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a b s t r a c t

We propose here both F-test and z-test (or t-test) for testing global significance and
individual effect of each single predictor respectively in high dimension regression model
when the explanatory variables follow a latent factor structure (Wang, 2012). Under the
null hypothesis, together with fairly mild conditions on the explanatory variables and
latent factors, we show that the proposed F-test and t-test are asymptotically distributed
as weighted chi-square and standard normal distribution respectively. That leads to quite
different test statistics and inference procedures, as comparedwith that of Zhong and Chen
(2011) when the explanatory variables are weakly dependent. Moreover, based on the
p-value of each predictor, the method of Storey et al. (2004) can be used to implement
the multiple testing procedure, and we can achieve consistent model selection as long as
we can select the threshold value appropriately. All the results are further supported by
extensive Monte Carlo simulation studies. The practical utility of the two proposed tests
are illustrated via a real data example for index funds tracking in China stock market.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Traditional F-test and z-test (or t-test) are commonly used to detect the relationship between a response variable Yi ∈ R1

and a set of explanatory variables Xi ∈ Rp in a linear regression model when the number of explanatory variables p is fixed.
By contrast, when p is diverging and much larger than the sample size n, classical statistical inferences (F test and z-test)
were not applicable since the resulting ordinary least square (OLS) estimator is no longer computable. To fix the issue, there
is a large stream of papers intending to extend the traditional F-test and z-test (or t-test) to accommodate high dimensional
settings; see, for example, [22,9,21,12].

The aforementioned testing procedures are quite useful for high dimensional data analyses. However, their applicability
is heavily relying on one critical assumption, i.e., the explanatory variables are weakly dependent such that tr(Σ4) =

o{tr2(Σ2)}, where Σ = cov(Xi) ∈ Rp×p. For more detailed illustrations for such assumption, we refer to [22,23]. It is
remarkable that such assumption is violated if the explanatory variables Xi admit a latent factor structure, which is usually
encountered in real practice [6,19]. Specifically, we consider the following data generation process Xi = γ Zi + Xi, where
each element of the common factors Zi ∈ Rd and random errors Xi are all independently generated from a standard
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normal distribution, with d > 0 is the finite number of common factors. Moreover, the factor loadings γ ∈ Rp×d satisfy
p−1γ ⊤γ → Id, where Id represents the identity matrix of dimension d. In this setting, one can verify that tr(Σ4) =

tr(γ γ ⊤)4{1+ o(1)} = tr(γ ⊤γ )4{1+ o(1)} = p4tr(Id){1+ o(1)} = dp4{1+ o(1)}, and tr(Σ2) = dp2{1+ o(1)}. As a result,
we can have tr(Σ4)/tr2(Σ2) → 1/d ≠ 0, which violates condition (2.8) of [22], and condition (C1) of [12]. Consequently,
how to construct testing procedures for this special types of explanatory variables is a problem of theoretical demand.

It is also noteworthy that the above testing problems are also empirically motivated. For example, consider the problem
of index fund tracking of reproducing the performance of a stock market index. In this particular application, the response
of interest is the return on some specific market index, say Shanghai composite index in China stock market, while the
explanatory variables can be the return of all the stocks in China stock market. Therefore, the number of explanatory
variables may be very large compared with the number of observations; see Section 3.2 of real data analysis for details.
For these types of explanatory variables, we cannot expect that the returns across different stocks are weakly dependent.
In fact, it has long been recognized empirically and theoretically that there should exist some latent common factors that
influence all stock returns [16,4,7,5]. To this end, it is quite natural and reasonable to assume that the explanatory variables
Xi follow a latent factor structure so that the condition tr(Σ4) = o{tr2(Σ2)} is violated.

Motivated by the theoretical and practical demand, we intend to construct some testing procedures for the regression
coefficients when the explanatory variables admit a latent factor structure [19]. We develop both F-test and z-test (or t-
test) for testing global significance and effect of each single predictor respectively in high dimension regression model.
Specifically, we revisit the test statistic of [12] used for testing global significance of regression coefficients for weakly
dependent explanatory variables, and show that the resulting test statistic is asymptotic weighted chi-square when the
explanatory variables follow an approximate factor model under some mild conditions. That leads to quite different
test statistics and inference procedures, as compared with that of [22,12], when the explanatory variables are weakly
dependent. In addition, after controlling for the latent common effect of the explanatory variables, the remaining factor
profiled predictors are weakly dependent [19]. As a consequence, the univariate regression [7] can be used to assess the
significance of each variable. Based on the p-value of each predictor, we can then apply the method of [17] to control
the false discovery rate (FDR), and the method can achieve consistent model selection as long as we can set the nominal
level appropriately. Extensive simulation results and an empirical example on index fund tracking in China stock market
confirmed the usefulness of the proposed method.

The remainder of the paper is organized as follows. Section 2 introduces global significance testing, and individual effect
testing with FDR control together with their theoretical properties. Numerical studies, including simulation and a real data
analysis, are reported in Section 3. Section 4 concludes the article with a short discussion and all the technical details are
provided in the Appendix.

2. The methodology

2.1. Model and notations

Let (Yi, Xi) be the observation collected at ith unit for 1 ≤ i ≤ n, where Yi ∈ R1 is the response value, Xi =

(Xi1, . . . , Xip)
⊤

∈ Rp be the p-dimensional explanatory variables with mean 0 and covariance matrix Σ = (σj1j2) ∈ Rp×p.
Unless explicitly stated otherwise, we hereafter assume that p ≫ n and n tends to infinity for asymptotic behavior. In
addition, we assume that all the explanatory variables have been appropriately standardized such that E(Xij) = 0, and
σjj = 1 for every 1 ≤ j ≤ p. To establish the relationship between Yi and Xi, we consider the following linear regression
model,

Yi = X⊤

i β + εi, (2.1)

where β = (β1, . . . , βp)
⊤

∈ Rp is an unknown vector of regression coefficients, εi is the random noise that is independent
of Xi, distributed with mean 0 and finite variance σ 2 < ∞. For notation convenience, define Y = (Y1, . . . , Yn)

⊤
∈ Rn be a

vector of response variable, X = (X1, . . . , Xn)
⊤

∈ Rn×p be the design matrix with the jth column Xj = (X1j, . . . , Xnj)
⊤

∈ Rn,
and ε = (ε1, . . . , εn)

⊤
∈ Rn.

Since the traditional F-test and z-test (or t-test) are no longer applicable when p is diverging and much larger than the
sample sizen, there is a large streamof papers intending to extend the traditional F-test and z-test (or t-test) to accommodate
high dimensional settings; see, for example, [22,9,21,12]. For the statistical validity of the aforementioned tests, appropriate
technical conditions have to be assumed. Among all the conditions, Zhang and Zhang [21] and Lan et al. [12] require that

λmax(Σ) < ∞, (2.2)

where λmax(A) represents for the largest eigenvalues of any arbitrary matrix A. In contrast, Zhong and Chen [22] replaced
condition (2.2) by

tr(Σ4) = o

tr2(Σ2)


. (2.3)

We find that both (2.2) and (2.3) are sensible if Σ is not highly singular, this should happen if the predictors are weakly
correlated. Unfortunately, conditions (2.2) and (2.3) are violated if the explanatory variables Xi are highly correlated that
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