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a b s t r a c t

Newsimple linearmatrix inequalities are proposed to ensure the stability of a class of uncertain fractional-
order linear systems bymeans of a fractional-order deterministic observer. It is shown that the conditions
of existence of an observer-based feedback can be split into a set of linear matrix inequalities that are
numerically tractable. The presented results show that it is possible to decouple the conditions containing
the bilinear variables into separate conditions without imposing equality constraints or considering an
iterative search of the controller and the observer gains. Simulations results are given to approve the
efficiency and the straightforwardness of the proposed design.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional-order calculus has a long history and its serves as
a modern powerful tool in analyzing various physical phenom-
ena. The interest in understanding systems governed by fractional-
order differential equations has grown up during the last decades
and many associated results have been appeared, see e.g., Farges,
Moze, and Sabatier (2010), Manabe (1960), Matignon (1996),
Oustaloup (1983, 1995) and Trigeassou, Maamri, Sabatier, and
Oustaloup (2011). It was found that diffusion processes and biolog-
ical systems can be modeled in terms of fractional-order differen-
tial equations, see e.g., Oustaloup (2014) and Sabatier, Agrawal, and
Machado (2007). Additionally, the use of fractional-order deriva-
tives and integrals in feedback design has been successful to a large
extent in improving the robustness of the closed-loop systems.

Nevertheless, fractional differential equations have not yet re-
ceived the same attention as ordinary differential equations in the
investigation of their stability, simulation, and analysis. Owing to
the lack of effective analytic methods for the time-domain anal-
ysis and simulation of linear feedback fractional-order systems,
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a numerical simulation scheme is developed in Hwang, Leu, and
Tsay (2002). Exact calculation of fractional-order derivatives of
some particular polynomial signals is discussed in Samadi, Ahmad,
and Swamy (2004). Stability of dynamical systems, represented
by fractional order derivatives, has been investigated using the
Routh–Hurwitz criteria, the pole placementmethod, and Lyapunov
strategies. For linear fractional-order systems, itwas found that the
stability is equivalent to the repartition of the system poles in a re-
stricted area of the complex plane. Based on this key formulation
of stability and the use of convex-optimization algorithms, stated
as linear-matrix-inequality conditions, numerous sufficient condi-
tions have been proposed to ensure robust stability of some classes
of fractional-order type systems, see e.g., Ahn and Chen (2008),
Farges et al. (2010) and Sabatier,Moze, and Farges (2010). A consid-
erable interest has been also devoted to stability and stabilizability
of special classes of fractional-order systems, see e.g., Li, Chen, and
Podlubny (2010) and Wen, Wu, and Lu (2008). A new Lyapunov
stability analysis of fractional differential equations is discussed
in Trigeassou et al. (2011). The problem of pseudo-state feedback
stabilization of fractional-order systems using LMI setting was ad-
dressed in Farges et al. (2010).

In the recent paper (Lan, Huang, & Zhou, 2012), the authors have
presented a numerical scheme for stabilization of uncertain com-
mensurate (1 < α < 2) fractional-order systems by means of
dynamic output feedback. In Lan and Zhou (2013), observer-
based control of a class of uncertain fractional-order systems
0 < α < 1 is studied using convex-optimization tools. Other
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recentworks on stabilization of triangular fractional-order systems
can be traced in Zhang, Liu, Feng, and Wang (2013) and references
therein. In this paper, we devote our attention to the control of
commensurate fractional-order-pseudo-state systems subject to
bounded uncertainties and partially-state measurements where
the non integer differentiation order is between zero and one. Ad-
ditionally, we assume that the system uncertainties are randomly
distributed in the state matrix and the output matrices as well. By
decoupling the necessary conditions into a set of matrix inequal-
ities, we show that the search of the observer and the controller
gains can be transformed into a convex optimization problem. A
set of sufficient linear-matrix-inequality conditions are developed
to ensure the existence of a pseudo-state observer-based controller
assuring the asymptotic stability of the pseudo-state system under
consideration. It is shown that the developed results are less con-
servative by demonstration of a case study. In the particular case
where the systemuncertainty are null, sufficient conditions for sta-
bility by dynamic output feedback is given when the non-integer
differentiation order is between 0 and 2. Detailed proofs are pre-
sented and the efficiency of the proposed design is testified by nu-
merical simulations.

2. Preliminaries

Throughout this paper we note by R, R>0, and C the set of
real number, the set of positive real numbers, and the set of
complex numbers, respectively. The notation A > 0, with A being
a Hermitian matrix (respectively, A < 0), means that the matrix A
is positive definite (respectively, negative definite). A′ is thematrix
transpose of A. X⋆ stands for the complex conjugate transpose of
the matrix X . The notation X̄ stands for the matrix conjugate of
the complex matrix X . The star element in a given matrix stands
for any element that is induced by conjugate transposition. The
spec(A) denotes the set of the eigenvalues of the matrix A. We
note by I and 0 the identity matrix of appropriate dimension
and the null matrix of appropriate dimension, respectively. ℜ(Z)
stands for the real part of the complex matrix/number while ℑ(Z)
denotes the imaginary part of the complex matrix/number. The
notation [a]G stands for the integer part of the real a. In this paper,
Riemann–Liouville fractional differentiation definition is used.
Referring to Samko, Kilbas, and Marichev (1987), the fractional
integral of a continuously differentiable function f (t) is defined by:

Iα f (t) =
1

Γ (α)

 t

0
(t − τ)α−1f (τ )dτ , t > 0 (1)

where α ∈ R>0 denotes the fractional-integration order, and

Γ (α) =


+∞

0
e−xxα−1 dx. (2)

The order α fractional derivative of a function f (t), with α ∈ R>0,
is consequently defined by:

Dα f (t) =
dm

dtm

Im−α f (t)


=

1
Γ (m − α)


d
dt

m  t

0
(t − τ)m−α−1f (τ ) dτ ; t > 0 (3)

where m is the smallest integer verifying ‘‘m − 1 < α < m’’.
In Annaby and Mansour (2012), it has been reported that the Rie-
mann–Liouville fractional derivative of order α coincides with the
definition of the Grünwald–Letnikov definition, that is

Dα
GLf (t) = lim

T→0

1
Tα


t
T


G

k=0

(−1)k


α
k


f (t − kT ), t > 0, (4)

Fig. 1. Stability domain of fractional-order linear systems 0 < α < 1.

where
α
k


=


α(α − 1) · · · (α − k + 1)

k!
, for; k ≠ 0,

1, for; k = 0.
(5)

The Grünwald–Letnikov definition (4) is a generalization of the or-
dinary discretization formulas for integer-order derivatives. De-
pending on the value of the fractional-differentiation order ‘‘α’’,
several stability theorems have been stated, see the results in
Matignon (1996) for 0 < α < 1 and Sabatier et al. (2010) for
1 < α < 2.

Theorem 2.1 (Moze, Sabatier, & Oustaloup, 2005). Let A ∈ Rn×n be
a real matrix. Then, the fractional-order system:

Dαx(t) = A x(t), 1 < α < 2, (6)

is asymptotically stable, that is, | arg(spec(A))| > α π
2 if and only if

there exists a symmetric and positive definite matrix P verifying
(AP + PA′) sin(θ) (AP − PA′) cos(θ)

⋆ (AP + PA′) sin(θ)


< 0 (7)

where θ = (1 −
α
2 )π .

The following result concerns the stabilizability of fractional-order
linear systems by means of pseudo-state feedback where its proof
is given in Farges et al. (2010). As it has been reported in the
literature, the stability of fractional-order linear systems is one
particular case of domain stability where the eigenvalues of the
system should be located in a specific region of the complex plane
as shown in Fig. 1.

Theorem 2.2 (Farges et al., 2010). The fractional-order system:
Dαx(t) = A x(t) + B u(t), where 0 < α < 1, A ∈ Rn×n, and B ∈

Rn×m, is stabilizable by pseudo-state feedback u = Y (rX + r̄ X̄)−1x iff
∃X = X⋆

∈ Cn×n > 0 and Y ∈ Rm×n such that

(rX + r̄ X̄)′A′
+ A(rX + r̄ X̄) + BY + Y ′B′ < 0, (8)

where r = ei(1−α) π
2 , i2 = −1.

The Schur Complement lemma along with the result of the
following lemma are extensively used in the proof of the main
statement.

Lemma 2.3 (Boyd, Ghaoui, Feron, & Balakrishnan, 1994). Given real
matrices H, E and Y < 0 of appropriate dimensions, the inequality:
Y+HF(t)E+E ′F ′(t)H ′ < 0 holds for all F(t) satisfying F ′(t)F(t) ≤ I
if and only if there exists an ε > 0 such that Y + εHH ′

+ ε−1E ′E < 0.

Theorem 2.2will serve as a starting result for further development.
The details are given in the following sections.
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