default search action
Vladimir Cherkassky
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j49]Vladimir Cherkassky, Eng Hock Lee:
To understand double descent, we need to understand VC theory. Neural Networks 169: 242-256 (2024) - [j48]Eng Hock Lee, Vladimir Cherkassky:
Understanding Double Descent Using VC-Theoretical Framework. IEEE Trans. Neural Networks Learn. Syst. 35(12): 18838-18847 (2024) - [i6]Vladimir Cherkassky, Eng Hock Lee:
A Perspective on Large Language Models, Intelligent Machines, and Knowledge Acquisition. CoRR abs/2408.06598 (2024) - 2022
- [i5]Eng Hock Lee, Vladimir Cherkassky:
VC Theoretical Explanation of Double Descent. CoRR abs/2205.15549 (2022) - 2020
- [j47]Hsiang-Han Chen, Vladimir Cherkassky:
Performance metrics for online seizure prediction. Neural Networks 128: 22-32 (2020)
2010 – 2019
- 2019
- [c53]Vladimir Cherkassky, Hsiang-Han Chen, Han-Tai Shiao:
Group Learning for High-Dimensional Sparse Data. IJCNN 2019: 1-10 - [c52]Sauptik Dhar, Vladimir Cherkassky, Mohak Shah:
Multiclass Learning from Contradictions. NeurIPS 2019: 8398-8408 - [i4]Sauptik Dhar, Vladimir Cherkassky:
Single Class Universum-SVM. CoRR abs/1909.09862 (2019) - 2018
- [j46]Patoomsiri Songsiri, Vladimir Cherkassky, Boonserm Kijsirikul:
Universum Selection for Boosting the Performance of Multiclass Support Vector Machines Based on One-versus-One Strategy. Knowl. Based Syst. 159: 9-19 (2018) - [i3]Sauptik Dhar, Vladimir Cherkassky, Mohak Shah:
Multiclass Universum SVM. CoRR abs/1808.08111 (2018) - 2017
- [j45]Ying Yang, Jing Wang, Cyntia Bailer, Vladimir Cherkassky, Marcel Adam Just:
Commonality of neural representations of sentences across languages: Predicting brain activation during Portuguese sentence comprehension using an English-based model of brain function. NeuroImage 146: 658-666 (2017) - [j44]Marcel Adam Just, Jing Wang, Vladimir Cherkassky:
Neural representations of the concepts in simple sentences: Concept activation prediction and context effects. NeuroImage 157: 511-520 (2017) - [j43]Han-Tai Shiao, Vladimir Cherkassky, Jieun Lee, Brandon Veber, Edward E. Patterson, Benjamin H. Brinkmann, Gregory A. Worrell:
SVM-Based System for Prediction of Epileptic Seizures From iEEG Signal. IEEE Trans. Biomed. Eng. 64(5): 1011-1022 (2017) - [c51]Sauptik Dhar, Vladimir Cherkassky:
Universum learning for SVM regression. IJCNN 2017: 3641-3648 - 2016
- [i2]Sauptik Dhar, Vladimir Cherkassky:
Universum Learning for SVM Regression. CoRR abs/1605.08497 (2016) - [i1]Sauptik Dhar, Naveen Ramakrishnan, Vladimir Cherkassky, Mohak Shah:
Universum Learning for Multiclass SVM. CoRR abs/1609.09162 (2016) - 2015
- [j42]Sauptik Dhar, Vladimir Cherkassky:
Development and Evaluation of Cost-Sensitive Universum-SVM. IEEE Trans. Cybern. 45(4): 806-818 (2015) - [c50]Adarsh Sivasankaran, Vladimir Cherkassky, Mark Albrecht, Eric Williams, Martin Maiers:
Donor Selection for Hematopoietic Stem Cell Transplant Using Cost-Sensitive SVM. ICMLA 2015: 831-836 - [c49]Vladimir Cherkassky, Brandon Veber, Jieun Lee, Han-Tai Shiao, Ned Patterson, Gregory A. Worrell, Benjamin H. Brinkmann:
Reliable seizure prediction from EEG data. IJCNN 2015: 1-8 - 2014
- [c48]Han-Tai Shiao, Vladimir Cherkassky:
Learning using privileged information (LUPI) for modeling survival data. IJCNN 2014: 1042-1049 - 2012
