default search action
Julius von Kügelgen
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j5]Klaus-Rudolf Kladny, Julius von Kügelgen, Bernhard Schölkopf, Michael Muehlebach:
Deep Backtracking Counterfactuals for Causally Compliant Explanations. Trans. Mach. Learn. Res. 2024 (2024) - [c26]Dingling Yao, Danru Xu, Sébastien Lachapelle, Sara Magliacane, Perouz Taslakian, Georg Martius, Julius von Kügelgen, Francesco Locatello:
Multi-View Causal Representation Learning with Partial Observability. ICLR 2024 - [c25]Danru Xu, Dingling Yao, Sébastien Lachapelle, Perouz Taslakian, Julius von Kügelgen, Francesco Locatello, Sara Magliacane:
A Sparsity Principle for Partially Observable Causal Representation Learning. ICML 2024 - [i36]Danru Xu, Dingling Yao, Sébastien Lachapelle, Perouz Taslakian, Julius von Kügelgen, Francesco Locatello, Sara Magliacane:
A Sparsity Principle for Partially Observable Causal Representation Learning. CoRR abs/2403.08335 (2024) - [i35]Julius von Kügelgen:
Identifiable Causal Representation Learning: Unsupervised, Multi-View, and Multi-Environment. CoRR abs/2406.13371 (2024) - [i34]Jack Brady, Julius von Kügelgen, Sébastien Lachapelle, Simon Buchholz, Thomas Kipf, Wieland Brendel:
Interaction Asymmetry: A General Principle for Learning Composable Abstractions. CoRR abs/2411.07784 (2024) - 2023
- [j4]Felix Laumann, Julius von Kügelgen, Junhyung Park, Bernhard Schölkopf, Mauricio Barahona:
Kernel-Based Independence Tests for Causal Structure Learning on Functional Data. Entropy 25(12): 1597 (2023) - [j3]Armin Kekic, Jonas Dehning, Luigi Gresele, Julius von Kügelgen, Viola Priesemann, Bernhard Schölkopf:
Evaluating vaccine allocation strategies using simulation-assisted causal modeling. Patterns 4(6): 100739 (2023) - [c24]Julius von Kügelgen, Abdirisak Mohamed, Sander Beckers:
Backtracking Counterfactuals. CLeaR 2023: 177-196 - [c23]Matthias Tangemann, Steffen Schneider, Julius von Kügelgen, Francesco Locatello, Peter Vincent Gehler, Thomas Brox, Matthias Kümmerer, Matthias Bethge, Bernhard Schölkopf:
Unsupervised Object Learning via Common Fate. CLeaR 2023: 281-327 - [c22]Cian Eastwood, Andrei Liviu Nicolicioiu, Julius von Kügelgen, Armin Kekic, Frederik Träuble, Andrea Dittadi, Bernhard Schölkopf:
DCI-ES: An Extended Disentanglement Framework with Connections to Identifiability. ICLR 2023 - [c21]Jack Brady, Roland S. Zimmermann, Yash Sharma, Bernhard Schölkopf, Julius von Kügelgen, Wieland Brendel:
Provably Learning Object-Centric Representations. ICML 2023: 3038-3062 - [c20]Cian Eastwood, Shashank Singh, Andrei Liviu Nicolicioiu, Marin Vlastelica Pogancic, Julius von Kügelgen, Bernhard Schölkopf:
Spuriosity Didn't Kill the Classifier: Using Invariant Predictions to Harness Spurious Features. NeurIPS 2023 - [c19]Julius von Kügelgen, Michel Besserve, Wendong Liang, Luigi Gresele, Armin Kekic, Elias Bareinboim, David M. Blei, Bernhard Schölkopf:
Nonparametric Identifiability of Causal Representations from Unknown Interventions. NeurIPS 2023 - [c18]Wendong Liang, Armin Kekic, Julius von Kügelgen, Simon Buchholz, Michel Besserve, Luigi Gresele, Bernhard Schölkopf:
Causal Component Analysis. NeurIPS 2023 - [c17]Klaus-Rudolf Kladny, Julius von Kügelgen, Bernhard Schölkopf, Michael Muehlebach:
Causal effect estimation from observational and interventional data through matrix weighted linear estimators. UAI 2023: 1087-1097 - [i33]Jack Brady, Roland S. Zimmermann, Yash Sharma, Bernhard Schölkopf, Julius von Kügelgen, Wieland Brendel:
