default search action
Miguel Lázaro-Gredilla
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c29]Antoine Dedieu, Wolfgang Lehrach, Guangyao Zhou, Dileep George, Miguel Lázaro-Gredilla:
Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments. ICML 2024 - [i29]Antoine Dedieu, Wolfgang Lehrach, Guangyao Zhou, Dileep George, Miguel Lázaro-Gredilla:
Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments. CoRR abs/2401.05946 (2024) - [i28]Miguel Lázaro-Gredilla, Li Yang Ku, Kevin P. Murphy, Dileep George:
What type of inference is planning? CoRR abs/2406.17863 (2024) - [i27]Xinghua Lou, Meet Dave, Shrinu Kushagra, Miguel Lázaro-Gredilla, Kevin Murphy:
Model Predictive Simulation Using Structured Graphical Models and Transformers. CoRR abs/2406.19635 (2024) - [i26]Joseph Ortiz, Antoine Dedieu, Wolfgang Lehrach, J. Swaroop Guntupalli, Carter Wendelken, Ahmad Humayun, Guangyao Zhou, Sivaramakrishnan Swaminathan, Miguel Lázaro-Gredilla, Kevin Murphy:
DMC-VB: A Benchmark for Representation Learning for Control with Visual Distractors. CoRR abs/2409.18330 (2024) - [i25]Guangyao Zhou, Sivaramakrishnan Swaminathan, Rajkumar Vasudeva Raju, J. Swaroop Guntupalli, Wolfgang Lehrach, Joseph Ortiz, Antoine Dedieu, Miguel Lázaro-Gredilla, Kevin Murphy:
Diffusion Model Predictive Control. CoRR abs/2410.05364 (2024) - 2023
- [c28]Guangyao Zhou, Nishad Gothoskar, Lirui Wang, Joshua B. Tenenbaum, Dan Gutfreund, Miguel Lázaro-Gredilla, Dileep George, Vikash K. Mansinghka:
3D Neural Embedding Likelihood: Probabilistic Inverse Graphics for Robust 6D Pose Estimation. ICCV 2023: 21568-21579 - [c27]Antoine Dedieu, Guangyao Zhou, Dileep George, Miguel Lázaro-Gredilla:
Learning Noisy OR Bayesian Networks with Max-Product Belief Propagation. ICML 2023: 7426-7448 - [c26]Sivaramakrishnan Swaminathan, Antoine Dedieu, Rajkumar Vasudeva Raju, Murray Shanahan, Miguel Lázaro-Gredilla, Dileep George:
Schema-learning and rebinding as mechanisms of in-context learning and emergence. NeurIPS 2023 - [i24]Ken Kansky, Skanda Vaidyanath, Scott Swingle, Xinghua Lou, Miguel Lázaro-Gredilla, Dileep George:
PushWorld: A benchmark for manipulation planning with tools and movable obstacles. CoRR abs/2301.10289 (2023) - [i23]Antoine Dedieu, Guangyao Zhou, Dileep George, Miguel Lázaro-Gredilla:
Learning noisy-OR Bayesian Networks with Max-Product Belief Propagation. CoRR abs/2302.00099 (2023) - [i22]Guangyao Zhou, Nishad Gothoskar, Lirui Wang, Joshua B. Tenenbaum, Dan Gutfreund, Miguel Lázaro-Gredilla, Dileep George, Vikash K. Mansinghka:
3D Neural Embedding Likelihood for Robust Sim-to-Real Transfer in Inverse Graphics. CoRR abs/2302.03744 (2023) - [i21]J. Swaroop Guntupalli, Rajkumar Vasudeva Raju, Shrinu Kushagra, Carter Wendelken, Danny Sawyer, Ishan Deshpande, Guangyao Zhou, Miguel Lázaro-Gredilla, Dileep George:
Graph schemas as abstractions for transfer learning, inference, and planning. CoRR abs/2302.07350 (2023) - [i20]Miguel Lázaro-Gredilla, Ishan Deshpande, Sivaramakrishnan Swaminathan, Meet Dave, Dileep George:
Fast exploration and learning of latent graphs with aliased observations. CoRR abs/2303.07397 (2023) - [i19]Sivaramakrishnan Swaminathan, Antoine Dedieu, Rajkumar Vasudeva Raju, Murray Shanahan, Miguel Lázaro-Gredilla, Dileep George:
Schema-learning and rebinding as mechanisms of in-context learning and emergence. CoRR abs/2307.01201 (2023) - 2022
- [c25]Nishad Gothoskar, Miguel Lázaro-Gredilla, Yasemin Bekiroglu, Abhishek Agarwal, Joshua B. Tenenbaum, Vikash K. Mansinghka, Dileep George:
DURableVS: Data-efficient Unsupervised Recalibrating Visual Servoing via online learning in a structured generative model. ICRA 2022: 6674-6680 - [i18]Nishad Gothoskar, Miguel Lázaro-Gredilla, Yasemin Bekiroglu, Abhishek Agarwal, Joshua B. Tenenbaum, Vikash K. Mansinghka, Dileep George:
DURableVS: Data-efficient Unsupervised Recalibrating Visual Servoing via online learning in a structured generative model. CoRR abs/2202.03697 (2022) - [i17]Guangyao Zhou, Nishanth Kumar, Miguel Lázaro-Gredilla, Shrinu Kushagra, Dileep George:
PGMax: Factor Graphs for Discrete Probabilistic Graphical Models and Loopy Belief Propagation in JAX. CoRR abs/2202.04110 (2022) - 2021
- [c24]Antoine Dedieu, Miguel Lázaro-Gredilla, Dileep George:
Sample-Efficient L0-L2 Constrained Structure Learning of Sparse Ising Models. AAAI 2021: 7193-7200 - [c23]Miguel Lázaro-Gredilla, Wolfgang Lehrach, Nishad Gothoskar, Guangyao Zhou, Antoine Dedieu, Dileep George:
Query Training: Learning a Worse Model to Infer Better Marginals in Undirected Graphical Models with Hidden Variables. AAAI 2021: 8252-8260 - [c22]Miguel Lázaro-Gredilla, Antoine Dedieu, Dileep George:
Perturb-and-max-product: Sampling and learning in discrete energy-based models. NeurIPS 2021: 928-940 - [i16]Miguel Lázaro-Gredilla, Antoine Dedieu, Dileep George:
Perturb-and-max-product: Sampling and learning in discrete energy-based models. CoRR abs/2111.02458 (2021) - [i15]Guangyao Zhou, Wolfgang Lehrach, Antoine Dedieu, Miguel Lázaro-Gredilla, Dileep George:
Graphical Models with Attention for Context-Specific Independence and an Application to Perceptual Grouping. CoRR abs/2112.03371 (2021) - 2020
- [j15]Dileep George, Miguel Lázaro-Gredilla, J. Swaroop Guntupalli:
From CAPTCHA to Commonsense: How Brain Can Teach Us About Artificial Intelligence. Frontiers Comput. Neurosci. 14: 554097 (2020) - [c21]Daniel P. Sawyer, Miguel Lázaro-Gredilla, Dileep George:
A Model of Fast Concept Inference with Object-Factorized Cognitive Programs. CogSci 2020 - [i14]Daniel P. Sawyer, Miguel Lázaro-Gredilla, Dileep George:
A Model of Fast Concept Inference with Object-Factorized Cognitive Programs. CoRR abs/2002.04021 (2020) - [i13]Nishad Gothoskar, Miguel Lázaro-Gredilla, Abhishek Agarwal, Yasemin Bekiroglu, Dileep George:
Learning a generative model for robot control using visual feedback. CoRR abs/2003.04474 (2020) - [i12]Nishad Gothoskar, Miguel Lázaro-Gredilla, Dileep George:
From proprioception to long-horizon planning in novel environments: A hierarchical RL model. CoRR abs/2006.06620 (2020) - [i11]Miguel Lázaro-Gredilla, Wolfgang Lehrach, Nishad Gothoskar, Guangyao Zhou, Antoine Dedieu, Dileep George:
Query Training: Learning and inference for directed and undirected graphical models. CoRR abs/2006.06803 (2020) - [i10]Antoine Dedieu, Miguel Lázaro-Gredilla, Dileep George:
Sample-efficient L0-L2 constrained structure learning of sparse Ising models. CoRR abs/2012.01744 (2020)
2010 – 2019
- 2019
- [i9]Antoine Dedieu, Nishad Gothoskar, Scott Swingle, Wolfgang Lehrach, Miguel Lázaro-Gredilla, Dileep George:
Learning higher-order sequential structure with cloned HMMs. CoRR abs/1905.00507 (2019) - [i8]Miguel Lázaro-Gredilla, Wolfgang Lehrach, Dileep George:
Learning undirected models via query training. CoRR abs/1912.02893 (2019) - 2018
- [c20]Aditya Grover, Ramki Gummadi, Miguel Lázaro-Gredilla, Dale Schuurmans, Stefano Ermon:
Variational Rejection Sampling. AISTATS 2018: 823-832 - [i7]Aditya Grover, Ramki Gummadi, Miguel Lázaro-Gredilla, Dale Schuurmans, Stefano Ermon:
Variational Rejection Sampling. CoRR abs/1804.01712 (2018) - [i6]Dileep George, Alexander Lavin, J. Swaroop Guntupalli, David A. Mély, Nick Hay, Miguel Lázaro-Gredilla:
Cortical Microcircuits from a Generative Vision Model. CoRR abs/1808.01058 (2018) - [i5]Miguel Lázaro-Gredilla, Dianhuan Lin, J. Swaroop Guntupalli, Dileep George:
Beyond imitation: Zero-shot task transfer on robots by learning concepts as cognitive programs. CoRR abs/1812.02788 (2018) - 2017
- [c19]Ken Kansky, Tom Silver, David A. Mély, Mohamed Eldawy, Miguel Lázaro-Gredilla, Xinghua Lou, Nimrod Dorfman, Szymon Sidor, D. Scott Phoenix, Dileep George:
Schema Networks: Zero-shot Transfer with a Generative Causal Model of Intuitive Physics. ICML 2017: 1809-1818 - [i4]Ken Kansky, Tom Silver, David A. Mély, Mohamed Eldawy, Miguel Lázaro-Gredilla, Xinghua Lou, Nimrod Dorfman, Szymon Sidor, D. Scott Phoenix, Dileep George:
Schema Networks: Zero-shot Transfer with a Generative Causal Model of Intuitive Physics. CoRR abs/1706.04317 (2017) - 2016
- [j14]Luis Munoz-Gonzalez, Miguel Lázaro-Gredilla, Aníbal R. Figueiras-Vidal:
Laplace Approximation for Divisive Gaussian Processes for Nonstationary Regression. IEEE Trans. Pattern Anal. Mach. Intell. 38(3): 618-624 (2016) - [i3]Miguel Lázaro-Gredilla, Yi Liu, D. Scott Phoenix, Dileep George:
Hierarchical compositional feature learning. CoRR abs/1611.02252 (2016) - 2015
- [c18]Jordi Muñoz-Marí, Jochem Verrelst, Miguel Lázaro-Gredilla, Gustau Camps-Valls:
Biophysical parameter retrieval with warped Gaussian processes. IGARSS 2015: 13-16 - [c17]Michalis K. Titsias, Miguel Lázaro-Gredilla:
Local Expectation Gradients for Black Box Variational Inference. NIPS 2015: 2638-2646 - 2014
- [j13]Miguel Lázaro-Gredilla, Michalis K. Titsias, Jochem Verrelst, Gustavo Camps-Valls:
Retrieval of Biophysical Parameters With Heteroscedastic Gaussian Processes. IEEE Geosci. Remote. Sens. Lett. 11(4): 838-842 (2014) - [j12]Julio Manco-Vásquez, Miguel Lázaro-Gredilla, David Ramírez, Javier Vía, Ignacio Santamaría:
A Bayesian approach for adaptive multiantenna sensing in cognitive radio networks. Signal Process. 96: 228-240 (2014) - [j11]Miguel Lázaro-Gredilla, Steven Van Vaerenbergh:
A Gaussian Process Model for Data Association and a Semidefinite Programming Solution. IEEE Trans. Neural Networks Learn. Syst. 25(11): 1967-1979 (2014) - [j10]Luis Munoz-Gonzalez, Miguel Lázaro-Gredilla, Aníbal R. Figueiras-Vidal:
Divisive Gaussian Processes for Nonstationary Regression. IEEE Trans. Neural Networks Learn. Syst. 25(11): 1991-2003 (2014) - [c16]Luis Munoz-Gonzalez, Miguel Lázaro-Gredilla, Aníbal R. Figueiras-Vidal:
Laplace approximation with Gaussian Processes for volatility forecasting. CIP 2014: 1-6 - [c15]Michalis K. Titsias, Miguel Lázaro-Gredilla:
Doubly Stochastic Variational Bayes for non-Conjugate Inference. ICML 2014: 1971-1979 - 2013
- [j9]Fernando Pérez-Cruz, Steven Van Vaerenbergh, Juan José Murillo-Fuentes, Miguel Lázaro-Gredilla, Ignacio Santamaría:
Gaussian Processes for Nonlinear Signal Processing: An Overview of Recent Advances. IEEE Signal Process. Mag. 30(4): 40-50 (2013) - [c14]Miguel Lázaro-Gredilla, Michalis K. Titsias, Jochem Verrelst, Gustavo Camps-Valls:
Estimation of vegetation chlorophyll content with Variational Heteroscedastic Gaussian Processes. IGARSS 2013: 3010-3013 - [c13]Michalis K. Titsias, Miguel Lázaro-Gredilla:
Variational Inference for Mahalanobis Distance Metrics in Gaussian Process Regression. NIPS 2013: 279-287 - [i2]Fernando Pérez-Cruz, Steven Van Vaerenbergh, Juan José Murillo-Fuentes, Miguel Lázaro-Gredilla, Ignacio Santamaría:
Gaussian Processes for Nonlinear Signal Processing. CoRR abs/1303.2823 (2013) - 2012
- [j8]Miguel Lázaro-Gredilla, Vanessa Gómez-Verdejo, Emilio Parrado-Hernández:
Low-cost model selection for SVMs using local features. Eng. Appl. Artif. Intell. 25(6): 1203-1211 (2012) - [j7]Miguel Lázaro-Gredilla, Steven Van Vaerenbergh, Neil D. Lawrence:
Overlapping Mixtures of Gaussian Processes for the data association problem. Pattern Recognit. 45(4): 1386-1395 (2012) - [j6]Steven Van Vaerenbergh, Miguel Lázaro-Gredilla, Ignacio Santamaría:
Kernel Recursive Least-Squares Tracker for Time-Varying Regression. IEEE Trans. Neural Networks Learn. Syst. 23(8): 1313-1326 (2012) - [c12]Julio Manco-Vásquez, Miguel Lázaro-Gredilla, David Ramírez, Javier Vía, Ignacio Santamaría:
Bayesian multiantenna sensing for cognitive radio. SAM 2012: 77-80 - [c11]Steven Van Vaerenbergh, Ignacio Santamaría, Miguel Lázaro-Gredilla:
Estimation of the forgetting factor in kernel recursive least squares. MLSP 2012: 1-6 - [c10]Miguel Lázaro-Gredilla:
Bayesian Warped Gaussian Processes. NIPS 2012: 1628-1636 - 2011
- [j5]Vanessa Gómez-Verdejo, Manel Martínez-Ramón, Jerónimo Arenas-García, Miguel Lázaro-Gredilla, Harold Y. Molina-Bulla:
Support Vector Machines With Constraints for Sparsity in the Primal Parameters. IEEE Trans. Neural Networks 22(8): 1269-1283 (2011) - [j4]Vanessa Gómez-Verdejo, Jerónimo Arenas-García, Miguel Lázaro-Gredilla, Ángel Navia-Vázquez:
Adaptive One-Class Support Vector Machine. IEEE Trans. Signal Process. 59(6): 2975-2981 (2011) - [c9]Jerónimo Arenas-García, Miguel Lázaro-Gredilla:
Tracking performance of adaptively biased adaptive filters. ICASSP 2011: 4128-4131 - [c8]Miguel Lázaro-Gredilla, Michalis K. Titsias:
Variational Heteroscedastic Gaussian Process Regression. ICML 2011: 841-848 - [c7]Luis Antonio Azpicueta-Ruiz, Miguel Lázaro-Gredilla, Aníbal R. Figueiras-Vidal, Jerónimo Arenas-García:
A block-based approach to adaptively bias the weights of adaptive filters. MLSP 2011: 1-6 - [c6]Miguel Lázaro-Gredilla, Steven Van Vaerenbergh, Ignacio Santamaría:
A Bayesian approach to tracking with kernel recursive least-squares. MLSP 2011: 1-6 - [c5]Luis Munoz-Gonzalez, Miguel Lázaro-Gredilla, Aníbal R. Figueiras-Vidal:
Heteroscedastic Gaussian process regression using expectation propagation. MLSP 2011: 1-6 - [c4]Michalis K. Titsias, Miguel Lázaro-Gredilla:
Spike and Slab Variational Inference for Multi-Task and Multiple Kernel Learning. NIPS 2011: 2339-2347 - [i1]Miguel Lázaro-Gredilla, Steven Van Vaerenbergh, Neil D. Lawrence:
Overlapping Mixtures of Gaussian Processes for the Data Association Problem. CoRR abs/1108.3372 (2011) - 2010
- [j3]Miguel Lázaro-Gredilla, Joaquin Quiñonero Candela, Carl Edward Rasmussen, Aníbal R. Figueiras-Vidal:
Sparse Spectrum Gaussian Process Regression. J. Mach. Learn. Res. 11: 1865-1881 (2010) - [j2]Miguel Lázaro-Gredilla, Aníbal R. Figueiras-Vidal:
Marginalized neural network mixtures for large-scale regression. IEEE Trans. Neural Networks 21(8): 1345-1351 (2010) - [j1]Miguel Lázaro-Gredilla, Luis Antonio Azpicueta-Ruiz, Aníbal R. Figueiras-Vidal, Jerónimo Arenas-García:
Adaptively biasing the weights of adaptive filters. IEEE Trans. Signal Process. 58(7): 3890-3895 (2010)
2000 – 2009
- 2009
- [c3]Miguel Lázaro-Gredilla, Aníbal R. Figueiras-Vidal:
Inter-domain Gaussian Processes for Sparse Inference using Inducing Features. NIPS 2009: 1087-1095 - 2007
- [c2]Jaisiel Madrid-Sánchez, Miguel Lázaro-Gredilla, Aníbal R. Figueiras-Vidal:
A Single Layer Perceptron Approach to Selective Multi-task Learning. IWINAC (1) 2007: 272-281 - 2006
- [c1]Miguel Lázaro-Gredilla, Jaisiel Madrid-Sánchez, Aníbal R. Figueiras-Vidal:
A new cost function to build MLPs by means of regularized boosting. Computational Intelligence 2006: 162-167
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-19 20:49 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint