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We report on a case study in which Password Authentication Connection Establishment (PACE) protocol 

has been formally analyzed based on its rewrite theory specification with Maude, a rewriting logic-based 

computer language and system. Dominik Klein has formally verified with interactive theorem proving that 

PACE enjoys the key secrecy property under the condition that the password shared by a passport chip 

C and a terminal T would be never leaked to the third party. In contrast, our analysis supposes that the 

password is leaked to an intruder once it has been used in a session completed. Under the condition, the 

analysis unveils some security weakness that PACE does not enjoy the correspondence (or authentication 

or agreement) properties from both C and T points of view. Then, we propose that one-time password is 

used in PACE. We have formally analyzed that the revised version enjoys the correspondence properties 

under the latter condition. We have used the Maude search command that can be used to conduct 

reachability analysis because the correspondence properties can be formalized as invariant properties. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Passports are travelers’ documents that have been issued by 

the passport holders’ country government and certify the hold- 

ers’ identities. International travelers must have their passports to 

pass the immigration control each time they enter and leave each 

country. The immigration control carefully examines each passport 

to check if the passport has not been counterfeited, the passport 

holder is exactly the same as the person whose personal informa- 

tion is recorded in the passport, the passport holder is allowed to 

enter or leave the country, etc. To make it much more difficult to 

counterfeit passports, machine readable passports, or e-passports 

have been introduced. Terminals at the immigration control com- 

municate e-passports to read the data stored in the e-passports. 

The communication must be secure. To this end, cryptographic 

protocols, or security protocols could be used. 

Password Authentication Connection Establishment (PACE) pro- 

tocol was invented by German Federal Office for Information Secu- 

rity (BSI)(TR-03110) for this aim, and adopted as the international 

standard by International Civil Aviation Organization (ICAO)(Doc 
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9303). A passport chip ( C ) and a terminal ( T ) at the immigration 

control securely share a secret password in advance somehow in 

PACE. Intermediate keys are exchanged twice in each PACE session, 

making C and T share some final keys. Diffie–Hellman (DH) key- 

exchange protocol [1] is supposed to be used in the second key 

exchange, while any other key-exchange could be used in the first 

key exchange. DH protocol is supposed to use elliptic curves in- 

stead of the multiplicative group of integers modulo a number due 

to the lower computation burden. 

PACE is formalized as a state machine, which is described as 

a rewrite theory specification in Maude [2] . State transitions are 

described as rewrite rules in rewrite theory specifications. Maude 

is a rewriting logic-based computer language, a direct successor 

of OBJ3 [3] , an algebraic specification language. Complex systems 

could be succinctly specified as state machines in Maude because 

associative and/or commutative binary operators are conveniently 

used to express systems states. The Maude system is equipped 

with many commands to analyze rewrite theory specifications, 

one of which is the search command. The search command 

searches the reachable states of a state machine in a breadth- 

first manner from a given (initial) state for states that match a 

given pattern and/or satisfy a given condition. The search com- 

mand can be used to conduct invariant model checking for state 

machines described as rewrite theory specifications. The search 
command is used to model check that PACE (formalized as a state 
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Fig. 1. Messages exchanged by a naive password login protocol at the i th login ses- 

sion. 

machine and described as a rewrite theory specification) enjoys 

some security properties. The analysis takes into account the ex- 

istence of an intruder that tries to glean information from mes- 

sages in the network and fakes messages based on the gleaned in- 

formation. Maude is also equipped with an LTL model checker and 

an Inductive Theorem Prover (ITP). Because the security properties 

we are interested in can be formalized as invariant properties, it is 

unnecessary to use the LTL model checker. One main goal of the 

research described in the present paper is to unveil some secu- 

rity weakness owned by PACE under some condition. This is why 

we have not used ITP but used the search command. Note that 

it is necessary to specify protocols as equational theory specifica- 

tions so as to use ITP, while it is necessary to specify protocols as 

rewrite theory specifications so as to use the search command 

and the LTL model checker. 

Klein [4] has formally verified with interactive theorem prov- 

ing that PACE enjoys the key secrecy property under the condi- 

tion that the password shared by C and T would be never leaked 

to the third party. In the analysis described in the present paper, 

in contrast, we suppose that once the password shared by C and 

T has been used in a session completed, it happens to be leaked 

to the intruder. Under this assumption, the analysis reveals that 

PACE does not enjoy the correspondence properties from both the 

T point of view and the C point of view, implying that keys ex- 

changed by C and T with PACE may be leaked to the intruder. The 

correspondence properties are called the authentication properties 

or the agreement properties [5] . The correspondence property from 

the T (or C ) point of view is that whenever T (or C ) has completed 

a session to authenticate C (or T ), C (or T ) has also completed the 

same session to authenticate T (or C ). After that, a revision of PACE 

such that one-time password is adapted is introduced. The analysis 

says that the revised version enjoys the properties when there are 

one passport chip, one terminal and one intruder, at most two ses- 

sions are made, and a password is leaked to the intruder once it 

has been used in a session completed. All experiments reported in 

the paper were conducted on a computer with 3.4 GHz processor 

and 32GB memory. 