- [j41]Feng Cai, Vladimir Cherkassky:
Generalized SMO Algorithm for SVM-Based Multitask Learning. IEEE Trans. Neural Networks Learn. Syst. 23(6): 997-1003 (2012) - [c47]Sauptik Dhar, Vladimir Cherkassky:
Cost-Sensitive Universum-SVM. ICMLA (1) 2012: 220-225 - [c46]Han-Tai Shiao, Vladimir Cherkassky:
Implementation and comparison of SVM-based Multi-Task Learning methods. IJCNN 2012: 1-7 - [c45]Vladimir Cherkassky:
Predictive Learning, Knowledge Discovery and Philosophy of Science. WCCI 2012: 209-233 - 2011
- [j40]Vladimir Cherkassky, Sauptik Dhar, Wuyang Dai:
Practical Conditions for Effectiveness of the Universum Learning. IEEE Trans. Neural Networks 22(8): 1241-1255 (2011) - [c44]Sauptik Dhar, Vladimir Cherkassky:
Application of SOM to analysis of Minnesota soil survey data. IJCNN 2011: 633-639 - [c43]Vladimir Cherkassky, Sohini Roy Chowdhury, Volker Landenberger, Saurabh Tewari, Paul Bursch:
Prediction of electric power consumption for commercial buildings. IJCNN 2011: 666-672 - 2010
- [c42]Vladimir Cherkassky, Sauptik Dhar:
Simple Method for Interpretation of High-Dimensional Nonlinear SVM Classification Models. DMIN 2010: 267-272
2000 – 2009
- 2009
- [j39]Lichen Liang, Feng Cai, Vladimir Cherkassky:
Predictive learning with structured (grouped) data. Neural Networks 22(5-6): 766-773 (2009) - [j38]Vladimir Cherkassky, Yunqian Ma:
Another look at statistical learning theory and regularization. Neural Networks 22(7): 958-969 (2009) - [c41]Kai-min Kevin Chang, Vladimir Cherkassky, Tom M. Mitchell, Marcel Adam Just:
Quantitative modeling of the neural representation of adjective-noun phrases to account for fMRI activation. ACL/IJCNLP 2009: 638-646 - [c40]Vladimir Cherkassky, Wuyang Dai:
Empirical Study of the Universum SVM Learning for High-Dimensional Data. ICANN (1) 2009: 932-941 - [c39]Feng Cai, Vladimir Cherkassky:
SVM+ regression and multi-task learning. IJCNN 2009: 418-424 - [c38]Vladimir Cherkassky, Feng Cai, Lichen Liang:
Predictive learning with sparse heterogeneous data. IJCNN 2009: 544-551 - 2008
- [c37]Xue Bai, Vladimir Cherkassky:
Gender classification of human faces using inference through contradictions. IJCNN 2008: 746-750 - [c36]Lichen Liang, Vladimir Cherkassky:
Connection between SVM+ and multi-task learning. IJCNN 2008: 2048-2054 - 2007
- [j37]Vladimir Cherkassky, William Hsieh, Vladimir M. Krasnopolsky, Dimitri P. Solomatine, Julio J. Valdés:
Computational intelligence in earth and environmental sciences. Neural Networks 20(4): 433 (2007) - [c35]Lichen Liang, Vladimir Cherkassky:
Learning Using Structured Data: Application to fMRI Data Analysis. IJCNN 2007: 495-499 - [c34]Tao Xiong, Jinbo Bi, R. Bharat Rao, Vladimir Cherkassky:
Probabilistic Joint Feature Selection for Multi-task Learning. SDM 2007: 332-342 - 2006
- [j36]Vladimir Cherkassky, Vladimir M. Krasnopolsky, Dimitri P. Solomatine, Julio J. Valdés:
2006 Special issue: Earth Sciences and Environmental Applications of Computational IntelligenceIntroduction. Neural Networks 19(2): 111 (2006) - [j35]Vladimir Cherkassky, Vladimir M. Krasnopolsky, Dimitri P. Solomatine, Julio J. Valdés:
Computational intelligence in earth sciences and environmental applications: Issues and challenges. Neural Networks 19(2): 113-121 (2006) - [c33]Jieping Ye, Tao Xiong, Qi Li, Ravi Janardan, Jinbo Bi, Vladimir Cherkassky, Chandra Kambhamettu:
Efficient model selection for regularized linear discriminant analysis. CIKM 2006: 532-539 - [c32]Tao Xiong, Jieping Ye, Vladimir Cherkassky:
Kernel Uncorrelated and Orthogonal Discriminant Analysis: A Unified Approach. CVPR (1) 2006: 125-131 - [c31]Lichen Liang, Vladimir Cherkassky, David A. Rottenberg:
Spatial SVM for feature selection and fMRI activation detection. IJCNN 2006: 1463-1469 - [c30]Hui Gao, Vladimir Cherkassky:
Real-Time Pricing of Mutual Funds. IJCNN 2006: 2402-2408 - 2005
- [j34]Hideya Koshino, Patricia A. Carpenter, Nancy J. Minshew, Vladimir Cherkassky, Timothy A. Keller, Marcel Adam Just:
Functional connectivity in an fMRI working memory task in high-functioning autism. NeuroImage 24(3): 810-821 (2005) - [j33]Stephen LaConte, Stephen C. Strother, Vladimir Cherkassky, Jon R. Anderson, Xiaoping Hu:
Support vector machines for temporal classification of block design fMRI data. NeuroImage 26(2): 317-329 (2005) - [j32]Vladimir Cherkassky, Yunqian Ma:
Multiple model regression estimation. IEEE Trans. Neural Networks 16(4): 785-798 (2005) - [c29]Vladimir Cherkassky, Yunqian Ma:
Support vector machines and regularization. SIP 2005: 166-171 - 2004
- [j31]Vladimir Cherkassky, Yunqian Ma:
Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 17(1): 113-126 (2004) - [j30]Harry Wechsler, Zoran Duric, Fayin Li, Vladimir Cherkassky:
Motion Estimation Using Statistical Learning Theory. IEEE Trans. Pattern Anal. Mach. Intell. 26(4): 466-478 (2004) - [c28]Tao Xiong, Jieping Ye, Qi Li, Ravi Janardan, Vladimir Cherkassky:
Efficient Kernel Discriminant Analysis via QR Decomposition. NIPS 2004: 1529-1536 - 2003
- [j29]Vladimir Cherkassky, Yunqian Ma:
Comparison of Model Selection for Regression. Neural Comput. 15(7): 1691-1714 (2003) - [c27]Zoran Duric, Fayin Li, Harry Wechsler, Vladimir Cherkassky:
Controlling Model Complexity in Flow Estimation. ICCV 2003: 908-914 - 2002
- [j28]Vladimir Cherkassky:
Model complexity control and statistical learning theory. Nat. Comput. 1(1): 109-133 (2002) - [c26]Vladimir Cherkassky, Yunqian Ma:
Selection of Meta-parameters for Support Vector Regression. ICANN 2002: 687-693 - [c25]Harry Wechsler, Zoran Duric, Fayin Li, Vladimir Cherkassky:
Motion Prediction Using VC-Generalization Bounds. ICPR (1) 2002: 151-154 - 2001
- [j27]Vladimir Cherkassky, Xuhui Shao:
Signal estimation and denoising using VC-theory. Neural Networks 14(1): 37-52 (2001) - [j26]Vladimir Cherkassky, Steven Kilts:
Myopotential denoising of ECG signals using wavelet thresholding methods. Neural Networks 14(8): 1129-1137 (2001) - [c24]Vladimir Cherkassky, Steven Kilts:
Comparison of Wavelet Thresholding Methods for Denoising ECG Signals. ICANN 2001: 625-629 - 2000
- [j25]Xuhui Shao, Vladimir Cherkassky, William Li:
Measuring the VC-Dimension Using Optimized Experimental Design. Neural Comput. 12(8): 1969-1986 (2000) - [j24]Rahul Singh, Vladimir Cherkassky, Nikolaos Papanikolopoulos:
Self-organizing maps for the skeletonization of sparse shapes. IEEE Trans. Neural Networks Learn. Syst. 11(1): 241-248 (2000) - [c23]Vladimir Cherkassky:
Introduction to VC learning theory with applications to Financial Engineering - Tutorial. CIFEr 2000: 1-2 - [c22]Vladimir Cherkassky, Filip Mulier, Anna B. Sheng:
Funds exchange: an approach for risk and portfolio management. CIFEr 2000: 3-7 - [c21]Shi Zhong, Vladimir Cherkassky:
Image Denoising Using Wavelet Thresholding and Model Selection. ICIP 2000: 262-265
1990 – 1999
- 1999
- [j23]Vladimir Cherkassky, Xuhui Shao, Filip Mulier, Vladimir Vapnik:
Model complexity control for regression using VC generalization bounds. IEEE Trans. Neural Networks 10(5): 1075-1089 (1999) - [c20]Shi Zhong, Vladimir Cherkassky:
Factors controlling generalization ability of MLP networks. IJCNN 1999: 625-630 - [c19]Xuhui Shao, Vladimir Cherkassky:
Multi-resolution support vector machine. IJCNN 1999: 1065-1070 - 1998
- [c18]Rahul Singh, Nikolaos Papanikolopoulos, Vladimir Cherkassky:
Object Skeletons from Sparse Shapes in Industrial image Settings. ICRA 1998: 3388-3393 - 1997
- [j22]Vladimir Cherkassky:
The Nature Of Statistical Learning Theory. IEEE Trans. Neural Networks 8(6): 1564 (1997) - [c17]Rahul Singh, Vladimir Cherkassky, Nikolaos P. Papanikolopoulos:
Determining the skeletal description of sparse shapes. CIRA 1997: 368-373 - [c16]Vladimir Cherkassky, Y. Kim, Filip Mulier:
Constrained Topological Maps for Regression and Classification. ICONIP (1) 1997: 330-333 - 1996
- [j21]Vladimir Cherkassky, Don Gehring, Filip Mulier:
Comparison of adaptive methods for function estimation from samples. IEEE Trans. Neural Networks 7(4): 969-984 (1996) - 1995
- [j20]Reza Rooholamini, Vladimir Cherkassky:
ATM-Based Multimedia Servers. IEEE Multim. 2(1): 39-52 (1995) - [j19]Filip Mulier, Vladimir Cherkassky:
Self-organization as an iterative kernel smoothing process. Neural Comput. 7(6): 1165-1177 (1995) - [j18]Filip Mulier, Vladimir Cherkassky:
Statistical analysis of self-organization. Neural Networks 8(5): 717-727 (1995) - 1994
- [j17]Reza Rooholamini, Vladimir Cherkassky, Mark Garver:
Finding the Right ATM Switch for the Market. Computer 27(4): 16-28 (1994) - [j16]Young-Keun Park, Vladimir Cherkassky:
Neural Network for Control of Rearrangeable Clos Networks. Int. J. Neural Syst. 5(3): 195-205 (1994) - [j15]Young-Keun Park, Vladimir Cherkassky, Gyungho Lee:
Omega network-based ATM switch with neural network-controlled bypass queueing and multiplexing. IEEE J. Sel. Areas Commun. 12(9): 1471-1480 (1994) - [j14]Kalavai J. Raghunath, Vladimir Cherkassky:
Noise Performance of Linear Associative Memories. IEEE Trans. Pattern Anal. Mach. Intell. 16(7): 757-765 (1994) - [c15]Filip Mulier, Vladimir Cherkassky:
Learning rate schedules for self-organizing maps. ICPR (2) 1994: 224-228 - [c14]Reza Rooholamini, Vladimir Cherkassky:
Moving ATM Closer to Multimedia Applications. LCN 1994: 278-287 - 1993
- [c13]Young-Keun Park, Vladimir Cherkassky:
Neural network controller for rearrangeable switching networks. ICNN 1993: 1896-1901 - [c12]D. Adkins, Vladimir Cherkassky, E. S. Olson:
Color Mapping Using Neural Networks. CIC 1993: 45-48 - [c11]Hossein Lari-Najafi, Vladimir Cherkassky:
Adaptive knot Placement for Nonparametric Regression. NIPS 1993: 247-254 - 1992
- [j13]Ee-Peng Lim, Vladimir Cherkassky:
Semantic Networks and Associative Databases: Two Approaches to Knowledge Representation and Reasoning. IEEE Expert 7(4): 31-40 (1992) - [j12]Vladimir Cherkassky, Hossein Lari-Najafi:
Data Representation for Diagnostic Neural Networks. IEEE Expert 7(5): 43-53 (1992) - 1991
- [j11]Vladimir Cherkassky, Malathi Rao, Harry Wechsler:
Fault-tolerant database using distributed associative memories. Inf. Sci. 53(1-2): 135-158 (1991) - [j10]Vladimir Cherkassky, Hossein Lari-Najafi:
Constrained topological mapping for nonparametric regression analysis. Neural Networks 4(1): 27-40 (1991) - [j9]Vladimir Cherkassky, Karen Fassett, Nikolaos Vassilas:
Linear Algebra Approach to Neural Associative Memories and Noise Performance of Neural Classifiers. IEEE Trans. Computers 40(12): 1429-1435 (1991) - [j8]Deming N. Zhou, Vladimir Cherkassky, T. R. Baldwin, D. E. Olson:
A neural network approach to job-shop scheduling. IEEE Trans. Neural Networks 2(1): 175-179 (1991) - [j7]Saleem Mohideen, Vladimir Cherkassky:
On recursive calculation of the generalized inverse of a matrix. ACM Trans. Math. Softw. 17(1): 130-147 (1991) - [c10]Vladimir Cherkassky, Reza Rooholamini, Hossein Lari-Najafi:
Fault-Tolerant Communications Processing. FTCS 1991: 344-351 - 1990
- [j6]Vladimir Cherkassky, Hossein Lari-Najafi, Norman L. Lawrie, Derek Masson, David W. Pritty:
Performance of a new LAN for real-time traffic. Comput. Commun. 13(5): 259-266 (1990) - [c9]Vladimir Cherkassky, Nikolaos Vassilas, Gregory L. Brodt:
Conventional and associative memory-based spelling checkers. TAI 1990: 138-144 - [c8]Deming N. Zhou, Vladimir Cherkassky, T. R. Baldwin, D. W. Hong:
Scaling neural network for job-shop scheduling. IJCNN 1990: 889-894
1980 – 1989
- 1989
- [j5]Vladimir Cherkassky, Miroslaw Malek:
Partitioning and Permuting Properties of CC-Banyan Networks. IEEE Trans. Computers 38(2): 274-278 (1989) - 1988
- [j4]Jois Malathi Char, Vladimir Cherkassky, Harry Wechsler, George Lee Zimmerman:
Distributed and Fault-Tolerant Computation for Retrieval Tasks Using Distributed Associative Memories. IEEE Trans. Computers 37(4): 484-490 (1988) - [j3]Vladimir Cherkassky:
Performance Evaluation of Neurectangular Multistage Interconnection Networks. IEEE Trans. Computers 37(10): 1269-1272 (1988) - [j2]Vladimir Cherkassky, Ross Smith:
Efficient mapping and implementation of matrix algorithms on a hypercube. J. Supercomput. 2(1): 7-27 (1988) - [c7]Vladimir Cherkassky, Hossein Lari-Najafi, Norman L. Lawrie, Derek Masson, David W. Pritty:
An Architectural Development and Performance of a Real Time LAN. ICDCS 1988: 189-196 - 1987
- [c6]Vladimir Cherkassky:
A Coding Scheme for Concurrent Error Detection/Correction In Multistage Interconnection Networks. ICPP 1987: 755-758 - [c5]Vladimir Cherkassky, Miroslaw Malek:
Graceful Degradation of Multiprocessor Systems. ICPP 1987: 885-888 - 1986
- [c4]Vladimir Cherkassky:
Performance of Non-Rectangular Multistage Interconnection Networks. ICDCS 1986: 2-7 - [c3]Vladimir Cherkassky, Miroslaw Malek:
Analysis of CC-Banyan Networks. ICPP 1986: 115 - [c2]Vladimir Cherkassky, Larry L. Kinney:
A Group Probing Strategy for Testing Large Number of Chips. ITC 1986: 853-856 - 1985
- [j1]Vladimir Cherkassky, Miroslaw Malek:
On Permuting Properties of Regular Rectangular SW-Banyans. IEEE Trans. Computers 34(6): 542-546 (1985) - [c1]Vladimir Cherkassky, Miroslaw Malek, G. Jack Lipovski:
Fail-Softness Analysis of Tree-Based Local Area Networks. ICDCS 1985: 380-385
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 19:27 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint