DRS: Dynamic Resource Scheduling for Real-Time
Analytics over Fast Streams

Tom Z. J. Fu! Jianbing Ding? Richard T. B. Ma® Marianne Winslett* Yin Yang® Zhenjie Zhang*
! Advanced Digital Sciences Center, lllinois at Singapore Pte. Ltd.
2School of Information Science and Technology, Sun Yat-sen University
3School of Computing, National University of Singapore
4Department of Computer Science, University of lllinois at Urbana-Champaign
5College of Science and Engineering, Hamad Bin Khalifa University
Email: {tom.fu,zhenjie} @adsc.com.sg, dingsword@gmail.com, toma@comp.nus.edu.sg, winslett@illinois.edu, yyang@qf.org.qa

Abstract—In a data stream management system (DSMS),
users register continuous queries, and receive result updates as
data arrive and expire. We focus on applications with real-time
constraints, in which the user must receive each result update
within a given period after the update occurs. To handle fast data,
the DSMS is commonly placed on top of a cloud infrastructure.
Because stream properties such as arrival rates can fluctuate
unpredictably, cloud resources must be dynamically provisioned
and scheduled accordingly to ensure real-time response. It is
essential, for the existing systems or future developments, to
possess the ability of scheduling resources dynamically according
to the current workload, in order to avoid wasting resources, or
failing in delivering correct results on time.

Motivated by this, we propose DRS, a novel dynamic resource
scheduler for cloud-based DSMSs. DRS overcomes three funda-
mental challenges: (a) how to model the relationship between
the provisioned resources and query response time (b) where
to best place resources; and (c) how to measure system load
with minimal overhead. In particular, DRS includes an accurate
performance model based on the theory of Jackson open queueing
networks and is capable of handling arbitrary operator topologies,
possibly with loops, splits and joins. Extensive experiments with
real data confirm that DRS achieves real-time response with close
to optimal resource consumption.

I. INTRODUCTION

In many applications, such as analytics over microblogs,
video feeds and sensor readings, data records are not avail-
able beforehand, but gradually and continuously arrive in the
form of streams. A data stream management system (DSMS)
handles such streams, and answers long-running, continuous
queries to users. The results of such a query are delivered in
the form of a stream of updates. Often, users are interested in
performing streaming analytics in real time, meaning that each
result update must reach the user within a given time period
after the update occurs, i.e., the earliest possible time that it
can be produced. For instance, consider a DSMS monitoring
surveillance video streams in hospital wards. Events such as
a patient falling should be detected promptly to alarm doctors
and nurses in time.

To deal with fast, high-volume streams and stringent real-
time response requirements, it is increasingly common to place
the DSMS on top of a cloud infrastructure, which provides
virtually unlimited computing resources on demand. Because

key properties of a data stream, including its volume, arrival
rates, value distribution, etc., can fluctuate in an unpredictable
manner, the DSMS should ideally dynamically provision cloud
resources to each application, in order to satisfy the real-time
constraints with minimum resource consumption. Meanwhile,
inside an application, resources need to be carefully scheduled
to different components to ensure optimal utilization. Misplac-
ing resources may cause not only poor resource utilization, but
instability of the system as a whole.

Figure 1 shows an example video stream processing ap-
plication with two operators A (which extracts features from
input video frames) and B (which recognizes objects from the
extracted features), with the output of A fed to B as input. The
record arrival rates for A and B are Aa and Ag respectively,
where Aa depends on the input, e.g., 24 frames per second,
while Ag depends on the output rate of A, i.e., the number of
features extracted in unit time. Inside each operator, an input
is first buffered into an input queue (i.e.,, ga in A and gg in
B) before being processed by one of the parallel processors
(A,...,Anin A By,...,Byin B). Assuming the cloud provides
identical processing units, each processor in A (respectively in
B) can process ua (ug) inputs in a unit of time. Clearly, an
operator must have sufficient processors to keep up with its
input rate; otherwise, inputs start to fill its input queue, leading
to increased latency due to waiting, and, eventually, errors
when the queue reaches its size limit. Since the data arrival
rate and processing rate for each processor are uncontrollable,
the main resource scheduling issue is to determine the number
of processors in each operator, in our example, n and m?.

Operator 4 Operator B

input queues

processors
Fig. 1. Example streaming analytics application.

A simple approach to scheduling resources is to monitor

1Although there are other types of cloud resources, such as storage and
network bandwidth, we focus on computation-intensive applications where
processors are the key resource.

the workload in each operator, and adjust the number of
processors accordingly. This method is insufficient in multi-
operator applications. For instance, consider the case that at
some point, many recognizable objects appear in the video
stream. Then, although the number of frames per second in
the input (i.e., Aa) remains stable, each frame now contains
more extractable features, requiring more work at operator A.
Hence, ua decreases, which consequently overloads operator
A, causing inputs to wait longer in its queue ga, slowing down
query response. Now, if we naively add processors to A to
flush ga, operator A then suddenly produces a large amount of
outputs, leading to a burst in the input rate Ag of operator B,
overloading the latter. This problem is exacerbated when the
application involves a complex network of operators. Figure 2
shows such an example, with splits (A to B, C), joins (C, D
to E) and a feedback loop (E to A). Such topological features
are key enablers for certain applications, e.g., loops allows data
reduction at the input based on the current query results, as
we show with an example in Section V.

Fig. 2. Example complex operator topology.

As we review in Section I, existing systems largely
overlook the problem of dynamic resource scheduling. Con-
sequently, to meet the real-time constraint, they either require
manual tuning at runtime (which is infeasible for dynamic
streams), overprovisioning resources to each operator (which
wastes resources), or load shedding (which leads to incorrect
results). Motivated by this, we design and implement DRS, a
dynamic resource scheduling module. DRS generally applies
to operator-based DSMSs, and allows operators to form an
arbitrary topology, possibly with splits, joins and loops as
shown in Figure 2. In particular, the support for loops can
be a key enabler for certain applications, especially those
involving iterations, as we show with an example in Section V.
Meanwhile, from a semantics point of view, allowing arbitrary
topologies is more general than two-step MapUpdate in Mup-
pet [1], and the DAG model in TimeStream [2].

Our main contributions include effective and efficient so-
lutions to three fundamental problems in dynamic resource
scheduling: (a) how much resources are needed, (b) where
to best place the allocated resources to minimize response
time, and (c) how to implement resource scheduling in a real
system with minimal overhead. In particular, our solutions to
the first two problems are based on the theory of extended
Jackson networks, which provides an educated estimate of
system performance.

The rest of the paper is organized as follows. Section Il
surveys related work. Section Ill presents our performance
model and optimization algorithm. Section 1V describes the
implementation of DRS. Section V contains an extensive set
of experiments with real data. Section VI concludes with
directions for future work.

