default search action
Dietmar Gallistl
2020 – today
- 2024
- [j33]Philip Freese, Dietmar Gallistl, Daniel Peterseim, Timo Sprekeler:
Computational Multiscale Methods for Nondivergence-Form Elliptic Partial Differential Equations. Comput. Methods Appl. Math. 24(3): 649-672 (2024) - [j32]Dietmar Gallistl, Ngoc Tien Tran:
Stability and guaranteed error control of approximations to the Monge-Ampère equation. Numerische Mathematik 156(1): 107-131 (2024) - [j31]Dietmar Gallistl, Roland Maier:
Localized Implicit Time Stepping for the Wave Equation. SIAM J. Numer. Anal. 62(4): 1589-1608 (2024) - [i13]Dietmar Gallistl:
Mixed methods and lower eigenvalue bounds. CoRR abs/2401.04519 (2024) - [i12]Dietmar Gallistl, Moritz Hauck, Yizhou Liang, Daniel Peterseim:
Mixed finite elements for the Gross-Pitaevskii eigenvalue problem: a priori error analysis and guaranteed lower energy bound. CoRR abs/2402.06311 (2024) - [i11]Dietmar Gallistl, Ngoc Tien Tran:
Minimal residual discretization of a class of fully nonlinear elliptic PDE. CoRR abs/2412.07568 (2024) - 2023
- [j30]Donald L. Brown, Dietmar Gallistl:
Multiscale Sub-grid Correction Method for Time-Harmonic High-Frequency Elastodynamics with Wave Number Explicit Bounds. Comput. Methods Appl. Math. 23(1): 65-82 (2023) - [j29]Dietmar Gallistl, Ngoc Tien Tran:
Convergence of a regularized finite element discretization of the two-dimensional Monge-Ampère equation. Math. Comput. 92(342): 1467-1490 (2023) - [j28]Dietmar Gallistl:
Mixed methods and lower eigenvalue bounds. Math. Comput. 92(342): 1491-1509 (2023) - [j27]Dietmar Gallistl, Vladislav Olkhovskiy:
Computational Lower Bounds of the Maxwell Eigenvalues. SIAM J. Numer. Anal. 61(2): 539-561 (2023) - [i10]Dietmar Gallistl, Ngoc Tien Tran:
Stability and guaranteed error control of approximations to the Monge-Ampère equation. CoRR abs/2301.06805 (2023) - [i9]Dietmar Gallistl, Roland Maier:
Localized implicit time stepping for the wave equation. CoRR abs/2306.17056 (2023) - [i8]Dietmar Gallistl, Shudan Tian:
A posteriori error estimates for nonconforming discretizations of singularly perturbed biharmonic operators. CoRR abs/2310.15665 (2023) - 2022
- [i7]Dietmar Gallistl, Shudan Tian:
Continuous finite elements satisfying a strong discrete Miranda-Talenti identity. CoRR abs/2209.12500 (2022) - [i6]Philip Freese, Dietmar Gallistl, Daniel Peterseim, Timo Sprekeler:
Computational multiscale methods for nondivergence-form elliptic partial differential equations. CoRR abs/2211.13731 (2022) - 2021
- [j26]Malte Braack, Dietmar Gallistl, Jun Hu, Guido Kanschat, Xuejun Xu:
Sino-German Computational and Applied Mathematics. Comput. Methods Appl. Math. 21(3): 497-499 (2021) - [j25]Dietmar Gallistl, Timo Sprekeler, Endre Süli:
Mixed Finite Element Approximation of Periodic Hamilton-Jacobi-Bellman Problems With Application to Numerical Homogenization. Multiscale Model. Simul. 19(2): 1041-1065 (2021) - [j24]Dietmar Gallistl:
A Posteriori Error Analysis of the inf-sup Constant for the Divergence. SIAM J. Numer. Anal. 59(1): 249-264 (2021) - [j23]Julian Fischer, Dietmar Gallistl, Daniel Peterseim:
A Priori Error Analysis of a Numerical Stochastic Homogenization Method. SIAM J. Numer. Anal. 59(2): 660-674 (2021) - [j22]Dietmar Gallistl, Mira Schedensack:
Taylor-Hood Discretization of the Reissner-Mindlin Plate. SIAM J. Numer. Anal. 59(3): 1195-1217 (2021) - [i5]Dietmar Gallistl, Vladislav Olkhovskiy:
Computational lower bounds of the Maxwell eigenvalues. CoRR abs/2110.02605 (2021) - [i4]Dietmar Gallistl, Ngoc Tien Tran:
Convergence of a regularized finite element discretization of the two-dimensional Monge-Ampère equation. CoRR abs/2112.10711 (2021) - 2020
- [i3]Kaifang Liu, Dietmar Gallistl, Matthias Schlottbom, Jaap J. W. van der Vegt:
Analysis of a mixed discontinuous Galerkin method for the time-harmonic Maxwell equations with minimal smoothness requirements. CoRR abs/2009.06519 (2020) - [i2]Dietmar Gallistl, Timo Sprekeler, Endre Süli:
Mixed finite element approximation of periodic Hamilton-Jacobi-Bellman problems with application to numerical homogenization. CoRR abs/2010.01647 (2020)
2010 – 2019
- 2019
- [j21]Dietmar Gallistl:
Rayleigh-Ritz approximation of the inf-sup constant for the divergence. Math. Comput. 88(315): 73-89 (2019) - [j20]Dietmar Gallistl:
Numerical approximation of planar oblique derivative problems in nondivergence form. Math. Comput. 88(317): 1091-1119 (2019) - [j19]Carsten Carstensen, Dietmar Gallistl, Joscha Gedicke:
Residual-based a posteriori error analysis for symmetric mixed Arnold-Winther FEM. Numerische Mathematik 142(2): 205-234 (2019) - [j18]Dietmar Gallistl, Endre Süli:
Mixed Finite Element Approximation of the Hamilton-Jacobi-Bellman Equation with Cordes Coefficients. SIAM J. Numer. Anal. 57(2): 592-614 (2019) - [i1]Julian Fischer, Dietmar Gallistl, Daniel Peterseim:
A priori error analysis of a numerical stochastic homogenization method. CoRR abs/1912.11646 (2019) - 2018
- [j17]Dietmar Gallistl, Patrick Henning, Barbara Verfürth:
Numerical Homogenization of H(curl)-Problems. SIAM J. Numer. Anal. 56(3): 1570-1596 (2018) - 2017
- [j16]Dietmar Gallistl, Daniel Peterseim:
Computation of Quasi-Local Effective Diffusion Tensors and Connections to the Mathematical Theory of Homogenization. Multiscale Model. Simul. 15(4): 1530-1552 (2017) - [j15]Daniele Boffi, Dietmar Gallistl, Francesca Gardini, Lucia Gastaldi:
Optimal convergence of adaptive FEM for eigenvalue clusters in mixed form. Math. Comput. 86(307): 2213-2237 (2017) - [j14]Dietmar Gallistl:
Stable splitting of polyharmonic operators by generalized Stokes systems. Math. Comput. 86(308): 2555-2577 (2017) - [j13]Dietmar Gallistl, P. Huber, Daniel Peterseim:
On the stability of the Rayleigh-Ritz method for eigenvalues. Numerische Mathematik 137(2): 339-351 (2017) - [j12]Dietmar Gallistl:
Variational Formulation and Numerical Analysis of Linear Elliptic Equations in Nondivergence form with Cordes Coefficients. SIAM J. Numer. Anal. 55(2): 737-757 (2017) - 2016
- [j11]Carsten Carstensen, Dietmar Gallistl, Joscha Gedicke:
Justification of the saturation assumption. Numerische Mathematik 134(1): 1-25 (2016) - 2015
- [j10]Carsten Carstensen, Dietmar Gallistl, Mira Schedensack:
Adaptive nonconforming Crouzeix-Raviart FEM for eigenvalue problems. Math. Comput. 84(293): 1061-1087 (2015) - [j9]Dietmar Gallistl:
An optimal adaptive FEM for eigenvalue clusters. Numerische Mathematik 130(3): 467-496 (2015) - 2014
- [j8]Carsten Carstensen, Dietmar Gallistl, Friederike Hellwig, Lucy Weggler:
Low-order dPG-FEM for an elliptic PDE. Comput. Math. Appl. 68(11): 1503-1512 (2014) - [j7]Carsten Carstensen, Dietmar Gallistl, Jun Hu:
A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes. Comput. Math. Appl. 68(12): 2167-2181 (2014) - [j6]Dietmar Gallistl, Mira Schedensack, Rob P. Stevenson:
A Remark on Newest Vertex Bisection in Any Space Dimension. Comput. Methods Appl. Math. 14(3): 317-320 (2014) - [j5]Dietmar Gallistl:
Adaptive Nonconforming Finite Element Approximation of Eigenvalue Clusters. Comput. Methods Appl. Math. 14(4): 509-535 (2014) - [j4]Carsten Carstensen, Dietmar Gallistl:
Guaranteed lower eigenvalue bounds for the biharmonic equation. Numerische Mathematik 126(1): 33-51 (2014) - 2013
- [j3]Carsten Carstensen, Dietmar Gallistl, Jun Hu:
A posteriori error estimates for nonconforming finite element methods for fourth-order problems on rectangles. Numerische Mathematik 124(2): 309-335 (2013) - [j2]Carsten Carstensen, Dietmar Gallistl, Mira Schedensack:
Quasi-optimal Adaptive Pseudostress Approximation of the Stokes Equations. SIAM J. Numer. Anal. 51(3): 1715-1734 (2013) - [j1]Carsten Carstensen, Dietmar Gallistl, Mira Schedensack:
Discrete Reliability for Crouzeix-Raviart FEMs. SIAM J. Numer. Anal. 51(5): 2935-2955 (2013)
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
[+][–] Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
[+][–] Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-20 22:59 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint