
Evaluating test characteristics and effectiveness of
FSM-based testing methods on RBAC systems

Carlos Diego Nascimento
Damasceno

University of São Paulo – USP
São Carlos, SP, Brazil

damascenodiego@usp.br

Paulo Cesar Masiero
University of São Paulo – USP

São Carlos, SP, Brazil
masiero@icmc.usp.br

Adenilso Simao
University of São Paulo – USP

São Carlos, SP, Brazil
adenilso@icmc.usp.br

ABSTRACT
Access control mechanisms demand rigorous software test-
ing approaches, otherwise they can end up with security
flaws. Finite state machines (FSM) have been used for test-
ing Role-Based Access Control (RBAC) mechanisms and
complete, but significantly large, test suites can be obtained.
Experimental studies have shown that recent FSM testing
methods can reduce the overall test suite length for ran-
dom FSMs. However, since the similarity between random
FSMs and these specifying RBAC mechanisms is unclear,
these outcomes cannot be necessarily generalized to RBAC.
In this paper, we compare the characteristics and effective-
ness of test suites generated by traditional and recent FSM
testing methods for RBAC policies specified as FSM mod-
els. The methods W, HSI and SPY were applied on RBAC
policies specified as FSMs and the test suites obtained were
evaluated considering test characteristics (number of resets,
average test case length, and test suite length) and effec-
tiveness on the RBAC fault domain. Our results corrobo-
rate some outcomes of previous investigations in which test
suites presented different characteristics. On average, the
SPY method generated test suites with 32% less resets, aver-
age test case length 78% greater than W and HSI, and over-
all length 46% lower. There were no differences among FSM
testing methods for RBAC regarding effectiveness. How-
ever, the SPY method significantly reduced the overall test
suite length and the number of resets.

CCS Concepts
•Security and privacy → Access control; •Software
and its engineering → Formal software verification;
Empirical software validation;

Keywords
Finite state machine; Role-Based Access Control (RBAC);
Experiments; Conformance Testing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SBES ’16, September 19 - 23, 2016, Maringá, Brazil
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4201-8/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2973839.2973849

1. INTRODUCTION
Preserving the confidentiality, integrity and availability

of personal and critical data has become a mandatory re-
quirement for most industrial-scale information systems. To
achieve this goal, access control mechanisms can be used to
enforce security policies and data protection [12]. In short,
access control ensures that only the intended users can ac-
cess resources and only the required access to accomplish
some task will be given. In this context, the Role-Based
Access Control (RBAC) model has been established as one
of the most significant access control paradigms [10]. The
RBAC model is conceptually simple: In an organization,
users receive responsibilities and privileges through roles;
Analogously, in RBAC systems, permissions are granted via
roles assigned to users. Despite its simplicity, the RBAC
model can reduce the complexity of security management
routines by grouping privileges in roles [19]. Nevertheless,
mistakes can occur during the development of RBAC sys-
tems threatening users’ privacy, lead to faults, or either se-
curity breaches. Therefore, a careful verification, validation,
and testing (VV&T) processes must be executed.

Access control testing is the software testing process per-
formed on access control systems. It consists of the eval-
uation of obtained responses from access control systems
given access requests against the expected responses [17].
Formal testing approaches, such as Finite State Machine
(FSM) based testing, have been applied on RBAC domain
and experimental analysis have revealed that, although the
representation of RBAC policies as complete FSMs can be
used to generate very effective test suites, they tend to be
very costly, or astronomically large, as they say [14]. Later,
Endo and Simao [8] presented evidences that recent FSM
testing methods, such as SPY, can reduce the overall test
suite length for random FSMs. Although, the similarity be-
tween random FSMs and the ones used in practice, such as
these specifying RBAC policies, is unclear. Thus, the out-
comes of investigations using random FSM models cannot
be generalized to the RBAC domain. In this sense, investi-
gations on RBAC testing using FSM are required. Studies
in this domain can improve understanding the potential of
FSM based testing methods on RBAC and support VV&T
decisions.

This paper presents an experimental investigation of the
characteristics and the effectiveness of test suites generated
by traditional and recent FSM testing methods on the RBAC
domain. Two traditional methods, W and HSI, and a recent
one, SPY, were included. Five RBAC policies were speci-
fied as complete finite state models and tested using each

FSM-based testing method. The generated test suites were
evaluated based on their characteristics (number of resets,
test case length, and test suite length) and effectiveness us-
ing the RBAC fault model. The contributions of this paper
are twofold: it proposes a framework to compare FSM-based
testing methods on RBAC and reanalyzes Endo and Simao
[8] and Masood et al. [14] outcomes using three different
FSM-based testing methods on RBAC.

The remainder of this paper is organized as follows: In
section 2, the definitions of FSM and RBAC testing are pre-
sented. Section 3 introduces the experimental framework
proposed to this investigation. Section 4 shows the results
obtained and section 5 presents the discussions about them.
Threats to validity, related works, and conclusions are pre-
sented respectively in sections 6, 7, and 8.

2. PRELIMINARIES
A Finite State Machine (FSM) is an hypothetical machine

M composed by states and transitions [11], as shown in Fig-
ure 1. Formally, an FSM is a tupleM =< S, s0, I, O,D, δ, λ >
where

• S is a finite set of states,

• s0 ∈ S is the initial state,

• I is the finite set of input symbols,

• O is the finite set of output symbols,

• D ⊆ S × I is the specification domain,

• δ : D → S is the transition function, and

• λ : D → O is the output function.

Figure 1: Example of FSM model

An input x is defined for s if (s, x) ∈ D, which means that
in state s there is a defined transition which consumes input
x. In each given moment, an FSM has a single current state
si ∈ S which can change to sj = δ(si, x) by applying an
input x ∈ I defined in si, producing the output y = λ(s, x).
An FSM is complete if all inputs are defined for all the states,
i.e. D = S × I, otherwise it is called partial.

The concatenation of two sequences α and ω is denoted
as αω. A sequence α is prefix of a sequence β, denoted by
α 6 β, if β = αω, for some given sequence ω. An empty
sequence is denoted by ε and a sequence α is a proper prefix
of a sequence β, denoted by α < β, if β = αω for a given
ω 6= ε. The set of prefix sequences of a set T is defined as
pref(T) = {α | ∃β ∈ T and α < β}. If T = pref(T), T
is prefix-closed. Using the prefix definition and the empty
sequence, the concept of transition and output functions can
be extended to input sequences.

A sequence α = x1x2...xn ∈ I∗ is an input sequence de-
fined for state s ∈ S, if there exist states s1, s2, ..., sn+1

such that s = s1 and δ(si, xi) = si+1, for all 1 ≤ i ≤ n.
The transition and output functions is lifted to input se-
quences as usual; for the empty sequence ε, we have that
δ(s, ε) = s and λ(s, ε) = ε. For an input sequence αx de-
fined for state s, we have that δ(s, αx) = δ(δ(s, α), x) and
λ(s, αx) = λ(s, α)λ(δ(s, α), x). A sequence α ∈ I∗ is a trans-
fer sequence from s to sn+1 and sn+1 is said reachable from
s if δ(s, α) = sn+1. If every state is reachable from s0 the
FSM is initially connected and if all states are reachable
from every state the FSM is strongly connected.

The symbol Ω(s) denotes all defined input sequences to
the state s and ΩM abbreviates Ω(s0) and depicts all defined
input sequences of an FSM M . An FSM M can have a reset
operation, denoted by r, which takes to s0 regardless the
current state.

A separating sequence for two states si and sj is a se-
quence γ such that γ ∈ Ω(si)∩Ω(sj) and λ(si, γ) 6= λ(sj , γ).
In addition, if γ is able to distinguish every pair of states
of a machine, it is a distinguishing sequence. Formally, if
λ(si, γ) 6= λ(sj , γ) is valid for all pairs of state si, sj ∈ S,
then γ is a distinguishing sequence. Considering the FSM
presented in Figure 1, the sequence a is a separating se-
quence for states q0 and q1 since λ(q0, a) = 0 and λ(q1, a) =
1.

Two FSM modelsMS =< S, s0, I, O,D, δ, λ > andMI =<
S′, s′0, I, O

′, D′, δ′, λ′ > are equivalent if for each state of MS

there exists an equivalent state in MI . Two states are equiv-
alent if ∀ α ∈ I, λ(si, α) = λ′(sj , α). An input sequence
α ∈ ΩM starting with a reset symbol r is a test case of M .
Given two test sequences α, β ∈ T , if α is a proper prefix of
the test case β, the execution of β implies the execution of
α, thus α can be removed from T without changing results.

A test suite of M consists of a finite set T of test cases of
M , such that there are no α, β ∈ T such that α < β. The
number of symbols of a sequence α is represented by |α| and
describes the test case length. Given a test case α, the cost
of execution is defined as |α| + 1, which stands for the test
case length |α| plus one reset operation. The number of test
cases of one test suite T also describes the number of resets
of T which is depicted as |T |.

2.1 Mutation analysis of FSMs
In FSM-based testing, given a specification M , the symbol
=(M) denotes the set of all deterministic FSMs with the
same input alphabet of M for which all sequences in ΩM

are defined. Given m ≥ 1, then =m(M) denotes all FSMs
of =(M) with at most m states. Given a specification M
with n states, a test suite T ⊆ ΩM is m-complete if for each
N ∈ =m distinguishable from M , there exists a test t ∈ T
that distinguish M from N . The set =(M) is called fault
domain for M and can be used to evaluate test effectiveness.

A fault domain can be generated either manually or by
automatically generating variants of the FSM, named mu-
tants, using mutation operators [2]. If the result of running a
mutant is different from the original FSM for any test case,
the mutant is killed and the seeded fault denoted by the
mutant is detected. However, some mutants can be syntac-
tically different but functionally equivalent to the original
model. These are called equivalent mutants.

The process of analyzing if mutants are killed and test
cases trigger such failures is called mutation analysis and is
often used on software testing research [13, 9]. The main
metric of the mutation analysis is the mutation score, which

indicates the effectiveness of a test suite. Given the test
suites T , the mutation score (or test effectiveness) is calcu-
lated as

Teff = #km
(#tm−#em)

, where #km represents the number of killed mutants, #tm
defines the total number of generated mutants, and #em
defines the number of equivalent mutants. An m-complete
test suite has full fault coverage, and thus, has score 1.0, by
definition.

In FSM-based testing, the following mutation operators
are often used [6]: change initial state (CIS), which changes
the s0 of an FSM to sk, such that s0 6= sk; change output
(CO), which modifies the output of a transition (s, x), using
a different function Λ(s, x) instead of λ(s, x); change tail
state (CTS), which modifies the tail (destination) state of
a transition (s, x), using a different function ∆(s, x) instead
of δ(s, x); and add extra state (AES), which inserts a new
state such that mutant N is equivalent to M . Figures 2a, 2b,
2c, and 2d respectively show examples of mutants generated
from the FSM of Figure 1 using CIS, CO, CTS, and AES
operators. Changes are marked with an asterisk (*).

(a) CIS mutant (b) CO mutant

(c) CTS mutant
(d) AES mutant

Figure 2: Examples of FSM mutants

2.2 FSM-based testing methods
Two basic sequences are used to obtain partial information

about the models: state cover (Q set) and transition cover
(P set). A set of input sequences Q is a state cover set of
M , if for each state si ∈ S there exists a sequence α ∈ Q
such that δ(s0, α) = si and it includes the empty sequence
ε to reach the initial state. A set of inputs P is named
transition cover set of M if for each transition (s, x) ∈ D
there exist sequences α, αx ∈ P , such that δ(s0, α) = s,
and it includes the empty sequence ε. The P set can be
generated from the testing tree of an FSM under test [5].
The nodes of the testing tree correspond to the states of the
FSM, the tree is rooted at the initial state, and each tree
edge correspond to one FSM transition that appear exactly
one single time. The state cover and transition cover sets of
the FSM presented in Figure 1 are respectively Q = {ε, a, b}
and P = {ε, a, aa, ba, b, ab, bb}.

To identify states and transitions of FSM models, tradi-
tional methods, such as W [6] and HSI [18], require some
pre-defined sets. These sets are the characterization set and
separating families. A characterization set (W set) is a set
of defined input sequences containing at least a sequence
which distinguishes each pair of states of an FSM. Formally,

it means that for all pairs of different states si, sj ∈ S, there
exists α ∈ W , such that λ(si, α) 6= λ(sj , α). A separating
family is a set of state identifiers Hi for each state si ∈ S
which satisfies the condition that for all pairs of different
states si, sj ∈ S there are β ∈ Hi, γ ∈ Hj with a common
prefix α such that α ∈ Ω(si)∩Ω(sj) and λ(si, α) 6= λ(sj , α).
The characterization set of the FSM presented in Figure 1
is W = {a, b}.

Recent methods, such as SPY [21], rely on sufficient condi-
tions to support test generation. However, these conditions
are not necessary, i.e. if a test suite does not satisfy them
it may still be m-complete. The W, HSI and SPY methods
are described below.

2.2.1 W method
The W method is the most classical FSM-based test gen-

eration method [6]. It uses the transition cover set (P set) to
traverse all transitions and then it applies the W set to iden-
tify each state reached. The W method can also be extended
to detect an estimated number of n states in an implementa-
tion by concatenating the traversal set

⋃m−n
i=0 (Ii), such that

(m−n) depicts the number of extra states, before the W set.
The set Ii contains all sequences of length i combining all in-
put symbols of I and the traversal set consists of the union of
all sets Ii with sequences of length ranging from 0 to (m−n).
Assuming the FSM in Figure 1, no extra states (m = n) or
proper prefixes, the test suite generated by the W method is
TW = {aaa, aab, aba, abb, baa, bab, bba, bbb}, and the number
of resets equals to |TW | = 8.

2.2.2 HSI method
The Harmonized State Identifiers (HSI) method [18] uses

state identifiers Hi to distinguish each state si ∈ S of the
FSM model. First, the HSI method concatenates the state
cover set to the state identifiers set which is, in the worst
case, the W set itself. Later, the transition cover set is also
concatenated to the state identifiers in order to cover non-
traversed transitions. The HSI method can also be used
on partial FSM. Assuming the FSM in Figure 1, no extra
states or proper prefixes, the test suite generated by the HSI
method is equals to THSI = {aaa, aba, abb, baa, bba, bbb},
and the number of resets is equals to |THSI | = 6.

2.2.3 SPY method
The SPY method [21] is a recent test generation method

for complete and partial FSMs able to generate m-complete
test suites and reduce test suite length by concatenating
sequences on-the-fly. First, all sequences of the state cover
set are concatenated to state identifiers. Later, differently
from the existing methods, the traversal set is distributed
over the test set obtained from the concatenation of the Q
set with the state identifiers based on sufficient conditions.
Thus, test tree branching can be avoided as much as possible
and the test suite length and the number of resets can be
reduced. Experimental results have indicated that the SPY
method can generate test suites on average 40% shorter, and
longer test cases compared to traditional methods, such as
W and HSI. Moreover, SPY method can achieve higher fault
detection effectiveness even if the number of extra states is
underestimated [8]. Assuming the FSM in Figure 1, no extra
states or proper prefixes, the test suite generated by the SPY
method is equals to TSPY = {aaaba, abbb, baa, bba}, and the
number of resets is equals to |TSPY | = 4.

2.3 Role Based Access Control
Access Control (AC) is one of the most frequently used

approaches to guarantee data confidentiality, integrity and
availability in information systems. AC mechanisms are
used to implement security policies for mediating the access
to resources and granting the use only for authorized per-
sonnel based on security models. In this context, the RBAC
model is considered one of the most important innovations
in security management [1]. Roles consist of organizational
figures (e.g. functions or jobs) assigned to responsibilities
(e.g. permissions) which intermediate the assignment and
revoking of permissions to users. Role hierarchies can be
defined to specify inheritance of permissions [19].

Masood et al. [14] define an RBAC policy as a 16-tuple
P = (U, R, Pr, UR, PR, ≤A, ≤I , I, Su, Du, Sr, Dr, SSoD,
DSoD, Ss, Ds), where:

• U and R are the finite sets of users and roles;

• Pr is the finite set of permissions;

• UR ⊆ U ×R is the set of user-role assignments;

• PR ⊆ Pr×R is the set of permission-role assignments;

• ≤A⊆ R × R and ≤I⊆ R × R are the activation and
inheritance role hierarchy relationships;

• I = {AS,DS,AC,DC,AP,DP} is the set of types of
requests: user-role assignment, deassignment, activa-
tion and deactivation, and permission-role activation
and deactivation, respectively;

• Su, Du : U → Z+ are static and dynamic cardinality
constraints on users;

• Sr, Dr : R → Z+ are static and dynamic cardinality
constraints on roles;

• SSoD,DSoD ⊆ 2R are the Static and Dynamic Sepa-
ration of Duty (SoD) sets, respectively;

• Ss : SSoD → Z+ specifies the cardinality of SSoD sets;

• Ds : DSoD → Z+ specifies the cardinality of DSoD
sets.

Moreover, two types of operators for RBAC mutation
analysis are proposed [14]: Mutation operators and Element
modification operators. Given a policy P, the mutation op-
erators generate a set of P ′ by replacing users, roles and
permissions from UR, PR, ≤A, and ≤I , and adding, remov-
ing and replacing users from SSoD and DSoD sets. The
element modification operators generate mutants by incre-
menting and decrementing cardinality constraints of user
(Su, Du,), role (Sr, Dr,), SSoD (Ss) and DSoD (Ds). All
the categories of RBAC faults have a correspondent type
of FSM fault [6] and a single RBAC fault can be exhibited
across many different transitions of an FSM [15]. Policy 1
presents an example of RBAC policy with two users (line
1), one role (line 2), and two permissions (line 3). User u1
is assigned to role r1 (line 4) and has access to permissions
pr1 and pr2 (line 5). Both users only can be assigned to at
most one role (line 6). Role r1 can be assigned to at most
two users (line 7), however it can be activated by only one
user per time (line 8).

Policy 1 Example of RBAC policy

1: U = {u1, u2}
2: R = {r1}
3: Pr = {pr1,pr2}
4: UR = { (u1,r1) }
5: PR = { (r1,pr1), (r1,pr2) }
6: Su(u1) = Su(u2) = Du(u1) = Du(u1) = 1
7: Sr(r1) = 2
8: Dr(r1) = 1

2.3.1 Modeling RBAC policies as FSM
An FSM specifying a policy P , named FSM(P), describes

all the access control decisions which an RBAC mechanism
should enforce given P . Essentially, an FSM(P) can be
described as a tuple < SP , s0, IP , O,D, δP , λP > such that
SP is the set of reachable states given P , s0 ∈ S is the
initial state where P currently stands given UR and PR,
IP is the input domain formed by all combinations of I,
U and R elements of P , O is the output domain formed
by the symbols granted and denied, D = SP × IP is the
specification domain, δ : D → SP is the state transition
function, and λ : D → O is the output function.

By analyzing the FSM(P) modeling approach, three in-
variants can be identified: (i) self-loop transitions return
denied and express that the information necessary for ac-
cess control decisions does not change; (ii) the diameter of
the FSM(P) model is equals to or less than 2 × |U | × |R|,
the number of requests necessary to assign and activate all
users to every role from the state where nobody is assigned
to any role; and (iii) this modelling approach has 3|U|×|R|

as upper bound limit of states and the number of reachable
states depends on P mutable elements.

Figure 3: FSM specifying access control decisions

The FSM(P) states are labeled using sequences of pairs of
bits, one for each user-role and permission-role combination.
A pair of user-role can become assigned (10), activated (11),
or not assigned (00), and a pair of permission-role can be-
come assigned (10), or not assigned (00). The pair 01 is not
used since user cannot activate roles they are not assigned.
Figure 3 depicts the FSM(P) correspondent to Policy 1. It
has eight states due to Dr(r1) = 1 which denies transitions
to 1111. Self-loop transitions and permission-role bits are
not shown to keep the figure uncluttered.

2.3.2 FSM-Based Testing of RBAC systems
After modelling an FSM(P), any FSM-based test method

can be used for RBAC testing. Figure 4 illustrates a part
of a test tree generated from four test cases applied to the
FSM(P) in Figure 3 with states and transitions labelled.

Figure 4: Test tree of an FSM(P) and four test cases

It is important to highlight that the RBAC mutation anal-
ysis is performed under the RBAC fault domain instead of
mutating the FSM(P) model. For example, an FSM(P)
generated from a mutant of the Policy 1 where Dr(r1) = 1
is incremented to Dr(r1) = 2 has the state 1111 as reach-
able. Thus, since the test sequence t3 presented in Figure 4
covers the transition (1110, AC(u2, r1)), it is able to kill a
RBAC mutant where Dr(r1) = 2. Besides, testing RBAC
policies with many users and roles can become very costly
due to the upper bound limit, hence, test suites also tend to
become large [14].

3. EXPERIMENTAL STUDY
Previous investigation on test suites generated by FSM

testing methods on RBAC domain [14] pointed out that,
although complete FSMs specifying RBAC policies can gen-
erate tests with 100% of effectiveness, they tend to be very
large. Later, Endo and Simao [8] investigated different FSM-
based testing methods using random FSMs and detected
that recent methods can outperform traditional ones by re-
ducing the overall test cost. In this sense, since the sim-
ilarity between random FSM and these used in practice,
such as FSM(P), is unclear [8], the outcomes obtained us-
ing random FSM are not necessarily generalizable to RBAC
domain. Thus, we designed an experimental framework to
compare the characteristics and effectiveness of test suites
generated by FSM-based testing methods on RBAC.

Two traditional (W, and HSI) and one recent (SPY) FSM
testing methods were applied on the FSM(P) models. As
test characteristics, we considered test suite length, number
of resets, and average test case length and as effectiveness,
we considered the fault detection capability on the RBAC
fault model [14]. Thus, instead of mutating FSM models, the
RBAC policies were mutated. This experiment was designed
to reanalyze Endo and Simao’s outcomes [8] on RBAC do-
main using Masood et al. [14] modelling approach. The
seven steps constituting the proposed framework are pre-
sented in Figure 5.

In the first (1) step, scientific papers discussing RBAC
testing were systematically searched and analyzed to ex-
tract policies to be used as system under test (SUT). In the
second (2) and third (3) steps, two modules, rbac2fsm and

Figure 5: Schematic overview of the experiment

rbacMutation, were designed and developed to automate the
conversion of RBAC policies to FSM models and the RBAC
mutation analysis process, respectively. Afterwards, these
modules were merged into one software named RBAC-Based
Testing (RBAC-BT). RBAC-BT is a java open-source tool
developed to support the execution of this experiment. In
the fourth (4) and fifth (5) steps, the RBAC-BT tool was
used to generate RBAC mutants and FSM models from the
policies used as SUT, respectively. In the sixth (6) step,
three FSM testing methods (W, HSI and SPY) were exe-
cuted to generate test suites from each FSM(P). The same
set of tools used by Endo and Simao [8] for test genera-
tion were adopted. A time limit of 24h for processing each
FSM(P) was defined and any processes with duration above
this limit would be canceled and the state explosion problem
would be assumed. In the last seventh (7) step, the charac-
teristics and effectiveness of the test suites were evaluated
using the RBAC-BT tool. In case of state explosion during
the fifth step, we decided that constraints would be included
in order to reduce the number of reachable states. All the
artifacts used in this experiment are available on-line1.

4. ANALYSIS OF RESULTS
In this section we present the results of our experiment.

The computational environment used in this experiment was
an Intel Core i7-4770 CPU 3.40GHz, 8 Gb RAM, 1Tb of
hard disk running Ubuntu 14.04 LTS 64 bits.

Five policies were obtained from studies discussing RBAC
testing and used in this experiment. We generated mu-
tants from each policy and attempted to convert them to
FSMs using the RBAC-BT tool. However, due to the state
explosion problem, we only generated FSMs from 01 Ma-
sood2010Example1 and 02 SeniorTraineeDoctor. Three poli-
cies spent more than 24h being converted and, in order
to reduce the number of reachable states and make feasi-
ble the FSM(P) generation, we redesigned them with con-
straints. Essentially, these policies were adapted with car-
dinality constraints, SoD sets and by removing users and
roles. We named these policies as 03 ExperiencePointsv2,
04 users11roles2v2, and 05 Masood2009P2v2. A summary
of the policies is shown in Table 1. The occurrence of con-
straints (e.g. Su, Du) is depicted with an • symbol.

1https://github.com/damascenodiego/rbac-bt/

Table 1: Summary of the characteristics of the RBAC policies used in this experiment

Policy |U| |R| |IP | log10(3|U|×|R|) ≤A ≤I Su Du Sr Dr SSoD DSoD
01 Masood2010Example1 2 1 8 0.9542 • • • •
02 SeniorTraineeDoctor 2 2 16 1.9084 • • • • •
03 ExperiencePoints 3 4 48 3.2375 • •
03 ExperiencePointsv2 2 4 32 2.7092 • • •
04 users11roles2v2 11 2 88 10.4966 • • •
04 users11roles2 11 3 132 15.745
05 Masood2009P2 2 6 48 5.7254 • • • •
05 Masood2009P2v2 2 5 40 3 • • • • •

After refinement, we converted the adapted versions of the
RBAC policies to FSM models. The characteristics of the
FSMs generated from all five policies and the total number
of mutants are shown in Table 2.

Table 2: FSMs and mutants generated from policies

Alias Policy name States Transitions Mutants
P01 01 Masood2010Example1 8 64 9
P02 02 SeniorTraineeDoctor 21 336 17
P03 03 ExperiencePointsv2 203 6496 11
P04 04 users11roles2v2 485 42680 28
P05 05 Masood2009P2v2 857 34280 48

The number of states and transitions of the generated
FSM models ranged from 8 to 857 and from 64 to 42680,
respectively, and the number of mutants generated ranged
from 9 to 48. The number of outputs was omitted since this
modeling approach assumes only two outputs (granted or
denied). The upper limit of the number of states is shown
in logarithmic scale. Although P04 presented the highest
upper limit, cardinality constraints were defined to all 11
users and 2 roles limiting the number of assignments to one
and, consequently, the total number of reachable states.

The methods W, HSI and SPY were applied using the
same artifacts of Endo and Simao [8] to generate test suites
for each FSM(P) and assuming no extra states. The dura-
tion of the test generation ranged from 5 milliseconds (P01)
to 21 hours (P05). The whole test generation process took
around 15 hours for all three methods applied on the five
policies. Table 3 shows the duration of the test generation
process in milliseconds (ms).

Table 3: Test generation - duration

Alias W (ms) HSI (ms) SPY (ms)
P01 137 187 5
P02 306 54 116
P03 260700 193397 207771
P04 37841706 7116335 9306981
P05 18110699 76918751 78933280

After test generation, we used the RBAC-BT tool to mea-
sure test suites length, numbers of resets, and average test
case lengths. The Pearson Correlation Coefficient (PCC),
Spearman Correlation Coefficient (SCC) and Kendall Corre-
lation Coefficient (KCC) were calculated between the afore-
mentioned characteristic and the numbers of states and in-
puts of the FSMs using the R statistical software 2.

2https://www.r-project.org/

4.1 Test Suite Length
Table 4 shows the correlation between the test suite length

(TS) and the number of states and inputs. On average,
there is a very strong positive correlation between test suite
length and both numbers of inputs and states. Although
we reduced the number of reachable states using cardinal-
ity constraints and SoD sets, such as in P04, the test suite
length was still influenced by the numbers of states and in-
puts of FSM(P) which are proportional to the number of
users and roles.

Table 4: Correlation between TS, inputs and states

Correlation Inputs / TS Correlation States / TS
Method PCC SCC KCC PCC SCC KCC

W 0.950 1 1 0.717 0.9 0.8
HSI 0.958 1 1 0.682 0.9 0.8
SPY 0.906 1 1 0.823 0.9 0.8

In Table 5, the number of resets for each method and
policy are presented in tabular format and, in Figure 6, in
graphical format on logarithm scale.

Figure 6: Test Suite Length for each policy

Table 5: Test Suite Length, number of states and inputs

Alias States Inputs W - TS HSI - TS SPY - TS
P01 8 8 1240 753 542
P02 21 16 14704 8238 5841
P03 203 32 776074 333550 213799
P04 485 88 13125662 6085633 2392981
P05 857 40 7086325 2970528 1735818
TS: Test Suite Length

On average, test suites generated by the SPY method had
46% of the total length of test suites generated by W and HSI
methods. In special, the SPY test suite generated for P04
was 39% and 18% shorter than the test suites generated by
W and HSI, respectively. Thus, SPY generated the shortest
test suites in all cases and the following order was observed
SPYTS < HSITS < WTS , as presented in [8]. Moreover, a
nonlinear behavior was also identified when test suite length
was analysed as a function of the number of states, specially
in P04, reason why the correlation values between test suite
length and number of states were lower.

4.2 Number of Resets
Table 6 shows the correlation between the Number of Re-

sets (NR), the number of states, and the number of inputs.
On average, there was a very high positive correlation be-
tween the number of resets and both numbers of inputs and
states. The methods W and HSI presented a stronger cor-
relation between the number of resets and inputs. The non-
linearity detected on P04 persisted only for W and HSI test
methods. There was a very strong correlation between states
and resets for the SPY method. Thus, the number of resets
of SPY test suites tend to increase as long as the number of
states increases. Although, as shown in Table 7 and Figure
7, the number of resets of SPY test suites increased in a
lower rate, compared to W and HSI.

Table 6: Correlation between NR, inputs and states

Correlation Inputs / NR Correlation States / NR
Method PCC SCC KCC PCC SCC KCC

W 0.971 1 1 0.595 0.9 0.8
HSI 0.972 1 1 0.580 0.9 0.8
SPY 0.765 0.9 0.8 0.955 1 1

Table 7 and Figure 7 show the number of resets of each test
suites generated for the five policies in tabular and graphi-
cal format using logarithmic scale. On average, SPY method
generated test suites with a number of resets 42% lower than
HSI and 22% lower than W. These outcomes corroborate
previous results where SPY test suites presented a number
of resets approximately 40% lower than HSI method [21].
Since SPY focuses on reducing the branches of the testing
trees, a decrement of resets can be expected. Our exper-
iment shows that this behavior still occur on the RBAC
domain with greater chances when the number of reachable
states increases.

In P04, the methods W and HSI generated test suites with
the highest number of resets. However, the number of resets
of SPY test suites decreased to 13% and 6% compared to
these same methods. The SPY method enabled to reduce
test tree branching significantly, specially in the P04 sce-
nario. A reason for that can be the disparity of self-loops in
the FSM(P04) of since it has many cardinality constraints

Table 7: Number of Resets, states and inputs

Alias States Inputs W - NR HSI - NR SPY - NR
P01 8 8 285 176 93
P02 21 16 2528 1408 751
P03 203 32 119586 51451 24001
P04 485 88 2236388 993492 138766
P05 857 40 835600 353836 159463
NR: Number of Resets

limiting user and role assignments and, consequently, the
number of reachable states. These outcomes corroborate
previous investigations where SPY generated test suites with
lower number of resets when compared to W and HSI. Thus,
the order SPYNR < HSINR < WNR detected by Endo and
Simao’s [8] is still valid.

Figure 7: Number of Resets for each policy

4.3 Average Test Case Length
Table 8 shows the correlation between the average test

case length (L) and the numbers of states and inputs. There
was a moderate to very strong positive correlation between
average test case length and the number of states while the
correlation between average test case length and number of
inputs was weak to very strong. SPY test suites presented a
very strong correlation between inputs and average test case
length (over 0.99) and a strong correlation to the number of
states. The methods W and HSI presented weak to moder-
ate correlation between average test case length and number
of inputs due its the low variation of the average test case
length.

This behavior can be seen in Table 9 and Figure 8 where
average test case length is shown in tabular and graphical
format. The average length did not increase significantly
for W and HSI along the five test scenarios, while the av-
erage length of SPY test cases presented higher variation.

Table 8: Correlation between L and number of inputs and
states

Correlation Inputs / L Correlation States / L
Method PCC SCC KCC PCC SCC KCC

W 0.267 0.7 0.6 0.850 0.9 0.8
HSI 0.348 0.7 0.6 0.866 0.9 0.8
SPY 0.994 1 1 0.598 0.9 0.8

These outcomes contradict previous investigations where a
negative correlation was found between the average test case
length and the number of inputs [8]. Due to the FSM(P)
invariant (ii), a positive correlation between the test case
length the number of inputs was expected.

Table 9: Average test case length, number of states and
inputs

Alias States Inputs W - L HSI - L SPY - L
P01 8 8 3.350 3.278 4.827
P02 21 16 4.816 4.850 6.777
P03 203 32 5.489 5.482 7.907
P04 485 88 4.869 5.125 16.24
P05 857 40 7.480 7.395 9.885
L: Average Test Case Length

Figure 8: Avg. Test Case Length for each policy

The maximum test case length analysis also did not show
high variation. Table 10 shows that the maximum test
case length of W and HSI methods were similar. On the
other hand, the SPY method presented a maximum test
case length 14 times greater than W and HSI, on average.
In the P04 scenario, SPY test cases were 44 times longer
than the ones generated by the traditional methods. More-
over, although the SPY method generated longer test cases,

the SPY test suites presented an overall length lower than
the other two methods. These test characteristics can be
useful on VV&T processes and support test planning since
the overall test suite length also describes the total cost of
a test suite. In this sense, the order WL < HSIL < SPYL

detected by Endo and Simao’s [8] study also remains valid.

Table 10: Maximum test case length, number of states and
inputs

Alias States Inputs
W

max(L)
HSI

max(L)
SPY

max(L)
P01 8 8 4 4 14
P02 21 16 8 8 32
P03 203 32 7 7 98
P04 485 88 6 6 261
P05 857 40 12 12 106
max(L): Maximum Test Case Length

4.4 Test Effectiveness
Given each test suite T generated by the W, HSI and

SPY methods to the five policies, the test effectiveness was
measured using the mutation score on the RBAC fault do-
main. All the element modification and mutation operators
were used in this experiment. However, the operators re-
lated to role hierarchies did not generate any mutant since
the policies considered did not present this feature. Table 11
shows the number of generated and non-equivalent mutants
for each policy.

Table 11: Policies and Mutants

Alias Mutants Non-Equivalent
P01 9 7
P02 17 9
P03 11 8
P04 28 26
P05 48 44

The test suite generated by the W, HSI and SPY testing
methods were applied on each of the RBAC policies and the
number of killed mutants was measured using the RBAC-BT
tool. At the end, 100% of effectiveness was obtained in all
test scenarios, corroborating Masood et al. [14] results and
the assertion that as long as all transitions and states are
covered, the fault detection effectiveness for RBAC faults
will remain the same. In this sense, any of the testing meth-
ods can be used for testing RBAC policies and guarantee
complete fault detection on the RBAC fault domain. Al-
though, there is still an overall cost assigned to test execu-
tion which, as seen in previous sections, can be reduced by
adopting recent testing methods, such as SPY, instead of
the traditional ones.

5. DISCUSSION
In this experiment, we have found evidences which corrob-

orated Endo and Simao’s results [8], but some divergences
were also detected. The SPY testing method enabled signif-
icant reduction on the overall cost of the test suites. On av-
erage, the SPY method reduced the test suite length to 61%
compared to HSI, and 30% compared to W. The number of

test cases (NR) generated by the method SPY also repre-
sented 42% and 22% of the total number of test cases gen-
erated by W and HSI, respectively. The length of SPY test
cases also increased 77% compared to traditional methods.
The maximum test case length of the traditional methods
did not vary along the test scenarios but, on the other hand,
SPY test cases presented a maximum length 14% greater. In
one case (P04), the maximum length of the SPY test cases
increased 43%.

Only positive correlations were detected between test char-
acteristics and the numbers of states and inputs, contradict-
ing Endo and Simao’s results [8] which showed that FSMs
with more inputs tend to generate test cases with lower av-
erage length. Since FSM(P) models have both numbers
of states and inputs directly proportional to |U | × |R|, test
dimension will always tend to increase as long as the total
number of user-role combinations increase, even if policies
with many constraints are taken as SUT. The effectiveness
of the test suites also corroborated Masood et al. [14] that
found 100% of effectiveness and no different effectiveness
was detected for any testing method. As conclusion, we
have found that the SPY method can still generate 100% ef-
fective and shorter test suites, composed by longer and less
test cases on the RBAC domain. Thus, SPY can signifi-
cantly improve access control testing processes by reducing
test costs and maintaining the same effectiveness.

6. THREATS TO VALIDITY
In this section, the observed threats to validity and limi-

tations related to the process used in this research are pre-
sented.

External Validity: It concerns with the generalization
of the outcomes to other scenarios. The representativeness
of the policies may be an issue; nevertheless, the selection
and modification of the policies was performed taking into
consideration the inclusion all kinds of RBAC elements, as
shown in Table 1. The RBAC elements related with hier-
archical relationships were the only characteristics we did
not consider in this study as no policy with this sort of
constraint was found. Test characteristics may change on
different policies, specially policies with greater number of
users and roles. Policies with high number of user-role com-
binations can be still used at the cost of state explosion, but
we believe they are more suitable for non-functional testing
(e.g. scalability or performance), which was not the focus of
this investigation.

Conclusion Validity: This category of threats to valid-
ity relates with the ability to draw correct conclusions about
the relation between the treatment (e.g. test generation,
policies under test) and the outcomes (e.g. test effectiveness
and test characteristics). Test length and number of resets
may increase on real world policies where more users, roles,
and permissions are included. Although, the effectiveness
may not change as long as transition and state coverage is
guaranteed [14]. The whole test analysis was automatically
performed using bash scripts and the RBAC-BT tool in or-
der to mitigate mistakes during test execution, test coverage
and characteristics analysis.

Internal Validity: Threats to internal validity are re-
lated with influences that can affect independent variables
with respect to causality. The RBAC-BT tool was designed
using the ANSI RBAC standard [3], conceptual models and
a taxonomy proposed to this domain [4]. The rbac2fsm mod-

ule was also verified and validated by using toy examples
and tested considering early known properties such as every
FSM transition with denied transitions must be a self-loop.
The source code is also available to further assessments.

Construct Validity: Construct validity concerns with
generalizing outcomes to the concept or theory behind the
experiment. This experiment measured the test effective-
ness using RBAC mutation analysis. Mutation analysis is a
common assessment approach on software testing investiga-
tions [13], thus it can be used to emulate functional faults
which may emerge during the design and development of
RBAC mechanisms.

7. RELATED WORK
Previous experimental investigations applying FSM-based

testing methods on RBAC have shown that complete FSMs
specifying RBAC policies can be used to generate complete
test suites [14]. However, the test suites generated from
these FSMs tend to be very large. Alternatively, a set of
test heuristics for reducing FSM models and a Constrained
Random Test Selection (CRTS) approach were proposed in
order to reduce the size of test suites. Despite degradat-
ing the test suite effectiveness when applied individually,
the combination of the test suites generated by each pro-
posed technique can still provide complete fault detection on
RBAC fault domain. Due to the nature of the RBAC fault
model, which tend to exhibit a single RBAC fault across
many different transitions of an FSM, a probabilistic for-
mal model was proposed for evaluating the fault coverage of
heuristics and random approaches, such as CRTS [15]. Sim-
ilar approaches were also proposed for testing a variation of
the RBAC model which supports temporal constraints, the
Temporal RBAC [16].

At the same time, there is a recurrent interest in com-
paring previously proposed FSM testing methods with new
techniques. The paper introducing the SPY method com-
pared SPY test suites to the HSI methods using randomly
designed minimal FSMs with different configurations [21]. In
Simao et al. [20], structural coverage criteria, such as state
and transition coverage, were used to empirically compare
random test generation methods in FSM testing domain.
Dorofeeva et al. [7] compared the methods W, Wp, UIO,
UIOv, DS, HSI, and H measuring their complexity, appli-
cability, completeness, fault detection capability, test length
and derivation time and, besides using random FSMs, it also
included two specifications of realistic protocols as SUT. In
Endo and Simao [8] the number of resets, the overall length
of test suites and the average length of test cases generated
by the W, HSI, H, SPY, and P methods were compared
using 5200 random FSM models of different configurations.
Despite the wide range of methods and the variety of FSMs,
the presented studies essentially used random FSM mod-
els as SUT and, since the resemblance between random and
real world models is not clear, their conclusions cannot be
extended to specific domains, such as RBAC.

8. CONCLUSION AND FUTURE WORK
In this paper, we presented an experimental framework to

investigate FSM-based test generation methods on RBAC.
Two traditional (W and HSI) and one recent (SPY) FSM-
based testing methods were applied on FSM models speci-
fying RBAC policies and the obtained test suites were com-

pared. The generated test suites were evaluated based on
the characteristics (number of resets, test case length, and
test suite length) and the effectiveness of the test suites using
the RBAC fault model.

The main contributions of this study are then twofold:
the reanalysis of two investigations [8] [14] by replicating an
experiment involving the evaluation of different FSM-based
testing methods on RBAC domain, and the experimental
protocol which can be used for replicating this study and
investigating further stages of RBAC testing process, such
as test prioritization and test selection [17].

Our results pointed out that the SPY method can reduce
the total cost of test execution to approximately 32% and
46% regarding the number of resets and test suite overall
length, respectively. Average test case length can be in-
creased by 78% and positive correlations were found between
all test and FSM characteristics. Our results also showed
that when the number of users and roles, and consequently
of inputs and states of the FSM models, increase, longer
test cases tend to be generated, no matter what methods
are used, contradicting some of Endo and Simao’s results
[8]. Additionally, the SPY method was able to significantly
decreased the overall test suite length and number of re-
sets without impacts on the effectiveness. As future work,
we plan to replicate this study with more RBAC policies,
extending the RBAC-BT tool with hierarchical RBAC sup-
port, and investigating novel test criteria for test selection
and prioritization on the RBAC domain.

9. ACKNOWLEDGMENTS
Carlos Diego Nascimento Damasceno’s research is sup-

ported by the National Council for Scientific and Technolog-
ical Development (CNPq), process number 132249/2014-6.

10. REFERENCES
[1] R. Anderson. Security Engineering: A Guide to

Building Dependable Distributed Systems. Wiley, 2008.

[2] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S.
Namin. Using mutation analysis for assessing and
comparing testing coverage criteria. IEEE
Transactions on Software Engineering, 32(8):608–624,
Aug 2006.

[3] ANSI. Role based access control, 2004. ANSI/INCITS
359-2004.

[4] A. Ben Fadhel, D. Bianculli, and L. Briand. A
comprehensive modeling framework for role-based
access control policies. J. Syst. Softw.,
107(C):110–126, Sept. 2015.

[5] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and
A. Pretschner. Model-Based Testing of Reactive
Systems: Advanced Lectures (Lecture Notes in
Computer Science). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

[6] T. S. Chow. Testing software design modeled by
finite-state machines. IEEE Transactions on Software
Engineering, 4(3):178–187, May 1978.

[7] R. Dorofeeva, K. El-Fakih, S. Maag, A. R. Cavalli,
and N. Yevtushenko. Fsm-based conformance testing
methods: A survey annotated with experimental
evaluation. Information and Software Technology,
52(12):1286 – 1297, 2010.

[8] A. T. Endo and A. Simao. Evaluating test suite
characteristics, cost, and effectiveness of fsm-based
testing methods. Information and Software
Technology, 55(6):1045 – 1062, 2013.

[9] S. C. P. F. Fabbri, M. E. Delamaro, J. C. Maldonado,
and P. C. Masiero. Mutation analysis testing for finite
state machines. In Software Reliability Engineering,
1994. Proceedings., 5th International Symposium on,
pages 220–229, Nov 1994.

[10] D. F. Ferraiolo, R. D. Kuhn, and R. Chandramouli.
Role-Based Access Control, Second Edition. Artech
House, Inc., Norwood, MA, USA, 2007.

[11] A. Gill. Introduction to the Theory of Finite State
Machines. McGraw-Hill, New York, 1962.

[12] J. Jang-Jaccard and S. Nepal. A survey of emerging
threats in cybersecurity. Journal of Computer and
System Sciences, 80(5):973 – 993, 2014. Special Issue
on Dependable and Secure Computing The 9th IEEE
International Conference on Dependable, Autonomic
and Secure Computing.

[13] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. Software
Engineering, IEEE Transactions on, 37(5):649–678,
Sept 2011.

[14] A. Masood, R. Bhatti, A. Ghafoor, and A. P. Mathur.
Scalable and effective test generation for role-based
access control systems. IEEE Transactions on
Software Engineering, 35(5):654–668, Sept. 2009.

[15] A. Masood, A. Ghafoor, and A. P. Mathur. Fault
coverage of constrained random test selection for
access control: A formal analysis. J. Syst. Softw.,
83(12):2607–2617, Dec. 2010.

[16] M. Masood, A. Ghafoor, and A. Mathur. Conformance
testing of temporal role-based access control systems.
IEEE Transactions on Dependable and Secure
Computing, 7(2):144–158, April 2010.

[17] T. Mouelhi, D. E. Kateb, and Y. L. Traon. Chapter
five - inroads in testing access control. In A. Memon,
editor, Advances in Computers 99, volume 99 of
Advances in Computers, pages 195 – 222. Elsevier,
2015.

[18] A. Petrenko and G. V. Bochmann. Selecting test
sequences for partially-specified nondeterministic finite
state machines. In G. Luo, editor, 7th IFIP WG 6.1
International Workshop on Protocol Test Systems,
IWPTS ’94, pages 95–110, London, UK, UK, 1995.
Chapman & Hall, Ltd.

[19] P. Samarati and S. Vimercati. Access control: Policies,
models, and mechanisms. In R. Focardi and
R. Gorrieri, editors, Foundations of Security Analysis
and Design, volume 2171 of Lecture Notes in
Computer Science, pages 137–196. Springer Berlin
Heidelberg, 2001.

[20] A. Simao, A. Petrenko, and J. Maldonado. Comparing
finite state machine test. Software, IET, 3(2):91–105,
April 2009.

[21] A. Simão, A. Petrenko, and N. Yevtushenko.
Generating reduced tests for fsms with extra states. In
M. Nunez, P. Baker, and M. Merayo, editors, Testing
of Software and Communication Systems, volume 5826
of Lecture Notes in Computer Science, pages 129–145.
Springer Berlin Heidelberg, 2009.