The rest of the paper is organized as follows. Section 2 de- 

scribes some preliminaries: security protocols, state machines and 

Maude. Section 3 describes PACE. Section 4 reports on the first case 

study in which the original version is analyzed. Section 5 proposes 

a revised version and reports on the second case study in which 

the revised version is analyzed. Section 6 mentions some related 

work, and finally Section 7 concludes the paper. 

2. Preliminaries 

2.1. Security protocols 

Let us consider a naive password login protocol. We suppose 

that a client ( C ) and a server ( S ) have securely shared something 

secret denoted π somehow in advance and use π multiple times 

for a long period of time. Fig. 1 shows messages exchanged in 

this protocol. When C wants to login S at the i th time, C com- 

putes the hashed value H (π ) of π , generates a fresh nonce n C , a 

cryptographically secure pseudo-random number, makes the cipher 

E(H(π ) , “login”, n C ) by using H(π ) as a symmetric key, where E
is a symmetric encryption function, and sends the cipher to S . On 

Fig. 2. Messages exchanged by a one-time password protocol at the i th login ses- 

sion for i = 0 , . . . , m − 1 . 

receipt of the cipher by S, S tries to decrypt it with H(π ) because 

S knows π and can compute H(π ) . If successfully decrypted, S 

finds the string “login” and a nonce n. S then generates a fresh 

nonce n S , makes the cipher E(n, “ok”, n S ) with n as a symmetric 

key, and sends it to C . On receipt of the cipher by C, C tries to de- 

crypt it with n C generated by C for the i th session. If successfully 

decrypted, C finds the string “ok” and a nonce n ′ . C then makes 

the cipher E(n ′ , “transmit”, prsn (i )) with n ′ as a symmetric key, 

where prsn( i ) is some personal information to be transmitted to 

S at the i th session, and sends it to S . On receipt of the cipher by 

S, S tries to decrypt it with n S generated by S for the i th session. 

If successfully decrypted, S finds the string “transmit” and some 

data that must be prsn( i ). As prsn( i ) has reached S , the i th session 

is over. We suppose that there exists an intruder and the intruder 

happens to know the password π somehow as the first session is 

over. We also suppose that if E(H(π ) , “login”, n C ) is in available in 

the network and the intruder knows π , the intruder may fake the 

cipher E(n C , “ok”, n intr ) and sends it to C by impersonating S , and 

if E(n ′ , “transmit”, prsn (i )) is available in the network and the in- 

truder knows n ′ , the intruder can glean prsn( i ). Then, the question 

is whether the intruder could know prsn( i ) in the i th session. We 

will answer the question later. 

Let us next consider a one-time password login protocol based 

on what has been invented by Lamport [6] . We suppose that a 

client ( C ) and a server ( S ) have securely shared something secret 

denoted π somehow in advance and agreed on how many times 

( m ) C would login S . Note that π must be protected but there is no 

problem if m would be known by someone else. When no session 

has been made by C and S , the intruder does not know π and then 

cannot compute H 

m −1 (π ) even if the intruder happens to know m . 

Even when H 

m −1 (π ) is leaked to the intruder after the completion 

of the first session, the intruder can compute H 

m (π ) but can never 

compute H 

m −2 (π ) . S computes a series of hashed values based on 

π . Let hvseq be the sequence H 

m −1 (π ) ; . . . ; H(π ) ;π, where H is 

a cryptographically secure hash function. hvseq must be securely 

stored in S , while there is no problem even if H would be dis- 

closed. Fig. 2 shows messages exchanged in the protocol. When C 

wants to login S at the i th time, where i = 0 , . . . , m − 1 , C com- 

putes H 

m −(i +1) (π ) , generates a fresh nonce n C , makes the cipher 

E(H 

m −(i +1) (π ) , “login”, n C ) by using H 

m −(i +1) (π ) as a symmetric 

key, and sends the cipher to S . On receipt of the cipher by S, S 

tries to decrypt it with the top of hvseq as a symmetric key. If 

successfully decrypted, S finds the string “login” and a nonce n. 

S then generates a fresh nonce n S , makes a cipher E(n, “ok”, n S ) , 

and send it to C . On receipt of the cipher by C, C tries to decrypt 

it with n C generated by C for the i th session. If successfully de- 

crypted, C finds the string “ok” and a nonce n ′ . C then makes the 

cipher E(n ′ , “transmit”, prsn (i )) with n ′ as a symmetric key and 

sends it to S . On receipt of the cipher by S, S tries to decrypt it 

with n S generated by S for the i th session. If successfully decrypted, 

S finds the string “transmit” and some data that must be prsn( i ). 

As prsn( i ) has reached S , the i th session is over and S throws away 

the top from hvseq . We suppose that there exists an intruder and 

the intruder happens to know the password used for the i th ses- 

sion every time the i th session is over. The intruder would do the 

same things as what have been described for the naive password 

login protocol. Then, the question is whether the intruder could 
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