∥
)

(10)

Here ||·|| denotes any convenient norm or semi-norm. In this work
we use the Euclidian norm.

A comment is in order here, other approaches make use of
orthogonal functional spaces which they use to model nonlinear
responses [5]. With respect to this approach ours is not that much
different, however, the advantage of the present approach is justi-
fied by the fact that all derivatives of the hyperbolic tangent func-
tion may again be represented by hyperbolic tangent functions and
constants, in other words only one function (represented by ex-
ponential functions) is needed to generate the whole expansion,
where in the present discussion we showed the linear and five non-
linear terms that appear in the expansion. In the symmetric case
the parity even terms in α disappear identically. Moreover, in prin-
ciple the tuning needs only to be stored in a vector that indicates
directly the linear and nonlinear characteristics to be modeled. For
example, if the NLTF would be a simple hyperbolic tangent, such
as y1(t) = tanhx(t), the hyperbolic tangent can be expressed as
a power series by [24]

tanhx = x− x3

3
+ 2

x5

15
− 17

x7

315
+ . . . , (11)

and then the coefficients an for n even would be 0 and a1 = 1,
a3 = − 1

3
, a5 = 2

15
, a7 = − 7

315
and so on. For a case of arc

hyperbolic sine as the NLTF, expanding the arc hyperbolic sine
gives [24]

arcsinh = x− x3

6
+ 3

x5

40
+ . . . , (12)

and in this case an for n even would be 0 and a1 = 1, a3 = − 1
6

,
a5 = 3

40
and so on, which is δa3 = − 1

2
a3 and δa5 = − 7

120
with

respect to the hyperbolic tangent case.

4. METHODS

In order to simulate a system to be identified, all the signals and
systems were performed using Matlab 2012a version. The sam-
pling frequency used is fs = 120000 samples per second in or-
der to accommodate the harmonics of the output signal up to the
5th component without aliasing, simulating an A/D system with
fs = 20000 samples per second with an anti-alias analogue 6th

order low-pass filter with cut-off frequency of 10kHz before the
sampling process and after the discretization, the signal is upsam-
pled 6 times. But all the signals involved to be exhibited are down-
sampled to fs1 = 20000 samples per second.

For the NLTF to be modeled, we chose the distortion simula-
tion presented in [21], given by

x1 = sign(x)(1− e−|x|) . (13)

The graphic of this NTFS is shown in Fig.4. The output of this
block feeds a discrete linear system which is a 2nd order digi-
tal Butterworth bandpass filter with cut-off frequencies of 100 Hz
and 8000 Hz, normalized to radians. This simulates approximately
the frequency response of a 12′′ guitar speaker. The frequency re-
sponse of this system is shown in Fig.5: The signal x[n] chosen for
the LTI identification is a linear chirp from 0Hz at n = 0 to 10kHz
at n = 65535 (or t = 0.96 s). In order to keep the nonlinear ef-
fects of the NLTF negligible, the signal must be so small that its
amplitude does not surpass the linear part of the NLFT. Because of
that, the maximal amplitude of the signal was chosen equal 0.01.
The periodogram and the spectrogram of this signal is shown in
Fig. 6.
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Figure 4: Graphic of the NLTF x1 = sign(1− e−|x|)
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Figure 5: Frequency response of the LTI system to be identified.

Injecting the signal x[n] in the system to modeled, the signal
y[n] is obtained and assuming the NLTF nonlinear effect is negli-
gible, then H1(w) can be estimated by

H̃1[k] =
Y [k]

X[k]
, (14)

where Y [k] and X[k] are the FFTs of the signals x[n] and y[n],
respectively. In Fig. 7, can be seen the periodogram and the spec-
trogram of the signal y[n]. Note that using these signal amplitude,
aliasing practically did not occur and the nonlinear effect appears
as a very faint 3rd harmonic line in its spectrogram. Just for the
sake of exemplification, if the chirp signal used here would have a
large amplitude A (eg. A = 5), the output of the NLS to be mod-
eled would had the periodogram and spectrogram shown in Fig.8
The frequency response of H̃1[k] obtained is shown in Fig.9: The
impulse response estimation of h̃1[n] is obtained performing the
IFFT over H̃1[k]. It’s worth noting that this form of estimation
will provide a FIR system model, even if the LTI system to be
estimated be an IIR system (as our case). But if one choose the
appropriate number of coefficients for the FIR system, the error
can be made negligible and the computational effort minimized.
Using N = 65536, then the estimation of the LTI system H̃1[k]

impulse response h̃1[n] is obtained. The next step is to estimate
the NLTF of the system. To do that, a second signal x[n] is in-
jected in the system, now a sine signal with fixed frequency inside
the band pass of the system (already identified) but with amplitude
large enough so the output signal y[n] be distorted. Here the sig-
nal was a sine signal with frequency of 500Hz (around the center
frequency of the Bandpass) and amplitude A of 5. The input and
output signals can be seen in Fig.12 To remove the phase influ-
ence of the LTI sub-system in the output signal, an inverse filter
(aka equalizer filter) g[n] obtained by turning the magnitude of

Figure 6: The Periodogram and the Spectrogram of the signal x[n]
for LTI estimation.

Figure 7: The Periodogram and the Spectrogram of the signal y[n].

H̃1[k] = 1.0 and then g[n] = IFFT [ 1

H̃1[k]
] as shown in Fig. 10.

This will preserve the amplitude of the signal y[n] but will correct
the phase only. is applied to the output signal y[n], and giving an
equalized signal yeq[n]. The scatter plot between x[n] and yeq[n]
is shown in Fig.11: As can be seen by the Lissajous curves ob-
tained, the phase wasn’t completely corrected but the phase error
of yeq[n] is small enough for the next step. Finally, with both sig-
nal x[n] and yeq[n], the new coefficients ak+δak of eq. (9) can be
estimated. Here, we used minimization with Euclidian norm and
consequently, least squares fitting techniques, evaluated up to the
10th order. The coefficients obtained for our example are

a0 + δa0 0= .000412543580279774 ,

a1 + δa1 0= .695903675375691 ,

a2 + δa2 8= , 42100337873921e− 06 ,

a3 + δa3 = −0.0873565648035508 ,
a4 + δa4 = −1.51387407429003e− 05 ,

a5 + δa5 0= .00715137611726394 ,

a6 + δa6 2= .73945820531464e− 06 ,

a7 + δa7 = −0.000280736782949899 ,
a8 + δa8 = −1.67046480776686e− 07 ,

a9 + δa9 4= .11012487805344e− 06 ,

a10 + δa10 3= .17102262802150e− 09 ,

· · · .

The comparison between the outputs of the actual system and the
NLS estimated is shown in Fig.12.

Finally, it is shown on Fig.13 the output of the system to be
modeled and the model for all the parameters above, having as
input a sine signal of 1kHz.
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Figure 8: The Periodogram and the Spectrogram of the signal y[n]
for a chirp with A = 5.
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Figure 9: Frequency response of the LTI system estimated.

The Mean Square Error (MSE) between y[n] and y1[n], esti-
mated by

MSE =
1

N

N−1∑
n=0

(y[n]− y1[]n)2 (15)

was around MSE = 0.035.

5. CONCLUSIONS

In the present work we discussed a black box approach for a NLS
that shall simulate the response of an audio system such as a tube
amplifier for musical instruments with its characteristic frequency
response of the amplifier, including the parasitic capacitances, tone
controls, output transformer and speaker. To this end we used a
chirp signal to excite the NLS followed by a LTI and adjusted the
coefficients of a deformed hyperbolic tangent power expansion in
order to reproduce a desired output by the use of parametric infer-
ence technique. The choice for the deformed hyperbolic tangent
function resides in the fact that a representation by exponential
functions may be easily implemented digitally and allows to de-
scribe symmetric as well as asymmetric amplification using trans-
lations of the argument and amplitude respectively. Moreover the
hyperbolic tangent function has a simple relation to its nonlinear-
ity since the second derivative depends on the linear and cubic
function. As a specific example we used an exponential distortion
x1 = sign(1− e−|x|) followed by a Butterworth 2nd order band-
pass filter with cut-off frequencies related to 100Hz and 8kHz to
simulate the frequency response of an 12” speaker. For the exam-
ple used, the Mean Square Error (MSE) between y[n] and y1[n]
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Figure 10: Frequency response of the Inverse filter estimated.
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Figure 11: Scatter plot between x[n] and yeq[n].

was around MSE = 0.035.
The authors of the present work are aware of the fact that

there are other approaches similar to the present one, however, they
make use of orthogonal functional spaces which they use to model
nonlinear responses. We believe, that the advantage of the present
approach is justified due to the fact that all derivatives of the hy-
perbolic tangent function may again be represented by hyperbolic
tangent functions and constants. The deformation parameters that
were determined to reproduce the desired input - output signal re-
lation showed that the desired system can be reproduced with fairly
good fidelity. In future work we intend to apply the proposed pro-
cedure to a selection of other amplifiers obtained by measurements
and compare quality as well as computational efficiency for simu-
lation applications.
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