Il. RELATED WORK
A. Resource Scheduling in Cloud Systems

A cloud consists of a massive number of interconnected
commodity servers. A key feature of the cloud is that its
resources, such as CPU cores, memory, disk space and network
bandwidth can be provisioned to applications on demand. In
fact, most cloud infrastructure providers today offer pay-as-
you-go options for resource usage. Hence, a fundamental re-
quirement for a system to effectively use the cloud is elasticity,
meaning that the system must be able to dynamically allocate
and release cloud resources based on the current workload.
Many traditional parallel and distributed systems, however,
assume a fixed amount of resources available beforehand,
rendering them unsuitable to be applied in a cloud platform.
As a result, many novel elastic cloud-based paradigms and
systems have emerged in the past decade.

The first wave of cloud-based systems were built for run-
ning a batch of (often slow) jobs offline. Notably, MapReduce
[3] is a batch processing framework that hides the complexity
of the cloud infrastructure, and exposes a simple programming
interface to users consisting of two functions: map (e.g., for
data filtering and transformation) and reduce (for aggregation
and join). A plethora of MapReduce systems, improvements,
techniques, and optimizations have been proposed in recent
years, and we refer the reader to a comprehensive survey [4].

Resource scheduling has been a central problem in Map-
Reduce like systems, and a plethora of schedulers have been
developed and used in production, e.g., Fair Scheduler [5],
Capacity Schedular [6]. Since tasks running on nodes with-
out relevant data incur costly network transmissions, delay
scheduling [7] reduces such non-local tasks by forcing nodes
to wait until either a local task appears, or a specified period
has passed. These scheduling strategies, however, do not apply
to our problem, because they are designed for offline, batch
processing of (semi-) static data, where the goal is to minimize
total job completion time; in contrast, we focus on real-time
processing of streaming data, where each individual result
update must be delivered on time.

Recently, much attention has been shifted to real-time inter-
active systems for big data analytics, such as Dremel [8], Im-
pala, Presto [9], OceanRT [10], [11], C-Cube [12], SADA [13]
and newer versions of Hive [14]. Such systems deal with static
rather than streaming data; meanwhile, the term “real-time”
here has a different meaning: that each query is executed
quickly enough so that the user can wait online for its results.
Hence, resource scheduling in these systems resembles offline
systems, and their techniques do not apply to our problem
for similar reasons. Another recent hot topic in cloud-based
system research is cloud-based stream processing, which is
most relevant to this work. We review them in Section I1-C.

Finally, there exist generic scheduling solutions for provi-
sioning to multiple applications competing for cloud resources.
System such as Mesos [15], YARN [16] are prominent exam-
ples. Abacus [17] optimizes total utility by allocating resources
via a truth-revealing auction. These methods generally assume
that an application already knows the amount of resources it
needs, and how to distribute these resources internally, which
are the problems solved in this paper. Hence, they can be used
in combination with the proposed solution.

B. Traditional DSMSs

Stream processing has been an important research topic
in both academia and industry. Earlier work focuses on
DSMSs in a centralized setting, which resembles the tradi-
tional, centralized database management systems. For instance,
STREAM [18] establishes formal semantics for queries over
streams [19], and proposes efficient query processing algo-
rithms, e.g., [20]. Similar systems include Aurora [21], Gigas-
cope [22], TelegraphCQ [23], and System S [24]. Scheduling
in such centralized systems means deciding the best order of
operators to execute (by the central processor), e.g., in order
to minimize memory consumption [25]. Hence, scheduling
strategies in these systems such as [25] do not apply to our
cloud-based setting, where operators are executed by multiple
nodes in parallel, and computational resources are dynamically
provisioned on demand.

Similarly, DSMSs built for traditional parallel settings,
notably Borealis [26], also differ from cloud-based DSMSs
in that the former assume that a fixed amount of computa-
tional resources available beforehand, rather than dynamically
allocated. Hence, to our knowledge, no scheduling technique
along this line of research applies to our problem. Next we
review cloud-based DSMSs.

C. Cloud-Based Stream Processing

There are two general methodologies for processing
streams in a cloud: using an operator-based DSMS, and
discretizing stream inputs into mini-batches [27]. The former
derives from traditional DSMSs described in Section 11-B,
whereas the latter reduces stream processing to batch execu-
tion, explained in Section I1-A. In general, mini-batch systems
are optimized for throughput, at the expense of increased query
response time, since each input must wait until a full batch is
formed. While it is possible to minimize this extra latency by
having extremely small batches, doing so would lead to high
overhead, defeating the purpose. We focus on operator-based
DSMSs since our target applications have real-time constraints,
in which response time is key.

Two popular open source operator-based DSMSs are
Storm [28] and S4 [29]. Their main difference is that Storm
guarantees the correctness of its results (e.g., through its
Trident component), while S4 does not. Both systems rely
on manual configurations for resource scheduling. Hence, to
avoid slow responses due to operator overloading, the user has
to either overprovision resources to every operator, which is
wasteful, or continuously tuning the system, which is infeasible
for dynamic streams.

Many research prototypes of operator-based DSMSs are
proposed, such as TimeStream [2], which features efficient
fault recovery, and Samza [30]. None of these systems, how-
ever, addresses the resource scheduling problem. In the fol-
lowing we present DRS, the first effective resource scheduler
for cloud-based operator DSMSs.

I1l. DYNAMIC RESOURCE SCHEDULING

Section I11-A clarifies assumptions in DRS. Section I11-B
presents the DRS performance model, which estimates query

response time given a resource allocation scheme. Sec-
tion 111-C describes the DRS dynamic resource schedul-
ing algorithm. Table | summarizes frequently used notations
throughout the paper.

TABLE I. TABLE OF NOTATIONS.
Symbol | Meaning
N Total number of operators in an application
Ai Mean arrival rate of inputs to i-th operator
Ao Mean arrival rate of inputs to the application
i Mean processing rate of inputs to i-th operator
ki # of processors allocated to the i-th operator
k A Vector (ki,..., kn) containing all k;s.
Trax Real-time constraint parameter: each input of the application is
expected to be fully processed within Tyax time.
Kmax Resource constraint parameter: maximum number of available
processors that can be allocated to the operators.
t an input tuple to the streaming application
T A random variable on the total sojourn time of a tuple t
A ASSUYTD'[IOHS

We focus on stream analytics applications, which are
usually memory-based and computation intensive. For such
applications, processors are the main type of resource, each
of which contains a CPU (or one of its cores) and a certain
amount of RAM. Disk space is not critical as streaming inputs
are computed on-the-fly. Although networking delay can also
affect query latency, we do not explicitly model it, because
(a) it is often correlated with computational costs and (b)
it can be affected by uncontrollable factors, such as other
transmission-heavy applications on the same server or in the
same subnetwork. Further, data centers today are increasingly
equipped next-generation networking hardware that provide
significantly higher bandwidth and lower latency, such as 10G
Ethernet and InfiniBand, whose prices have been dropping
rapidly. In contrast, processor speed in terms of CPU clock rate
and RAM latency has stagnated in the past few years. Hence,
we assume processors to be the bottleneck of the system, not
network bandwidth.

For the ease of presentation, we further assume that all
processors in the cloud have identical computational power.
Nevertheless, the proposed models and algorithms can also
support settings with heterogeneous processors, and we explain
how this is done whenever necessary. Meanwhile, we assume
that load balancing is achieved in every operator, i.e., each
processor inside the same operator performs roughly equal
amount of work. How to achieve load balancing is an orthog-
onal topic, and it is under active research, e.g., [31].Under
these assumptions, the processing speed of an operator depends
mainly on the number of processors therein.

The goal of DRS is to fully process each input of the
application in real time. Specifically, an input tuple to the ap-
plication, e.g., a video frame in Figure 1, may lead to multiple
intermediate results, e.g., features extracted by operator A, and
objects recognized by operator B. We say an input tuple t is
fully processed, if and only if every intermediate result derived
from t has been processed by its corresponding operator. We
use the term total sojourn timeto refer to the duration from the
time that t first arrives at the system to the time that t is fully
processed. Our goal is then to ensure that the expected total
sojourn time of each input t is no more than a user-specified
duration, denoted by Tpax.

B. Performance Model

Given an application’s operator network, e.g., the one in
Figure 2, the current resource allocation and characteristics
of the streaming data, the DRS performance model estimates
the total sojourn time of an average input of the application,
explained at the end of last subsection. The current resource
allocation is represented by the number of processors assigned
to each operator. Formally, we define N as the number of oper-
ators in an application and a resource allocation is modeled by
a vector k = (kg, ko,...,kn), where ki(1 <i<N) corresponds
to the number of processors allocated to the i-th operator.

Regarding data characteristics, the important variables are
the rate that tuples arrive at each operator, and how fast
they can be processed by one processor. Networking delay
is not explicitly expressed in our model, and we discuss this
issue further at the end of this subsection. Note that our
model assumes neither deterministic tuple arrival rates nor
processing times; in other words, instantaneous arrival rates
and processing times can fluctuate. On the other hand, in
order to make the problem tractable, we do assume that the
system remains in a relatively steady state during the span
that DRS performs modeling and resource scheduling. This
means that the average tuple arrival rate and processing time
at each operator remains stable, and we obtain these quantities
through the measurement module of the system, described in
Section 1V. Specifically, for the i-th operator (1 <i < N), we
use A; to denote the mean arrival rate of its inputs, and u; to
denote the mean processing rate of each of its processors. For
instance, the case of k =3, A; = 10 and y; = 3 means that on
average, 10 tuples arrive at the i-th operator in unit time, and
each of its 3 processors processes 3 tuples in unit time. For
an operator with multiple input streams, i.e., join operators, A
is the total arrival rates of all its input streams, and y; is the
average processing rate of the operator, regardless of which
input stream the tuple comes from.

Additionally, we define A as the mean arrival rate of inputs
that flow into the application’s operator network from outside
of it. When there are clear “source” operators in the operator
network whose inputs come entirely from outside the network,
Ao is simply the total arrival rates of these sources. In general,
however, there may not be a simple relationship between A
and the set of A;’s, 1 <i <N. For example, in Figure 2, Aq is
the arrival rate of tuples that come (from outside the system)
to operator A; the input arrival rate A, for A on the other hand
is the sum of Ay and the arrival rate of A’s other input stream,
produced by operator E.

We use random variable T to denote the total sojourn time
of an input to the application. Our goal is to estimate E[T],
i.e., the expected value of T. The basic idea for estimating
E[T] is to model the system as an open queuing network
(OQN) [32], and apply known results in queueing theory. In
OQN, the total sojourn time of an input tuple t is computed
by summing up its total service time (i.e., total time spent
on processing t and intermediate results derived from t) and
total queuing delay (total time that t and its derived tuples
wait in operator queues). This closely matches our setting.
The challenge, however, is that there are numerous OQN
models in the queuing literature, and selecting an appropriate
one is non-trivial. On one hand, complex queuing network
models generally do not have known solutions; among the

ones that do, most have only numerical solutions (rather than
analytical ones), which renders effective optimization hard;
on the other hand, an overly simplified model may rely on
strong assumptions, such as deterministic tuple arrival rates,
which do not hold in our setting. After comparing various
options and testing them through experiments, we chose to
build our model based on a combination of one of Erlang’s
models [33] and the Jackson network [32], [34]. The former
enables effective analysis of each individual operator, and the
latter helps to aggregate these analyses to estimate E[T] for the
whole network. Our model has an analytical solution, and it
involves only mild limitations, which will be discussed shortly.

We first focus on a single operator, say the i-th. We use
T, to denote the time between the arrival of an input of the
operator and the time when the operator finishes processing it.
We model the operator as an M/M/k; system [33], where k;
is the number of processors for operator i. According to the
Erlang formula [33], E[T;] is calculated by:

(&)

—AEL o 4L for k> A
ek =] wi A me F R @
A
oo for ki < &
where my is a normalization term, given by:
! k
Aj A
k—1(A

s ! Jrk@!(lfﬁ)

Intuitively, since new tuples arrive at an average rate A,
and each processor processes tuples at an average rate i,
when ki < 24 the processors cannot keep up with incoming
tuples. Cons'equently, the number of tuples in the operator
queue increases with time, leading to infinite queuing delay.
When, ki > % tuples are expected to be handled faster than
they arrive. However, due to the randomness of the arrival and
process rates, the queue may still grow when the arrival rate
is temporarily higher than the processing rate. Clearly, the ex-
pected service time for each tuple is il The expected queuing
delay is captured by the complicated term in Equation (1).

Next we aggregate all E[T;]’s to obtain an estimate of E[T]
for the entire operator network. According to the theory of
Jackson networks [32], [34], E[T] is computed by a weighted
average of the E[Ti]’s:

N
E[TI(K) = E[T) (k. kes.... k) = %zmwm @3)
i=1

This completes the DRS performance model. Since our
model relies on Erlang’s formula and Jackson open queueing
network, it inherits two limitations. First, the model implicitly
assumes that both the inter-arrival times of external tuples (that
come from outside the system) and the service time of the
operator are i.i.d. samples from random variables following
the exponential distribution. Second, Jackson network does not
explicitly model pipelining between different operators. Hence,
our model may give an inaccurate estimate of E[T], when the
service time or tuple arrival distribution deviates significantly

from the expected exponential distribution, or when pipelining
affects total processing time considerably. In the meantime, our
model does not explicitly consider networking costs, due to the
fact that measuring the networking delay between two nodes
requires complex inter-node protocols, e.g., for clock syn-
chronization, which can be prohibitively expensive in a real-
time application. Therefore, when networking delay becomes a
dominant factor in the total sojourn time of an average input,
our model tends to produce an underestimation of the true
result. Nevertheless, as we show in the experiments, the value
of E[T] predicted by our model is sufficiently accurate, when
the underlying application is computation intensive, which is
one important assumption made in Section I11-A. Further, even
when the prediction is inaccurate, it is still strongly correlated
with the exact value of E[T], meaning that DRS remains
capable of identifying the best resource allocation with the
predicted value. In the rest of the section, we show how DRS
schedules resources based on the performance model.

C. Scheduling Algorithm

In a nutshell, DRS (a) monitors the current performance of
the system (more details in Section 1V), (b) checks whether
the performance falls (or is about to fall) under the real-
time constraint, or when the system can fulfil the constraint
with less resources, and (c) reschedules resources when (b)
returns a positive result. The main challenge lies in (b), which
needs to answer two questions, including how many processors
are needed to fulfil the real-time requirement, and where to
place them in the operator network. We first focus on the
latter question. Specifically, given a number (say, Kmax) of
processors, we are to find an optimal assignment of these
processors to the operators of the application that obtains the
minimum expected total sojourn time. The problem can be
mathematically formalized as follows:

mkin E[T](k)
(4)

N
st. Y ki < Kmax, ki is interger,i=1,2,....N;
i=1

A naive solution to the above optimization problem is
to view it as an integer program, and apply a standard
solver. However, current integer programming solvers are
prohibitively slow, especially considering that DRS itself has to
run in real time. In the following we describe a novel algorithm
that solves Program (4) with negligible cost.

The key property used in the proposed algorithm is that
E[Ti](ki), defined in Equation (1), is a convex function of ki,
the number of processors assigned to the i-th operator. This
property has already been proved in [32]. It follows from
the convexity of E[TiJ(ki) implies that marginal benefit for
incrementing k; drops monotonously as k; becomes larger.
Formally, for all ki > ki, we have:

E[T] (k) — E[T](k +1) > E[T](K) —E[T](K+1) (5)

Now observe from Equation (3) that E[T] is a weighted
sum of the E[Ti]s, and each weight A; is independent of the
value of k;. Hence, E[T] is also a convex function of the
kis, meaning that incrementing each k; also has diminishing

marginal benefit with respect to E[T]. Based on this obser-
vation, we design a greedy algorithm, listed in Algorithm 1.
The idea is to start from the smallest possible value of each k;
(lines 1-4) and iteratively add one processor to the operator that
leads to the largest decrease in E[T] (lines 8-15). According to
Equation (1), each k; must be larger than i'l since otherwise,
E[Ti](ki) becomes infinitely large, leading to infinity on E[T]
as well.

Algorithm 1 AssignProcessors
Input: Kmax, Ao, {Ai,i=1,...,N}, {mi,i=1,...,N}.
Output: k= (kg,kz,...,kn)

1: foralli<+<1,...,N do

2 ke [H /* Initialize each k; */
3: end for
4
5

2 if XN ki > Kmax then
throw an exception saying that the number of processors
are not sufficient for the application.

6: end if

7. while TN, ki < Kmax do

g foralli«1,...,Ndo

o &« k- [E[TI(e) ~ET)(k+1)

10: end for

11: /* find the operator with the largest marginal benefit. */

12:] < argmax; o;

13 Kkj+kj+1

14: end while

15: return k= (kg ko, ..., k)

Since E[T] is convex, the above greedy algorithm always
finds the optimal solution, similar to the case of the server
reallocation problem [35]. This is restated as follows:

Theorem 1: Algorithm 1 always returns exact optimal so-
lution to Program 4.

The proof is given in [36].

Next we focus on the question on how to determine the
minimum number of processors that are expected to achieve
real-time processing, i.e., the expected total sojourn time E[T]
is no larger than a user-defined threshold Tmax. This can be
modeled with the following optimization problem.

N
min ki,
k .:21 (6)
s.t. E[T](K) < Tmax, ki is interger,i=1,2,...,N;

Similar to Program (4), both constraints and objective
of Program (6) are convex in terms of k. Hence, we solve
Program (6) with a greedy strategy similar to Algorithm 1.
Specifically, we start by initializing each ki with minimal
requirement, as in lines 1-4 of Algorithm 1. The algorithm re-
peatedly adds one processor to the operator with the maximum
marginal benefit as in lines 8-15 of Algorithm 1, until E[T] is
no larger than Tpax. We omit the proof of correctness for this
algorithm, since it is nearly identical to that of Algorithm 1.

In practice, the solution of Program (6) may not give us
the precise amount of resources necessary for meeting the
real-time requirement at all times, for two reasons. First, the

total sojourn time can be different for every input, and E[T]
is merely its expected value. Second, the performance model
described in Section 111-B outputs only an estimate of E[T],
rather than its precise value. To address this problem, DRS
starts with the number of processors suggested by the solution
of Program (6), monitors the actual total sojourn time E[T],
and continuously adjusts the number of processors based on
the measured value of E[T]. In next section, we discuss the
system design and implementation issues with DRS.

IV. SYSTEM DESIGN

An overview of the system architecture is presented in
Figure 3, which generally consists of two layers, the DRS layer
and the CSP (cloud-based streaming processing) layer. Specif-
ically, DRS layer is responsible for performance measurement,
resource scheduling and resource allocation control, while CSP
layer contains the primitive streaming processing logic, e.g.
running instances of Storm [28] and $4 [29], and cloud-based
resource pool service, e.g. YARN [16] and Amazon EC2.

OUTPUT:
Allocation Decision

Conf. scheduler Resource
Reader . Negotiator

Measurement results,
User/System para.

Measurer

Storm sS4
csp

ever [[Local Cluster] [Amazon EC2] [] j

Fig. 3. The architecture overview

While the core of DRS layer is responsible to the opti-
mization of resource scheduling based on the model derived in
the previous section, the system to support such functionality
is not that straightforward to build. Given the heterogeneous
underlying infrastructure and the complicated streaming pro-
cessing applications running on the CSP layer, it is crucial to
collect the accurate metrics from the infrastructure, aggregate
the statistics, make online decisions and control the resource
allocation in an efficient manner.

To seamlessly combine the optimization model and the
concrete streaming processing system, we build a number of
independent functional modules, which bridge the gap between
the physical infrastructure and abstract performance model.
As is shown in Figure 3, on the input side of the opti-
mizer component, we have measurer module and configuration
reader module, which generate the statistics needed by the
optimizer based on the data/control flow from CSP layer. On
the output end of the workflow diagram, the scheduler module
and resource negotiator module transform the decisions of the
optimizer into executable commands for different streaming
processing platforms and resource pools. The technical details
and key features of the modules are discussed in [36].

V. EMPIRICAL STUDIES

To test the effectiveness of DRS, we have implemented
it?> and integrated it into Storm [28], which provides the
underlying CSP layer. The overview of the important concepts

2The source code is available online: https:/github.com/ADSC-Cloud/resa/

and architectural aspects of Storm, and the description of how
we implement the measurer, scheduler and resource negotiator
modules of DRS in Storm are provided in [36].

A. Testing Applications

We implement two real-time stream analytics applications:
video logo detection (VLD) and frequent pattern detection
(FPD) from different domains.

Logo Detection from a Video Stream. Given a set of query
logo images, the logo detection application identifies these
images from the input video stream. Although much work has
been done to improve the accuracy and efficiency of VLD,
performing it in real time remains a major challenge, due to
the high computational complexity.

Video frames
SIFT

Spout Feature
Extractor

Feature
Matcher

Matching
Aggregator |

Fig. 4. The topology of real-time video logo detection application.

Figure 4 illustrates the topology of the real-time VLD
application, which is a chain of operators containing a spout,
a feature extractor, a feature matcher, and an aggregator. The
spout extracts frames from the raw video stream. The output
rate of frames may vary from time to time due to the generation
algorithm and the original video contents. We employ scale-
invariant feature transform (SIFT) [37] algorithm to extract
features from each frame. This step is time-consuming, involv-
ing convolutions on the 2-dimensional image space. Moreover,
the number of result SIFT features may vary dramatically on
different frames, causing significant variance on the compu-
tation overhead over time. The feature matcher measures Lo
distance between its input SIFT features to those pre-generated
logo features, and outputs matching pairs with distance lower
than a pre-defined threshold. Finally, the aggreagator judges
whether a logo appears in a video frame by aggregating all
input matching feature pairs, i.e., if the number of matched
features in a video frame exceeds a threshold, the logo is
considered to appear in the frame.

Freguent Pattern Detection over a Microblog Stream. This
application maintains the frequent patterns [38] on a sliding
window over a microblog stream from Twitter. For each input
sentence, we append an additional label “+/-”, indicating it is
entering/leaving the dedicated window. Given a set of input
item groups in the sliding window and a threshold, we define
a maximal frequent pattern (MFP) to be the itemset satisfying:
(@) the number of item groups containing this itemset, called
its occurrence count, is above the threshold; and (b) the
occurrence count of any of its superset is below the threshold.

Spout, +)
Pattern

Detector
Generator

Reporter
Spout, -

Fig. 5. The topology of the stream frequent pattern detection application.

Figure 5 illustrates the operator topology. There are two
spouts, which generate an event tuple as an itemset en-
ters/leaves the current processing window, respectively. The
pattern generator generates candidate patterns, i.e., itemsets.
These candidates include an exponential number of possible

non-empty combinations of items. Hence, its computation
varies, according to the number of items in recent transactions.

The detector maintains the state records containing (a) the
occurrence counts and (b) MFP indicator, of all the candidate
itemsets. When a state change happens to some itemset, e.g.,
from MFP to non-MFP, the detector outputs a notification to
the reporter, and also to itself through the loop back link. Since
(a) each processor in the detector maintains only a portion
of the state records; and (b) a state change can affect the
states of other itemsets stored at a different processor, the
loop ensures that the state change notifications be sent to all
the instances. Finally, the reporter presents the updates of the
detection results to the user. In our implementation, the reporter
simply write its inputs to an HDFS file.

B. Experiment Setup

The experiments were run on a cluster of 6 Ubuntu Linux
machines interconnected by a LAN switch. Each machine
is equipped with an Intel quad-core CPU 3.4GHz and 8GB
of RAM. Following common configurations of Storm, we
allocated one machine to host the Nimbus and the Zookeeper
Server; the remaining 5 machines host executors for the
experimental applications. We also configured each of these
5 machines so that one machine can host at most 5 execu-
tors. The main purpose of this constraint is to mitigate the
interference caused by other executors running on the same
machine, and the resource contention due to the over-allocation
of executors on a single machine. As a result, there are 25
executors in total.

For both applications, namely video logo detection (VLD)
and frequent pattern detection (FPD), we allocated two ex-
ecutors as spouts, and one executor for DRS. The remaining
25 — 3 = 22 executors are used as bolts, i.e., Kmax = 22. For
VLD, the input data are a series of videos clips of the soccer
games, and we selected 16 logos as the detection targets. The
frame rate simulates a typical Internet video experience, which
is uniformly distributed in the interval [1,25] with a mean of
13 frames/second. For FPD, we use a real dataset containing
28,688,584 tweets from 2,168,939 users collected from Oct.
2006 to Nov. 2009. We set the sliding window to 50,000
tweets, and simulated the arrival of tweets to the topology
following the Poisson process with an average arrival rate of
320 tweets per second.

C. Experimental Results

For both applications, we run two sets of experiments:
(a) with re-balancing® disabled, i.e., we keep DRS running
passively, meaning that it continues to monitor the system
performance and recommend new (if better) resource alloca-
tion configurations, but does not perform re-scheduling; (b)
re-balancing is disabled at the beginning, and then enabled
at a later time. These experiments aim to test the quality of
the performance model and evaluate the effectiveness of the
resource scheduling algorithm of DRS.

Experiments with re-balancing disabled. In this set, each
experiment lasts for 10 minutes. Figure 6 shows the mean and
standard deviation of the total sojourn times under 6 different

3This is a term used by Storm, and it has the same meaning as re-scheduling.

allocations for each application. The x-axis (X1:X2:X3) denotes
an resource configuration (in a partial order of Xxi,X2,X3),
where Xi,%o,X3 are the number of executors allocated to
the operators SSFT Feature Extractor, Feature matcher, and
Matching aggregator in Figure 4, or the Pattern generator,
detector, and reporter in Figure 5. The two configurations
with “x”, (10:11:1) for VLD and (6:13:3) for FPD are the
recommended allocations by the passively running DRS.

1500

Video Logo Detection (VLD)
1350

1200|
1050

=1 13 J(

(812:2) (9:112) (101L1)* (1192) (1L:10) (12:9:1)

Measured avg. sojourn time (ms)
o N ©
2 & 8
8 & 8

Frequent Pattern Detection (FPD)

A
R

Measured avg. sojourn time (ms)
5 & B8
3 8 8
_

100 (5:1‘4:3) (6:1‘2:4) (6:1é:3)* (7:£2:3) (7:1‘3:2) (8:1‘2:2)

Fig. 6. The mean and standard deviation of the complete sojourn times
under different resource configurations with re-balancing disabled, where the
configurations with “«” are the recommended allocations by the passively
running DRS.

From Figure 6, we make the following observations. The
resource configurations (10:11:1) for VLD and (6:13:3) for
FPD, achieve the best performance according to the measured
average sojourn time. This turns out to be consistent with
the recommendations provided by the passively running DRS,
which validates the accuracy and effectiveness of our DRS
performance model and resource scheduling algorithm.

In particular, these two configurations not only obtain
the smallest average sojourn times, but also the minimum
standard deviation, meaning that these two allocations lead to
the smallest performance oscillations. Different configurations,
including the 5 closest ones in terms of the L distance (i.e.,
the remaining 5 in the experiment) to the best configurations
(10:11:1) for VLD and (6:13:3) for FPD, all exhibit consider-
ably worse performance. These results demonstrate that it is
not trivial to find the optimal resource allocation especially
when the application topology becomes more complicated
(e.g. more than three bolt operators), and hence reveal the
importance and usefulness of the DRS.

To take a close look at how DRS provides resource
configuration recommendations, correctly, Figure 7 shows the
relationship between the measured average sojourn times and
the estimated average sojourn time, which is derived by the
performance model described in Section 111-B, of the six
resource allocation configurations for both VLD and FPD, with
re-balancing disabled.

As shown in Figure 7, the points representing the measured
and the estimated average sojourn time are showing the strictly

1450y

Video Logo Detection (VLD) +

(8:12:2)

i
]
S
S

(12:9:1)
*+«—(11:9:2
. '+ + ()
—(11:10:1)
+ «——(9:11:2)
+ «—(10:11:1)

Measured avg. sojourn time (ms)
~ ©
3 &
8 g

&
&2
)

500 i 550 600
Estimated avg. sojourn time (ms)

H Frequent Pattern Detection (FPD) +
+

i
©
=1

=
©
=)

(8:12:2)
+ + (7:13:2)

-
=5
=]

123 (6:12:4)

[y
o
=}

+ «—(5:143)

,_.
N
=

Measured avg. sojourn time (ms)
2 5
8 3

-+ +—(6:13:3)
15,

]
o)
~

4_ 156 158 16 162 164 166
Estimated avg. sojourn time (ms)

Fig. 7. Comparing average sojourn time estimated by the model and measured
in the experiment.

monotonicity, which signifies that the performance model is ca-
pable of suggesting the best resource allocation configuration.
Moreover, the performance model outputs accurate estimates
for VLD; though, with some slight underestimation comparing
to the measured values, which is expected, as our model does
not consider network overhead. It is worth noting that the
estimates are accurate even though the underlying conditions
are not satisfied for the Jackson network theory and Erlang
model. For example, the frame rate is uniformly (rather than
exponential as required) distributed. Meanwhile, the operator
input queues do not follow strict FIFO rule; instead, tuples
are hashed to processors. Different operators are also run in
parallel, which leads to pipelining. The model is clearly robust
to these variations of the conditions.

For FPD, the estimated sojourn times show larger de-
viations to the measured ones. This is mainly because the
model does not consider network transmission cost, which
takes a dominant portion of the total query latency in this
particular application. In other words, the FPD is de facto the
type of data intensive rather than the computation intensive
application that we focus on. Nevertheless, our model still
correctly indicates the relative order of the performance of
different resource allocation configurations. Meanwhile, since
the estimates are strongly correlated with the true values,
a polynomial regression can be used straightforwardly to
make accurate predictions of the true latency value given the
estimated one.

To further validate the above explanation, we carried out
a separate experiment over a synthetic topology with a simple
chain of three operators. Each operator simply performs some
computations (such as empty for-loops) with varying load (e.g.,
number of loops). We used 30 executors running on 6 physical
machines, connected in the same subnetwork. The results are
reported in Figure 8.

As shown in Figure 8, We tried 6 different workloads in
terms of total CPU time (excluding the queue time) of the
three bolts, from 0.567 millisecond, to 309.1 milliseconds (x-

3
v

Ratio of measured/estimated

o

0
Total execution time of three bolts (ms)

Fig. 8. The degree of underestimation (the ratio of the measured to the
estimated average sojourn time) v.s. the total CPU time of the three bolts of
the synthetic chain topology

axis, log-scale), and the y-axis shows the ratio of the measured
average sojourn time to the estimated value. It shows a clear
decreasing trend of the degree of underestimation (ratio of the
measured to the estimated average sojourn time) as the total
CPU time of the three bolts increases.

Experiments with re-balancing disabled first and then
enabled. In this set of experiments, we investigate the per-
formance of the real re-scheduling operation activated and
executed by the DRS when it detects the non-optimal resource
allocation configurations. For each experiment, it lasts for 27
minutes and the re-balancing function is disabled from the
beginning till the end of the 13th minute, and becomes enabled
afterwards. In this way, we are able to have a clear view of
the performance (in terms of the average sojourn time) across
the re-scheduling events.

160 Video Logo Detection (VLD) | '

uoof ek

= I~
1<) N}
=3 S
=] Q

@
3
3

X
L ‘x.x—x-xx‘xé—x

3
X
Ho0000P906800

201 23456 78 910111213141516 17181920 21 22 23 24 25 26 27

Experiment time (minute)

Avg. sojourn time (ms)

S

IS
5

260 Frequent Pattern Detection (FPD) | '

2401

HN
5 3
g 3
> 45
*

e ey
{ To L0 0@ T
o 09 o bgggéé¢@3QXxxx)

Avg. sojourn time (ms)

023450678 9101112131415161718192021222324252627
Experiment time (minute)

Fig. 9. The average sojourn times of three different allocations in the initial
state for each application, where re-balancing function is disabled from the
beginning till the end of the 13th minute, and becoming and keeping enabled
since the 14th minute.

Figure 9 shows three curves for each of the applications.
In particular, each curve represents an initial allocation. For
both applications, the two curves initially with the non-optimal
allocations, experience the re-scheduling events at the 14th
minute, while the one with the optimal allocation as its initial
state does not. From Figure 9, we can see that optimizer
triggers the re-scheduling action as early as possible, which
responds quickly to the less promising resource scheduling

plan. After the re-scheduling, all the curves with different
initial allocations, were scheduled with the unique optimal
solution. This statement is supported by two facts: a) from
Figure 9, after the 14th minute, all the three curves have the
similar average sojourn time, and similar performance trends.
Especially for the two curves that experience the re-allocation
event, it shows a clear decrease in the average sojourn time; b)
the plans kept in the log files further verify this observation.

Another observation we make, according to the four curves
experiencing the re-scheduling events shown in Figure 9 -
(8:12:2) and (11:9:2) of VLD and (8:12:2) and (7:13:2) of
FPD - is that our improved version of re-balancing mechanism
led to remarkably low cost, i.e. a neglectable increment in the
average sojourn time within the 14th minute only. Besides, the
whole re-balancing process of ours only takes a few seconds,
comparing to the 1-2 minutes taken by Storm’s default version.

Next, we investigate how DRS adjusts resources when it
detects the resource shortage/wastage according to the con-
figured parameter Trmax. Two experiments on VLD application
are conducted and each one lasts for 27 minutes and the re-
balancing function is disabled from the beginning till the end of
the 13th minute, and becomes enabled afterwards. The average
tuple complete sojourn time of the two experiments in each
minute is plotted in Figure 10. In particular, for “ExpA”, we
set Tmax = 500 (ms) and in the initial state, 4 workers with
Kmax = 17 are allocated; and for “ExpB”, we set Tmax = 1000
(ms) and initially, 5 workers with Kmax = 22 are allocated.

1400 Video Logo Detection (VLD) ' ‘: : ““““““
ExpA: Tmax = 500 (ms) ' ' 777 ms
1200 vl |
:]
'

100@ Qe(b
IOV CRE Lo
@O T ©

Initial state:
4 workers, Kmax = 17, (8:8:1)

After re-balancing enabled, 7
5 workers, Kmax = 22, (10:11:1)

O%eeoeeoeo

Avg. sojourn time (ms)
g 8

N

S

S
T

\\\\\\\\\\\\\\\\\\\\\\\\
201 2 3456 7 8 910111213141516 171819 20 21 22 23 24 25 26 27

Experiment time (minute)

0 Video Logo Detection (VLD)

> ExpB: Tmax = 1000 (ms)
£ 1200
> ®
£ 1000 | OO
= H K
c Initial state: !
5 800 5 workers, Kmax = 22, (10:11:1) (9@@@@0@@@0
2
2« o, %0
: After re-balancing enabled,
?’ 4081)'0‘()@@@ OGG@ 4 workers, Kmax =17, (8:8:1) |
<

00— v b
1234567 8 91011121314151617 18192021 22 23 24 2526 27

Experiment time (minute)

Fig. 10. The average sojourn times under two configurations of the VLD
application, where re-balancing function is disabled from the beginning till
the end of the 13th minute, and becoming and keeping enabled since the 14th
minute. For “ExpA”, we set Tnax = 500 (ms) and in the initial state, 4 workers
with Kmax = 17 executors are allocated; and for “ExpB”, we set Tnax = 1000
(ms) and initially, 5 workers with Kynax = 22 executors are allocated.

As shown in Figure 10, the curve of “ExpA” keeps with the
allocation configuration (8:8:1) which is actually the suggested
allocation when Kpyax = 17 (by DRS algorithm), for the first 13
minutes. It has experienced the larger average tuple complete
sojourn time than the configured Tmax = 500 (ms). On the 14th
minute right after the re-balancing function is enabled, the
DRS quickly triggers the re-scheduling operation including:

(a) initializing and adding an extra machine (thus 5 more
executors); and (b) calculating the recommended allocation
configuration (10:11:1) when Kpnax becomes 22. Since then,
the curve of “ExpA” is stably below the target requirement
of Tmax = 500 (ms). On the other hand, the curve of “ExpB”
shows a totally opposite shape to that of “ExpA”, which is
just as expected: it initially keeps with the configuration of
(10:11:1) till the end of the 13th minutes. Afterwards, DRS
triggers the re-balancing operation and makes “ExpB” using
less resources, i.e., 4 machines, Kmax = 17 and (8:8:1), but still
satisfying the performance requirement Tpyax = 1000 (ms).

Similar to the observations we made on Figure 9, the
cost incurred by our improved version of the re-balancing
mechanism in “ExpA” and “ExpB” are again much lower than
that of Storm’s default version, as demonstrated by Figure 10 .
Particularly, “ExpB” just experiences an increase to about 1113
(ms) in average sojourn time in the 14th minute, whereas the
overhead of “ExpA” is larger, an increase to around 4777 (ms).
This is mainly because of the different actions taken during the
re-scheduling, i.e., in “ExpA”, new machines are initialized and
added to the running topology, in which case, reusing JVMs
has no effects; in contrast in “ExpB”, it only needs to stop and
remove some existing working machines. Therefore, there is
still room for improvement on our version of the re-balancing
mechanism, which we consider as the future work.

The running overhead of the DRS. To evaluate the com-
putation overhead of the overall DRS layer, we report the
CPU time spent by the whole DRS module, including the
processing on measurement results and calculating the optimal
allocation. In this experiment, we only test on the video logo
detection topology composed by three bolt operators with all
the parameters, Ao, A and p;,i =1,2,3 fixed. We try different
Kmax, 1.6. total number of executors for all operators. For
each value of Kmax, We run the procedure 100,000 times and
report the average running time of the whole DRS layer. The
results are listed in Table I, with Scheduling as the allocation
computation and Measurement as the metric processing com-
putation. Generally speaking, the computation done by DRS

TABLE Il COMPUTATION OVERHEADS IN MILLISECONDS UNDER

DIFFERENT Kmax -

Kmax 12 24 48 96 192
Scheduling 0.083 | 0.158 | 0.323 | 0.665 | 1.250
Measurement | 0.100 | 0.100 | 0.100 | 0.100 | 0.100

is almost neglectable, with overhead less than milliseconds in
most of the cases. Moreover, the results are consistent with our
intuition that the computation consumption is linear to Kmax, as
analyzed over Algorithm 1. The time consumed on processing
the measurement results is irrelevant to Kmax. In fact, it is
affected by the total number of tasks of the topology, as we
discussed in [36] that this number keeps immutable when the
topology is continuously running.

V1. CONCLUSION

This paper proposes DRS, a novel dynamic resource sched-
uler for real-time streaming analytics in a cloud-based DSMS.
DRS overcomes several fundamental challenges, including the
estimation of the required resources necessary for satisfying
real-time requirements, effective and efficient resource provi-
sioning and scheduling, and the efficient implementation of

such a scheduler in a cloud-based DSMS. The performance
model of DRS is based on rigorous queuing theory, and it
demonstrates robust performance even when the underlying
conditions of the theory are not fully satisfied. In addition,
we have integrated DRS into a popular system Storm, and
evaluated it by conducting extensive experiments based on real
applications and datasets.

Regarding future work, we plan to investigate efficient
strategies for migrating the system from the current resource
configuration to the new one recommended by DRS. This
step should minimize additional overhead and result latency
during migration, as well as the migration duration, (e.g., [39]).
Another interesting direction for future work is to investigate
the possibility of improving performance model accuracy with
more sophisticated queuing theory.

ACKNOWLEDGMENT

This work is supported by Human-Centered Cyberphysical
Systems (HCCS) Programme at Advanced Digital Sciences
Center from Singapore’s A*STAR. Ding is partially supported
by NSF of China under Grant 61173081, and also supported
by GZSI’s grant 2013Y2-00046. The authors would like to
thank Prof. Hongyang Chao from Sun Yat-sen University for
her suggestions to this work.

REFERENCES

[1] W. Lam, L. Liu, S. Prasad, A. Rajaraman, Z. Vacheri, and A. Doan,
“Muppet: Mapreduce-style processing of fast data,” Proc. of the VLDB
Endowment, vol. 5, no. 12, pp. 1814-1825, 2012.

[2] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu, and
Z. Zhang, “Timestream: Reliable stream computation in the cloud,” in
Proc. of ACM European Conference on Computer Systems, 2013.

[3] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Comm. of ACM, vol. 51, no. 1, pp. 107-113, 2008.

[4] F.Li, B.C.Ooi, M. T. Ozsu, and S. Wu, “Distributed data management
using mapreduce,” ACM Computing Surveys, vol. 46, no. 3, p. 31, 2014.

[5] http://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html.

[6] http://hadoop.apache.org/docs/rl.2.1/capacity_ scheduler.html.

[71 M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
1. Stoica, “Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling,” in Proc. of the European conference
on Computer systems, 2010, pp. 265-278.

[8] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
and T. Vassilakis, “Dremel: interactive analysis of web-scale datasets,”
Proc. of the VLDB Endowment, vol. 3, no. 1-2, pp. 330-339, 2010.

[91 M. Traverso, “Presto: Interacting with petabytes of data at facebook.”

[10] S. Zhang, Y. Yang, W. Fan, L. Lan, and M. Yuan, “Oceanrt: Real-time
analytics over large temporal data,” in ACM SGMOD, Demo, 2014.
[11] S. Zhang, Y. Yang, W. Fan, and M. Winslett, “Design and implementa-
tion of a real-time interactive analytics system for large spatio-temporal
data,” Proc. of the VLDB Endowment, vol. 7(13), pp. 1754-1759, 2014.
[12] Z. Zhang, H. Shu, Z. Chong, H. Lu, and Y. Yang, “C-cube: Elastic
continuous clustering in the cloud,” in Proc. of IEEE ICDE, 2013.
[13] R. Cai, Z. Zhang, and Z. Hao, “Sada: A general framework to support
robust causation discovery,” in Proc. of ICML, 2013, pp. 208-216.
[14] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,
S. Antony, H. Liu, and R. Murthy, “Hive-a petabyte scale data ware-
house using hadoop,” in Proc. of IEEE ICDE, 2010, pp. 996-1005.
[15] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center.” in Proc. of USENIX NSDI, 2011.

[16] http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

Z. Zhang, R. T. B. Ma, J. Ding, and Y. Yang, “Abacus: An auction-
based approach to cloud service differentiation,” in Proc. of |IEEE
International Conference on Cloud Engineering, 2013, pp. 292-301.

A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa,
J. Rosenstein, and J. Widom, “Stream: the stanford stream data manager
(demo),” in Proc. of the ACM SSGMOD, 2003, pp. 665-665.

A. Arasu, S. Babu, and J. Widom, “The cql continuous query language:
semantic foundations and query execution,” The International Journal
on Very Large Data Bases, vol. 15, no. 2, pp. 121-142, 2006.

S. Babu, K. Munagala, J. Widom, and R. Motwani, “Adaptive caching
for continuous queries,” in Proc. of |IEEE ICDE, 2005, pp. 118-129.

D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: a new model and
architecture for data stream management,” The International Journal
on Very Large Data Bases, vol. 12, no. 2, pp. 120-139, 2003.

C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk, “Gigascope:
a stream database for network applications,” in Proc. of the ACM
SGMOD, 2003, pp. 647-651.

S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and
M. A. Shah, “Telegraphcq: continuous dataflow processing,” in Proc.
of the ACM SSGMOD, 2003, pp. 668-668.

H. Andrade, B. Gedik, K.-L. Wu, and P. Yu, “Processing high data rate
streams in system s,” Journal of Parallel and Distributed Computing,
vol. 71, no. 2, pp. 145-156, 2011.

B. Babcock, S. Babu, M. Datar, R. Motwani, and D. Thomas, “Operator
scheduling in data stream systems,” The International Journal on Very
Large Data Bases, vol. 13, no. 4, pp. 333-353, 2004.

D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack,
J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina et al., “The
design of the borealis stream processing engine.” in Proc. of Conference
on Innovative Data Systems Research, vol. 5, 2005, pp. 277-289.

M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized
streams: an efficient and fault-tolerant model for stream processing on
large clusters,” in Proc. of the USENIX conference on Hot Topics in
Cloud Ccomputing. USENIX Association, 2012, pp. 10-10.

A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel,
S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham et al., “Storm@
twitter,” in Proc. of ACM SSGMOD, 2014, pp. 147-156.

L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
stream computing platform,” in Proc. of IEEE International Conference
on Data Mining Workshops (ICDMW), 2010, pp. 170-177.

SAMZA, http://samza.incubator.apache.org/.

Y. Xing, S. Zdonik, and J.-H. Hwang, “Dynamic load distribution in the
borealis stream processor,” in Proc. of |EEE ICDE, 2005, pp. 791-802.

G. R. Bitran and R. Morabito, “State-of-the-art survey: Open queueing
networks: Optimization and performance evaluation models for dis-
crete manufacturing systems,” Production and Operations Management,
vol. 5, no. 2, pp. 163-193, 1996.

H. C. Tijms, Sochastic modelling and analysis: a computational
approach. John Wiley & Sons, Inc., 1986.

J. R. Jackson, “Jobshop-like queueing systems,” Management science,
vol. 10, no. 1, pp. 131-142, 1963.

O. Boxma, A. Rinnooy Kan, and M. Van Vliet, “Machine allocation
problems in manufacturing networks,” European Journal of Operational
Research, vol. 45, no. 1, pp. 47-54, 1990.

T. Z. J. Fu, J. Ding, R. T. B. Ma, M. Winslett, Y. Yang, and
Z. Zhang, “DRS: dynamic resource scheduling for real-time analytics
over fast streams,” Tech. Rep., April 2015. [Online]. Available:
http://arxiv.org/abs/1501.03610

T. Lindeberg, “Scale invariant feature transform,” Scholarpedia, vol. 7,
no. 5, p. 10491, 2012.

D. Burdick, M. Calimlim, and J. Gehrke, “Mafia: A maximal frequent
itemset algorithm for transactional databases,” in Proc. of IEEE ICDE,
2001, pp. 443-452.

J. Ding, T. Z. J. Fu, R. T. B. Ma, M. Winslett, Y. Yang, Z. Zhang,
and H. Chao, “Optimal operator state migration for elastic data
stream processing,” Tech. Rep., Feb. 2015. [Online]. Available:
http://arxiv.org/abs/1501.03619

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

