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Abstract: The consequence of the wave-particle duality is a pointer to the fact that everything in the universe, including light and 
gravity, can be described in terms of particles. These particles have a property called spin. What the spin of a particle really tells us is 
what the particle looks like from different directions, in other words it is nothing more than a geometrical property. The motivation 
for this work stems from the fact that geometry has always played a fundamental role in physics, macroscopic and microscopic, 
relativistic and non-relativistic. Our belief is that if a GUT (Grand Unified Theory) is to be established at all, then geometry must be 
the common thread connecting all the different aspects of the already known theories. We propose a new way to visualize the concept 
of four-dimensional space-time in simple geometrical terms. It is observed that our time frame becomes curved, just as the 
space-frame, in the presence of a massive gravitating body. Specifically, in the event horizon of a black hole, where time seems to 
grind to a halt for external observers, the time frame appears to curve in on itself, forming an imaginary loop. This results in extreme 
time dilation, due to the strong gravitational field. Finally we adopt a descriptive view of a GUT called Quantum Necklace GUT 
which attempts to connect gravity together the other three fundamental forces of nature, namely the strong, weak and electromagnetic 
interactions. 
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1. Introduction 

The concept of unification began in 1687 with the 

universal law of gravitation as established by Sir Isaac 

Newton. Since then unification has played a central 

role in physics. In the mid-19th century James Clerk 

Maxwell found that electricity and magnetism were 

two facets of electromagnetism. A century later 

electromagnetism was unified with the weak nuclear 

force governing radioactivity, in which physicists call 

the electroweak theory. Indeed this quest for 

unification is driven by practical, philosophical and 

aesthetic considerations. When successful, merging 

theories clarifies our understanding of the universe 

and leads us to discover things we might otherwise 

never have suspected. Much of the activity in 

experimental particle physics today, at accelerators 

such as the Large Hadron Collider at CERN near 
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Geneva, involves a search for novel phenomena 

predicted by the unified electroweak theory. In 

addition to predicting new physical effects, a unified 

theory provides a more aesthetically satisfying picture 

of how our universe evolves. Numerous physicists 

share an intuition that, at the deepest level, all physical 

phenomena match the patterns of some beautiful 

mathematical structure. 

The current best theory of non-gravitational 

forces—the electromagnetic, weak and strong nuclear 

force—was largely completed by the 1970s and has 

become familiar as the Standard Model of particle 

physics. Mathematically, the theory describes these 

forces and particles as the dynamics of elegant 

geometric objects called Lie groups and fiber bundles. 

It is, however, somewhat of a patchwork, this is 

because a separate geometric object governs each 

force. Over the years physicists have proposed various 

Grand Unified Theories, or GUTs, in which a single 

geometric object would explain all these forces, but no 
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one yet knows which, if any, of these theories is true. 

One would expect that in a fully unified theory, 

gravity and matter should also combine naturally with 

the other forces, all as parts of one mathematical 

structure. Since the 1980s string theory, the dominant 

research program in theoretical particle physics has 

been an attempt to describe gravity and the Standard 

Model using elaborate constructs of strings and 

membranes vibrating in many spacetime dimensions. 

String theory is however not the only effort. Loop 

quantum gravity as an alternative, uses a more 

minimal framework, and is closer to that of the 

Standard Model [1]. Building on its insights, the E8 

theory [2] was proposed as a new unified theory in 

2007. Here the basic idea is to extend Grand Unified 

Theories and include gravity as part of a consistent 

geometric framework. In this unified field theory, all 

forces and matter are described as the twisting of a 

single geometric object [3]. 

2. From Electromagnetism to Geometry 

The geometric view of nature follows naturally 

from the way the world around us works. The simplest 

and most familiar examples are the forces of 

electricity and magnetism. Electric sparks, magnetic 

attraction and laser light are different manifestations 

of the electric and magnetic fields that pervade space. 

Physicists do believe that everything in the world—all 

the forces of nature and even all the particles of 

matter—arises from different kinds of fields. The 

behaviour of these fields suggests an underlying 

geometric structure. 

3. Elementary Particles and Geometry 

Using the wave-particle duality, it is now evident 

that everything in the universe, including light and 

gravity, can be described in terms of particles. These 

particles have a property called spin. One way of 

thinking of spin is to imagine the particles as little 

tops spinning about an axis. However, they do not 

really have any well-defined axis. What the spin of a 

particle really tells us is what the particle looks like 

from different directions. For example, a particle of 

spin 0 is like a dot, it appears the same from every 

direction. On the other hand, a particle of spin 1 is like 

an arrow, it appears different from different directions. 

It is only when it is rotated a complete revolution (360 

degrees) does the particle appear the same. A particle 

of spin 2 can be visualized as a double-headed arrow, 

it appears the same if it is rotated half a revolution 

(180 degrees). Similarly, higher spin particles appear 

the same if rotated through smaller fractions of a 

complete revolution. Remarkably, it turns out that 

there are particles that do not appear the same if 

rotated through just one revolution: they must be 

rotated through two complete revolutions! Such 

particles are said to have spin ½. It is clear here that 

the concept of spin is nothing but a geometrical 

property of the particle under consideration. 

4. Importance of Relativity Theory 

A remarkable consequence of relativity [4] is the 

way it has revolutionized our ideas of space and time. 

We now know that there is no such thing as absolute 

time. On the other hand, one major prediction of 

general relativity [5] is that time should appear to be 

slower near a massive body like the earth. This is 

because there is a relation between the energy of light 

and its frequency, the greater the energy, the higher 

the frequency. As light travels upward in the earth’s 

gravitational field, it loses energy, and so its frequency 

goes down. This implies that the length of time 

between one wave crest and the next goes up. To an 

observer high up, it would appear that everything 

down below was taking longer to happen. Although 

light is made up of waves, Planck’s quantum 

hypothesis tells us that in some ways it behaves as if it 

were composed of particles: it can be emitted or 

absorbed only in packets, or quanta. Equally, 

Heisenberg’s uncertainty principle implies that 

particles behave in some respects like waves: they do 

not have a definite position but are “smeared out” with 
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a certain probability distribution. There is thus a 

duality between waves and particles in quantum 

theory. For some purposes it is helpful to think of 

particles as waves and for other purposes it is better to 

think of waves as particles. 

5. Notation 

ቀ܀ସ,   ቁ will denote the 4-dimensional spacetime 

of GR, R is the real line and g is the metric tensor. 

An event in ቀ܀ସ,   ቁ  is represented by the 

components of the contravariant position vector: 

 0 1 2 3, , ,x x x x x   

In the Cartesian basis the components of this vector 

are the time coordinate, 0x t , and the spatial 

coordinates,    1 2 3, , , ,ix x x x x y z  . 

Differentiation of a function F  with respect to the 

space-time coordinate x is written as 
F

F
x 


 


. 

Performing a coordinate transformation simply 

computes the values of the coordinates at that event, 

from a different reference frame; this different frame 

could correspond to an observer that is accelerating 

relative to the first observer, or where the second 

observer is at a different point in a gravitational field. 

The coordinate transformation is: 

 x x x    

The Jacobian of the transformation J 
 , and its 

inverse J 
 , are given by: 

,   ,   
x x

J J J J
x x

 
    
      

 
  

 
 

6. Remark 

 The components of a tensor may not be 
independent. If for example A A  then we say 

that A is a symmetric tensor, and if B B   , 

then A is antisymmetric. 

 Einstein summation convention applies 
throughout this work. 

 The quantity 
2ds g dx dx 

 is referred to as 

a line element and g is the metric tensor. 

7. The Flow of Spacetime 

An elegant way of visualizing the curvature of 

spacetime  0 1 2 3, , ,x x x x , is illustrated in Fig. 1. Here 

spacetime is composed of time axis pointing upwards 

in time and carrying with it at each point a triad 

 1 2 3, ,x x x subsequently referred to as the spaceframe. 