Provably Learning Object-Centric Representations. CoRR abs/2305.14229 (2023) - [i32]Wendong Liang, Armin Kekic, Julius von Kügelgen, Simon Buchholz, Michel Besserve, Luigi Gresele, Bernhard Schölkopf:
Causal Component Analysis. CoRR abs/2305.17225 (2023) - [i31]Julius von Kügelgen, Michel Besserve, Wendong Liang, Luigi Gresele, Armin Kekic, Elias Bareinboim, David M. Blei, Bernhard Schölkopf:
Nonparametric Identifiability of Causal Representations from Unknown Interventions. CoRR abs/2306.00542 (2023) - [i30]Klaus-Rudolf Kladny, Julius von Kügelgen, Bernhard Schölkopf, Michael Muehlebach:
Causal Effect Estimation from Observational and Interventional Data Through Matrix Weighted Linear Estimators. CoRR abs/2306.06002 (2023) - [i29]Cian Eastwood, Shashank Singh, Andrei Liviu Nicolicioiu, Marin Vlastelica, Julius von Kügelgen, Bernhard Schölkopf:
Spuriosity Didn't Kill the Classifier: Using Invariant Predictions to Harness Spurious Features. CoRR abs/2307.09933 (2023) - [i28]Klaus-Rudolf Kladny, Julius von Kügelgen, Bernhard Schölkopf, Michael Muehlebach:
Deep Backtracking Counterfactuals for Causally Compliant Explanations. CoRR abs/2310.07665 (2023) - [i27]Dingling Yao, Danru Xu, Sébastien Lachapelle, Sara Magliacane, Perouz Taslakian, Georg Martius, Julius von Kügelgen, Francesco Locatello:
Multi-View Causal Representation Learning with Partial Observability. CoRR abs/2311.04056 (2023) - [i26]Cian Eastwood, Julius von Kügelgen, Linus Ericsson, Diane Bouchacourt, Pascal Vincent, Bernhard Schölkopf, Mark Ibrahim:
Self-Supervised Disentanglement by Leveraging Structure in Data Augmentations. CoRR abs/2311.08815 (2023) - [i25]Shubhangi Ghosh, Luigi Gresele, Julius von Kügelgen, Michel Besserve, Bernhard Schölkopf:
Independent Mechanism Analysis and the Manifold Hypothesis. CoRR abs/2312.13438 (2023) - 2022
- [c16]Julius von Kügelgen, Amir-Hossein Karimi, Umang Bhatt, Isabel Valera, Adrian Weller, Bernhard Schölkopf:
On the Fairness of Causal Algorithmic Recourse. AAAI 2022: 9584-9594 - [c15]Osama Makansi, Julius von Kügelgen, Francesco Locatello, Peter Vincent Gehler, Dominik Janzing, Thomas Brox, Bernhard Schölkopf:
You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory Prediction. ICLR 2022 - [c14]Lukas Schott, Julius von Kügelgen, Frederik Träuble, Peter Vincent Gehler, Chris Russell, Matthias Bethge, Bernhard Schölkopf, Francesco Locatello, Wieland Brendel:
Visual Representation Learning Does Not Generalize Strongly Within the Same Domain. ICLR 2022 - [c13]Luigi Gresele, Julius von Kügelgen, Jonas M. Kübler, Elke Kirschbaum, Bernhard Schölkopf, Dominik Janzing:
Causal Inference Through the Structural Causal Marginal Problem. ICML 2022: 7793-7824 - [c12]Cian Eastwood, Alexander Robey, Shashank Singh, Julius von Kügelgen, Hamed Hassani, George J. Pappas, Bernhard Schölkopf:
Probable Domain Generalization via Quantile Risk Minimization. NeurIPS 2022 - [c11]Ronan Perry, Julius von Kügelgen, Bernhard Schölkopf:
Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis. NeurIPS 2022 - [c10]Patrik Reizinger, Luigi Gresele, Jack Brady, Julius von Kügelgen, Dominik Zietlow, Bernhard Schölkopf, Georg Martius, Wieland Brendel, Michel Besserve:
Embrace the Gap: VAEs Perform Independent Mechanism Analysis. NeurIPS 2022 - [c9]Christian Toth, Lars Lorch, Christian Knoll, Andreas Krause, Franz Pernkopf, Robert Peharz, Julius von Kügelgen:
Active Bayesian Causal Inference. NeurIPS 2022 - [d2]Julius von Kügelgen, Luigi Gresele, Bernhard Schölkopf:
Age-stratified Covid-19 case fatality rates (CFRs): different countries and longitudinal. IEEE DataPort, 2022 - [d1]Patrik Reizinger, Luigi Gresele, Jack Brady, Dominik Zietlow, Julius von Kügelgen, Michel Besserve, Georg Martius, Wieland Brendel, Bernhard Schölkopf:
ima-vae. Zenodo, 2022 - [i24]Luigi Gresele, Julius von Kügelgen, Jonas M. Kübler, Elke Kirschbaum, Bernhard Schölkopf, Dominik Janzing:
Causal Inference Through the Structural Causal Marginal Problem. CoRR abs/2202.01300 (2022) - [i23]Shubhangi Ghosh, Luigi Gresele, Julius von Kügelgen, Michel Besserve, Bernhard Schölkopf:
On Pitfalls of Identifiability in Unsupervised Learning. A Note on: "Desiderata for Representation Learning: A Causal Perspective". CoRR abs/2202.06844 (2022) - [i22]Bernhard Schölkopf, Julius von Kügelgen:
From Statistical to Causal Learning. CoRR abs/2204.00607 (2022) - [i21]Ronan Perry, Julius von Kügelgen, Bernhard Schölkopf:
Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis. CoRR abs/2206.02013 (2022) - [i20]Christian Toth, Lars Lorch, Christian Knoll, Andreas Krause, Franz Pernkopf, Robert Peharz, Julius von Kügelgen:
Active Bayesian Causal Inference. CoRR abs/2206.02063 (2022) - [i19]Patrik Reizinger, Luigi Gresele, Jack Brady, Julius von Kügelgen, Dominik Zietlow, Bernhard Schölkopf, Georg Martius, Wieland Brendel, Michel Besserve:
Embrace the Gap: VAEs Perform Independent Mechanism Analysis. CoRR abs/2206.02416 (2022) - [i18]Cian Eastwood, Alexander Robey, Shashank Singh, Julius von Kügelgen, Hamed Hassani, George J. Pappas, Bernhard Schölkopf:
Probable Domain Generalization via Quantile Risk Minimization. CoRR abs/2207.09944 (2022) - [i17]Cian Eastwood, Andrei Liviu Nicolicioiu, Julius von Kügelgen, Armin Kekic, Frederik Träuble, Andrea Dittadi, Bernhard Schölkopf:
DCI-ES: An Extended Disentanglement Framework with Connections to Identifiability. CoRR abs/2210.00364 (2022) - [i16]Julius von Kügelgen, Abdirisak Mohamed, Sander Beckers:
Backtracking Counterfactuals. CoRR abs/2211.00472 (2022) - [i15]Armin Kekic, Jonas Dehning, Luigi Gresele, Julius von Kügelgen, Viola Priesemann, Bernhard Schölkopf:
Evaluating vaccine allocation strategies using simulation-assisted causal modelling. CoRR abs/2212.08498 (2022) - 2021
- [j2]Julius von Kügelgen, Luigi Gresele, Bernhard Schölkopf:
Simpson's Paradox in COVID-19 Case Fatality Rates: A Mediation Analysis of Age-Related Causal Effects. IEEE Trans. Artif. Intell. 2(1): 18-27 (2021) - [c8]Zhijing Jin, Julius von Kügelgen, Jingwei Ni, Tejas Vaidhya, Ayush Kaushal, Mrinmaya Sachan, Bernhard Schölkopf:
Causal Direction of Data Collection Matters: Implications of Causal and Anticausal Learning for NLP. EMNLP (1) 2021: 9499-9513 - [c7]Frederik Träuble, Julius von Kügelgen, Matthäus Kleindessner, Francesco Locatello, Bernhard Schölkopf, Peter V. Gehler:
Backward-Compatible Prediction Updates: A Probabilistic Approach. NeurIPS 2021: 116-128 - [c6]Julius von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel Besserve, Francesco Locatello:
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style. NeurIPS 2021: 16451-16467 - [c5]Luigi Gresele, Julius von Kügelgen, Vincent Stimper, Bernhard Schölkopf, Michel Besserve:
Independent mechanism analysis, a new concept? NeurIPS 2021: 28233-28248 - [i14]Julius von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel Besserve, Francesco Locatello:
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style. CoRR abs/2106.04619 (2021) - [i13]Luigi Gresele, Julius von Kügelgen, Vincent Stimper, Bernhard Schölkopf, Michel Besserve:
Independent mechanism analysis, a new concept? CoRR abs/2106.05200 (2021) - [i12]Julius von Kügelgen, Nikita Agarwal, Jakob Zeitler, Afsaneh Mastouri, Bernhard Schölkopf:
Algorithmic Recourse in Partially and Fully Confounded Settings Through Bounding Counterfactual Effects. CoRR abs/2106.11849 (2021) - [i11]Frederik Träuble, Julius von Kügelgen, Matthäus Kleindessner, Francesco Locatello, Bernhard Schölkopf, Peter V. Gehler:
Backward-Compatible Prediction Updates: A Probabilistic Approach. CoRR abs/2107.01057 (2021) - [i10]Lukas Schott, Julius von Kügelgen, Frederik Träuble, Peter V. Gehler, Chris Russell, Matthias Bethge, Bernhard Schölkopf, Francesco Locatello, Wieland Brendel:
Visual Representation Learning Does Not Generalize Strongly Within the Same Domain. CoRR abs/2107.08221 (2021) - [i9]Zhijing Jin, Julius von Kügelgen, Jingwei Ni, Tejas Vaidhya, Ayush Kaushal, Mrinmaya Sachan, Bernhard Schölkopf:
Causal Direction of Data Collection Matters: Implications of Causal and Anticausal Learning for NLP. CoRR abs/2110.03618 (2021) - [i8]Osama Makansi, Julius von Kügelgen, Francesco Locatello, Peter V. Gehler, Dominik Janzing, Thomas Brox, Bernhard Schölkopf:
You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory Prediction. CoRR abs/2110.05304 (2021) - [i7]Matthias Tangemann, Steffen Schneider, Julius von Kügelgen, Francesco Locatello, Peter V. Gehler, Thomas Brox, Matthias Kümmerer, Matthias Bethge, Bernhard Schölkopf:
Unsupervised Object Learning via Common Fate. CoRR abs/2110.06562 (2021) - 2020
- [j1]François Bertaux, Julius von Kügelgen, Samuel Marguerat, Vahid Shahrezaei:
A bacterial size law revealed by a coarse-grained model of cell physiology. PLoS Comput. Biol. 16(9) (2020) - [c4]Amir-Hossein Karimi, Julius von Kügelgen, Bernhard Schölkopf, Isabel Valera:
Towards Causal Algorithmic Recourse. xxAI@ICML 2020: 139-166 - [c3]Amir-Hossein Karimi, Bodo Julius von Kügelgen, Bernhard Schölkopf, Isabel Valera:
Algorithmic recourse under imperfect causal knowledge: a probabilistic approach. NeurIPS 2020 - [c2]Julius von Kügelgen, Alexander Mey, Marco Loog, Bernhard Schölkopf:
Semi-supervised learning, causality, and the conditional cluster assumption. UAI 2020: 1-10 - [i6]Julius von Kügelgen, Ivan Ustyuzhaninov, Peter V. Gehler, Matthias Bethge, Bernhard Schölkopf:
Towards causal generative scene models via competition of experts. CoRR abs/2004.12906 (2020) - [i5]Amir-Hossein Karimi, Julius von Kügelgen, Bernhard Schölkopf, Isabel Valera:
Algorithmic recourse under imperfect causal knowledge: a probabilistic approach. CoRR abs/2006.06831 (2020) - [i4]Julius von Kügelgen, Umang Bhatt, Amir-Hossein Karimi, Isabel Valera, Adrian Weller, Bernhard Schölkopf:
On the Fairness of Causal Algorithmic Recourse. CoRR abs/2010.06529 (2020)
2010 – 2019
- 2019
- [c1]Julius von Kügelgen, Alexander Mey, Marco Loog:
Semi-Generative Modelling: Covariate-Shift Adaptation with Cause and Effect Features. AISTATS 2019: 1361-1369 - [i3]Julius von Kügelgen, Marco Loog, Alexander Mey, Bernhard Schölkopf:
Semi-Supervised Learning, Causality and the Conditional Cluster Assumption. CoRR abs/1905.12081 (2019) - [i2]Julius von Kügelgen, Paul K. Rubenstein, Bernhard Schölkopf, Adrian Weller:
Optimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks. CoRR abs/1910.03962 (2019) - 2018
- [i1]Julius von Kügelgen, Alexander Mey, Marco Loog:
Semi-Generative Modelling: Domain Adaptation with Cause and Effect Features. CoRR abs/1807.07879 (2018)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-02 18:19 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint