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Estimation of the intrinsic dimensionality of fMRI data is an important part of data analysis that helps to
separate the signal of interest from noise. We have studied multiple methods of dimensionality estimation
proposed in the literature and used these estimates to select a subset of principal components that was
subsequently processed by linear discriminant analysis (LDA). Using simulated multivariate Gaussian data,
we show that the dimensionality that optimizes signal detection (in terms of the receiver operating
characteristic (ROC) metric) goes through a transition from many dimensions to a single dimension as a
function of the signal-to-noise ratio. This transition happens when the loci of activation are organized into a
spatial network and the variance of the networked, task-related signals is high enough for the signal to be
easily detected in the data. We show that reproducibility of activation maps is a metric that captures this
switch in intrinsic dimensionality. Except for reproducibility, all of the methods of dimensionality estimation
we considered failed to capture this transition: optimization of Bayesian evidence, minimum description
length, supervised and unsupervised LDA prediction, and Stein's unbiased risk estimator. This failure results in
sub-optimal ROC performance of LDA in the presence of a spatially distributed network, and may have caused
LDA to underperform in many of the reported comparisons in the literature. Using real fMRI data sets,
including multi-subject group andwithin-subject longitudinal analysis we demonstrate the existence of these
dimensionality transitions in real data.

© 2010 Elsevier Inc. All rights reserved.

Introduction

Typical fMRI data sets consist of a relatively small number of
temporally correlated observations recorded for a large number of
spatial locations (voxels). When trying to create activation maps with
multivariate analysis and treating each fMRI volume as a vector, one is
faced with an ill-posed problem, because the number of variables
(voxels) greatly exceeds the number of observations (fMRI volumes). In
addition, not all dimensions of the vector space are useful, as many are
dominated by noise. A well-known strategy to reduce the dimension-
ality and noise prior to analysis is to discard a subset of the components
in a principal component analysis (PCA) (Friston et al., 1995a; Strother
et al., 1997; Tegeler et al., 1999;Hansen et al., 1999; Laconte et al., 2003).
This requires estimation of the dimensionality of the signal-carrying

subspace, a task for which many solutions have been proposed in the
literature.

Intrinsic PC dimensionality of the data is defined as the number of
principal components (PCs) that contain signal and should be
retained for further analysis. Some early methods (or, more
accurately, rules-of-thumb) of intrinsic dimensionality estimation
are described in Mardia et al. (1979). For example, one can retain the
PCs that, taken together, explain 90% of the variance in the data; or
one can look for the “knee” in a “scree plot” (the point at which the
eigenvalue spectrum of the covariance matrix flattens out, which in a
white-noise model indicates noise-dominated components). Both of
these methods are subjective, because the threshold of 90% is an
arbitrary choice, and the scree-plot method involves visual inspection.

Beckmann and Smith (2004) discuss (alongside other methods of
dimensionality estimation) a more-sophisticated technique based on
scree plots, which works as follows. When the data are Gaussian-
distributed, the estimated covariancematrix has aWishart distribution,
and one can calculate the expected distribution matrix's eigenvalues
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analytically. PCs corresponding to eigenvalues that are not significantly
different from the expected eigenvalues of a Wishart matrix are
discarded. However, this method assumes a well-posed problem (the
number of samples should be at least equal to the number of voxels)
making it impractical for fMRIdata analysiswithout voxel-based feature
selection. Peres-Neto et al. (2005) gives a review of several other
methods of dimensionality estimation that work for well-posed
problems, and compared their performance when the data are not
Gaussian-distributed. The best-performing methods were based on
permutation tests, where independent observations were randomly
shuffled 999 times.

Several techniques for estimating the number of signal-carrying PCs
have been developed specifically for ill-posed problems. Thesemethods
can be classified into two categories: analytic and empirical. Analytic
methods are based on information-theoretic criteria to estimate the
optimal number of principal components. We have studied several
analytic methods, such as minimal description length (Calhoun et al.,
2001; Li et al., 2007), Stein's unbiased risk estimator (Ulfarsson and Solo,
2008), and Laplace approximation to Bayesian evidence (Minka, 2000),
and examined their utility in situations usual to fMRI research, where
sample size is small and signal-to-noise ratio is low.

Empirical methods of dimensionality estimation select the number
of principal components to optimize some metric of performance
calculated with resampling techniques; therefore, these methods are
typically more computationally expensive than analytic methods. Early
examples of empirical dimensionality estimation are Wold (1978) and
Eastment andKrzanowski (1982); see alsoKrzanowski andKline (1995).
They proposed amethodwhen thematrix is approximatedwith a subset
of principal components, and dimensionality is estimated by the number
of principal components that results in approximation with an optimal
predicted residual sum of squares (PRESS) statistic. Each element of the
matrix is compared with its corresponding element in a PC approxima-
tion. However, we need to make sure that the information about the
elementwas not used in the approximationof this element (i.e. to ensure
the independence of training and test data). For this purpose, the PC
approximation of an element is computed on a matrix from which the
row and the column containing this element have been removed. This
leads to a rather cumbersome and very computationally expensive
procedure of numerous PCdecompositions on thematrices fromwhich a
particular row and column of the original data matrix were removed.

More recently, Hansen et al. (1999) proposed another method
based on cross-validation, in which the data were separated into
independent training and test sets and the number of PC components
that minimize generalization error of the test set was used as an
intrinsic dimensionality estimate. Strother et al. (1997, 2002)
introduced the split-half resampling framework, where the data are
split into two independent sets of roughly the same size. The number
of PCs to be retained is selected to optimize the reproducibility of
activation maps (calculated separately on the two half-sets), or
classification accuracy (when one half serves as a training set, and the
other as a test set). There is usually a tradeoff between reproducibility
and classification accuracy, and one might wish to optimize a
combination of these two metrics (LaConte et al., 2003; Strother
et al., 2004; Jacobsen et al., 2008).

Several authors have compared the efficacy of various dimension-
ality estimation methods. Minka (2000) has shown that his method of
optimizing Bayesian evidence is significantly more accurate than 5-fold
cross-validation if the sample size and number of voxels in simulated
data are both small (b15). His method was also better than cross-
validation when the data were non-Gaussian, which was the reason to
use his method in probabilistic independent component analysis
(Beckmann and Smith, 2004), in which the signal sources are assumed
to be non-Gaussian.When the number of observations was larger (N60,
in both well-posed and ill-posed situations), optimization of Bayesian
evidence was found to be slightly, but not significantly, better than
cross-validation in estimating the dimensionality of simulated Gaussian

data. Cordes and Nandy (2006) have shown that estimates of
dimensionality calculated with analytic methods are strongly influ-
enced by sample size (when the number of observations grows, so do
the dimensionality estimates, although the underlying intrinsic dimen-
sionality stays the same). Li et al. (2007)have addressed this problemby
subsampling the data, when a large portion of observations is discarded
prior to dimensionality estimation so the remaining observations are
independent and identically distributed.Ulfarssonand Solo (2008) have
shown theirmethod to bemore accurate than bothMinka'smethod and
minimum description length in simulated Gaussian data. In their
simulations, the ratio of the number of variables to the number of
observations did not exceed 5/2.

Using the simulation framework introduced in Lukic et al. (2002),
we tested a wide selection of dimensionality estimation methods, and
compared their performance in situations when the task-related
signal was organized into a spatial network of functionally connected
loci. In the simulations, we sampled the signal from a multivariate
Gaussian distribution, and embedded it in additive Gaussian noise.We
used linear discriminant analysis (LDA) on a PC subspace as our basic
method of analysis. When the loci are not correlated, signal detection
is optimal when the number of PCs in our analysis is roughly equal to
the number of loci. However, as the correlations increase and the
spatial network starts to become apparent in the data, intrinsic
dimensionality goes through a transition from many dimensions to a
single dimension, and signal detection is optimized when we use just
one PC. This transition is captured when we estimate the intrinsic
dimensionality by optimizing the reproducibility of activation maps;
all other methods of estimation fail to capture the transition.

Using a metric of global signal-to-noise ratio (gSNR) based on the
reproducibility of independent spatial activation maps (Strother et al.,
2002, 2010), we demonstrate an asymptotic relationship between
optimal dimensionality and gSNR: when gSNR is high enough, the
network can be captured with a single dimension, but as gSNR drops,
the optimal dimensionality starts to rise sharply. We have shown this
asymptotic relationship in two sets of real data: analysis of multi-
subject groups from a study of cognitive impairment associated with
aging (Grady et al., 2006), and within-subject analysis of a
longitudinal stroke study (Small et al., 2002).

This result has a parallel in statistical physics: in order to capture
the structure of the data, the ratio of number of observations to the
number of dimensions has to reach a certain critical level. A phase
transition happens at this point, and, if this level has not been reached,
it is impossible to identify the signal-carrying components in the noisy
data although good signal detection is still possible under some
circumstances (Watkin and Nadal, 1994; see also Results and
Discussion below).

Materials and methods

Simulated data

In this study we used computer-generated data to simulate a
block-design experiment with two conditions: activation and baseline
(refer to Lukic et al. (2002) for details of the simulation). All images
contained the same simplified single-slice “brain-like” background
structure with additive Gaussian noise. An elliptical background
structure contained in a 60×60 pixel image consisted of “greymatter”
in the center and on the rim of the phantom, and “white matter” in
between; the amplitude of the background signal in the “grey matter”
was 4 times higher than in the “white matter”. Gaussian noise was
spatially smoothed using a Gaussian filter with full-width-at-half-
maximum (FWHM) of 2 pixels. After smoothing, the standard
deviation of the noise was 5% of the background signal. Images in
the “activation” condition contained 16 Gaussian-shaped signal
“blobs” distributed over the image (12 in the “grey matter” and 4 in
the “white matter”) and added to the smoothed noisy background
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