In the vicinity of a massive object both the time frame 

and the space frame become curved as shown. Hans 

von Baeyer [6], in a prize-winning essay described 

spacetime as  an invisible  stream flowing  ever onward, 
 

 
Fig. 1  The flow of curved spacetime.  
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bending in response to objects in its path, carrying 

everything in the universe along its twists and turns. 

The elemental distance between the two 

infinitesimally separated points A and B is given by 

the line element: 

2ds g dx dx 
            (1) 

The curvature of the region of space is specified by 

the metric tensor g . 

The case of flat spacetime Fig 2, is similar except 

for the fact that there is no curvature, and this situation 

corresponds very well with the standard Minkowski’s 

four-dimensional space. In flat spacetime a particle 

moves from point A to a point B with coordinates as 

shown. The observer in his frame of reference initially 

at O, monitors the particle until it reaches point B by 

which time his frame has traveled upwards to reach 

O  in time by 0dx dt . We define the line 

element:  

       2 2 2 22 0 1 2 3ds dx dx dx dx      (2) 

as the elemental distance (squared) between the two 
infinitesimally separated points A and B. By 
introducing the Kronecker-delta 

   0,  ,  1 ij i j i j    , the above can be 

written more compactly as: 

2 i j
ijds dx dx            (3) 

An important feature of the Kronecker-delta is that 

its determinant is positive definite. A manifold 

endowed with a metric whose determinant is 

positive-definite is called a Riemannian manifold. It is 

important to know that the metric actually defines the 

geometry of a space. 
Our definition here coincides with the Minkowski’s 

four-dimensional spacetime if we take; 

 

Hence  20 2dx dt  and  

 

with  diag 1,1,1,1   . 

8. Properties of the Einstein Field Equations 

We write the Einstein Field equations of general 

relativity as:  

G T              (4) 

where is the Einstein tensor, 

is the Ricci tensor. is the 

energy-momentum tensor , G being the 

Newtonian gravitational constant. At this point we 
consider the following three basic properties of Eq. (4): 

 

 
Fig. 2  The flow of flat spacetime.  
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(a) Eq. (4) is a tensor equation. This is necessary so, 

since the principle of invariance under coordinate 

transformations must hold, in other words the 

equations of physics must look the same in any frame 

of reference. 

(b) We can interpret Eq. (4) more simply as: 

Tensor representing geometry of space = Tensor 

representing energy content of space 

i.e., it is the presence of matter (or energy) in space 

that distorts the neighbouring geometry. Most 

equations of mathematical physics can be interpreted 

similarly. 

(c) The solution to Eq. (4) is a geometrical object, 

namely a line element given by: 
2ds g dx dx 

  

where g is the metric tensor to be solved for in Eq. 

(4). 

GR (General Relativity) is one of the greatest 

advances in theoretical physics from the past century. 

Remarkably, Albert Einstein was able to understand 

that the geometry of the universe is determined by, 

and responds to, the gravitating content of the 

universe. Einstein proceeded to construct the 

dynamical rules for spacetime with arbitrary geometry; 

these rules are precisely the Einstein’s field equations, 

Eq. (4) of GR. It became evident that gravity is just a 

manifestation of the location-dependence of the metric

g . The field equations determine the values of the 

components of the metric of a spacetime for some 

known content. Once the metric is known one can 

begin to compute geodesics in the spacetime; these are 

the paths that bundles of light rays travel along or the 

orbits that planets trace out. This enables GR, as a 

gravitational theory, to predict directly observable 

quantities.  

9. Exact Analytic Solutions of Einstein’s 
Field Equations 

No general solution to Einstein’s field equations, 

Eq. (4), is known to exist. However, solutions are 

known for rather specific configurations. The simplest 

solution is for a spacetime which is completely empty 

(of gravitating matter) is called a vacuum, and whose 

metric is given by the Minkowski metric, viz: 

2 2 2 2 2ds dt dx dy dz      

The next simplest metric is that for a spacetime 

containing a homogeneous and isotropic fluid, whose 

energy-momentum tensor is of the form: 

T u u P                 (5) 

where    ,t P P t   , the time dependent 

density and pressure respectively, and is given by the 

Freidmann-Robertson Walker’s solution, 

   2 2 2 2 2 2ds dt a t dx dy dz        (6) 

The metric of a spacetime [8] which in the limit 

tends to a vacuum solution at infinity and containing a 

single stationary black hole of mass M at the origin, is 

given by Schwarzschild’s solution [9], 

1
2 2 2 2 22 2

1 1
M M

ds dt dr r d
r r


            
   

(7) 

2 2 2 2sind d d    is the solid angle element, and 

M is the mass of the blackhole. 

The metric for a spacetime containing a stationary 

black hole of mass M in a universe containing a 

cosmological constant   is given by Kottler’s 

solution [10]: 

1
2 2 2 2 2 2 22 2

1 1
3 3

M M
ds r dt r dr r d

r r

               
   

                (8) 

 

This is the well known Schwarzschild de-Sitter 

metric. The cosmological constant  [7], was 

introduced by Einstein deliberately to cancel out the 

expansion of the universe, predicted by the field 
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equations, at the time this did not make sense. 

However, Edwin Hubble [11] in 1929, proved that the 

universe was indeed expanding.  

A single black hole of mass M immersed in a 

homogeneous isotropic fluid has a metric given by 

McVittie’s solution [12, 13]: 

 
 

2 22

2

a t r M
ds dt

a t r M

 
       

     
4

2 2 2 21
2

M
a t dr r d

a t r

 
    

 
  (9) 

The important thing to note in each of the above 

solutions is the fact that the coefficient of the time 

elemental squared is non constant and this leads us to 

conclude that the time frame is not flat, but naturally 

curved just as the space frame is. 

In the case of the Schwarzschild’s solution we have 

a singularity at 2r M in the space frame, but in the 

time frame, time disappears for this same value. Now 

2r M is the event horizon in Fig. 3: a region in the 

vicinity of the stationary black hole where time seems 

to grind to a halt. 

Our proposition here is that the time frame has 

completely curved in on itself, forming a kind of 

imaginary loop, resulting in extreme time dilation, due 

to the strong gravitational field of the black hole. This 

is also indirectly as a result of the fact that light cannot 

escape from the black hole. In the case of Kottler’s 

solution incorporating a cosmological constant  , 

the event horizon will be given by the real roots of the 

cubic: 
3 3 6 0r r M              (10) 

In this case there is a possibility of three 

singularities. For McVittie’s solution, time disappears 

for  2r M a t , however this does not give rise to 

a singularity in the space frame, though it is curved to 

a certain degree, and this can be measured. 

10. Quantum Gravity and Unified Theories 

The unification of general relativity and quantum 

mechanics into a theory of quantum gravity is of great 

interest to theoretical physicists and mathematicians. 

This project is vigorously being pursued in numerous 

scientific institutes and laboratories all around the 

world. If successful, it should also provide a 

consistent framework for incorporating all other 

fundamental forces of nature. Unfortunately despite 

intense efforts over the last years it is far from clear at 

this time what a consistent theory of quantum gravity 

will look like, and what its main features ought to be. 

In the light of these uncertainties, the best strategy 

appears to be one which is both diversified and 

interdisciplinary.  To that extent,  it would  make sense 
 

 
Fig. 3  The event horizon.  
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to incorporate all the major current approaches to 

quantum gravity, in particular supergravity [14] and 

string theory [15] and their modern developments, as 

well as canonical quantization (e.g. loop quantum 

gravity [16]) and discrete models of quantum gravity. 

We do not intend to go into the theory of quantum 

gravity here, however it is important to note that the 

current canonical approaches to this theory, emphasize 

the geometrical aspects which appear well suited to 

deal with unsolved conceptual issues of quantum 

gravity, such as for example, the problem of time or 

the interpretation of the wave function of the universe 

[17].  

11. Quantum Geometry 

Every geometry is associated with some kind of 

space. Quantum (or noncommutative) geometry 

[18-20] deals with quantum spaces, including the 

classical concept of space as a very special case. In 

classical geometry spaces are always regarded as 

collections of points equipped with the appropriate 

additional structure (as for example a topological 

structure given by the collection of open sets, or a 

smooth structure given by the atlas). In contrast to 

classical geometry, quantum spaces are not 

interpretable in this way. In general, quantum spaces 

have no points at all! They exhibit non-trivial 

quantum fluctuations’ of geometry at all scales. 

Quantum geometry as constructed by Alain Connes 

[21] is a well developed field of active research with 

interesting applications. What follows is a simple 

example of what quantum geometry is. 

12. The Quantum Plane  

A simple example of quantum geometry is the 

quantum plane (Fig. 4). Usually, a plane is described 
by two coordinate functions . Naturally, the 

functions and  are the same since it does not 

matter whether you measure x first and then y or y first 

and then x. This is precisely what is lost in the 

quantum world. 

 
Fig. 4  The quantum plane . 
 

In the quantum plane we replace the property 
 by  where q is some parameter. 

We no longer have points, however we can continue 

to work algebraically with x and y.  

Define  ,x y xy yx  , the commutator bracket. 

Hence xy qyx  can be rewritten as:  

   , 1x y q yx   

The commutative case is obtained when 1q  . 

13. Summary and Conclusion 

From the foregoing, it is clear that our objective was 

not to postulate a GUT, but rather to examine existing 

efforts towards this goal and the inherent difficulties. 

More importantly we emphasize that geometry is 

intrinsic to all aspects of physics. Our view is that a 

successful construction of a GUT must incorporate 

geometry as the common thread connecting all the 

different aspects of the already established theories. 

It is now a general belief that all four of the 

fundamental forces of nature are, in fact, the 

manifestations of a single unifying force which has 

yet to be discovered. Just as electricity, magnetism, 

and the weak force were unified into the electroweak 

interaction, they work to unify all of the fundamental 

forces. From our current understanding of physics, 

forces are not transmitted directly between objects, but 

instead are described by intermediary entities called 

fields. All four of the known fundamental forces are 

mediated by  fields, which  in the  Standard Model [18] 

,x y
xy yx

( )xy yx

xy yx xy qyx
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Fig. 5  Quantum Necklace GUT.  
 

of particle physics result from exchange of gauge 

bosons. Specifically the four interactions to be unified 

are: 

 Strong interaction: the interaction responsible 

for holding quarks together to form hadrons, and 

holding neutrons and also protons together to form 

nuclei. The exchange particle that mediates this force 

is the gluon. 

 Electromagnetic interaction: the familiar 

interaction that acts on electrically charged particles. 

The photon is the exchange particle for this force. 

 Weak interaction: a short-range interaction 

responsible for some forms of radioactivity, which 

acts on electrons, neutrinos, and quarks. It is governed 

by the W and Z bosons. 

 Gravitational interaction: a long-range 

attractive interaction that acts on all particles. The 

postulated exchange particle has been named the 

graviton. 

We also recall that the quest to unify gravity with 

the other three fundamental forces is known as 

quantum gravity. While research efforts are still 

ongoing in this field, we adopt the following 

descriptive view of a GUT which we call Quantum 

Necklace GUT, as shown in Fig. 5.  

In the above figure we propose Quantum Geometry 

as described in Section 11, as a good candidate for the 

geometry connecting all the fundamental forces of 

nature. Our research focus for the future is to show in a 

mathematically rigorous way that quantum geometry 

does indeed unify all the fundamental forces of nature.  
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