default search action
David Ryan Koes
Person information
- affiliation: University of Pittsburgh, PA, USA
- affiliation (former): Carnegie Mellon University, Pittsburgh, USA
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j26]Andrew T. McNutt, David Ryan Koes:
Open-ComBind: harnessing unlabeled data for improved binding pose prediction. J. Comput. Aided Mol. Des. 38(1): 3 (2024) - [j25]Michael Brocidiacono, Paul G. Francoeur, Rishal Aggarwal, Konstantin I. Popov, David Ryan Koes, Alexander Tropsha:
BigBind: Learning from Nonstructural Data for Structure-Based Virtual Screening. J. Chem. Inf. Model. 64(7): 2488-2495 (2024) - [j24]Roshni Bhatt, David Ryan Koes, Jacob D. Durrant:
CENsible: Interpretable Insights into Small-Molecule Binding with Context Explanation Networks. J. Chem. Inf. Model. 64(12): 4651-4660 (2024) - [j23]Fengling Li, Suzanne Ackloo, Cheryl H. Arrowsmith, Fuqiang Ban, Christopher J. Barden, Hartmut Beck, Jan Beránek, Francois Berenger, Albina Bolotokova, Guillaume Bret, Marko Breznik, Emanuele Carosati, Irene Chau, Yu Chen, Artem Cherkasov, Dennis Della Corte, Katrin Denzinger, Aiping Dong, Sorin Draga, Ian Dunn, Kristina Edfeldt, Aled M. Edwards, Merveille K. I. Eguida, Paul Eisenhuth, Lukas Friedrich, Alexander Fuerll, Spencer S. Gardiner, Francesco Gentile, Pegah Ghiabi, Elisa Gibson, Marta Glavatskikh, Christoph Gorgulla, Judith Guenther, Anders Gunnarsson, Filipp Gusev, Evgeny Gutkin, Levon Halabelian, Rachel J. Harding, Alexander Hillisch, Laurent Hoffer, Anders Hogner, Scott Houliston, John J. Irwin, Olexandr Isayev, Aleksandra Ivanova, Célien Jacquemard, Austin J. Jarrett, Jan H. Jensen, Dmitri Kireev, Julian Kleber, S. Benjamin Koby, David Koes, Ashutosh Kumar, Maria G. Kurnikova, Alina Kutlushina, Uta F. Lessel, Fabian Liessmann, Sijie Liu, Wei Lu, Jens Meiler, Akhila Mettu, Guzel Minibaeva, Rocco Moretti, Connor J. Morris, Chamali Narangoda, Theresa Noonan, Leon Obendorf, Szymon Pach, Amit Pandit, Sumera Perveen, Gennady Poda, Pavel G. Polishchuk, Kristina Puls, Vera Pütter, Didier Rognan, Dylan Roskams-Edris, Christina E. M. Schindler, François Sindt, Vojtech Spiwok, Casper Steinmann, Rick L. Stevens, Valerij Talagayev, Damon Tingey, Oanh Vu, W. Patrick Walters, Xiaowen Wang, Zhenyu Wang, Gerhard Wolber, Clemens Alexander Wolf, Lars Wortmann, Hong Zeng, Carlos A. Zepeda, Kam Y. J. Zhang, Jixian Zhang, Shuangjia Zheng, Matthieu Schapira:
CACHE Challenge #1: Targeting the WDR Domain of LRRK2, A Parkinson's Disease Associated Protein. J. Chem. Inf. Model. 64(22): 8521-8536 (2024) - [i12]Ian Dunn, David Ryan Koes:
Mixed Continuous and Categorical Flow Matching for 3D De Novo Molecule Generation. CoRR abs/2404.19739 (2024) - [i11]Andrew T. McNutt, Abhinav Adduri, Caleb N. Ellington, Monica T. Dayao, Eric P. Xing, Hosein Mohimani, David Ryan Koes:
SPRINT Enables Interpretable and Ultra-Fast Virtual Screening against Thousands of Proteomes. CoRR abs/2411.15418 (2024) - [i10]Ian Dunn, David Ryan Koes:
Exploring Discrete Flow Matching for 3D De Novo Molecule Generation. CoRR abs/2411.16644 (2024) - 2023
- [j22]Andrew T. McNutt, Fatimah Bisiriyu, Sophia Song, Ananya Vyas, Geoffrey R. Hutchison, David Ryan Koes:
Conformer Generation for Structure-Based Drug Design: How Many and How Good? J. Chem. Inf. Model. 63(21): 6598-6607 (2023) - [j21]Dakota L. Folmsbee, David Ryan Koes, Geoffrey R. Hutchison:
Systematic Comparison of Experimental Crystallographic Geometries and Gas-Phase Computed Conformers for Torsion Preferences. J. Chem. Inf. Model. 63(23): 7401-7411 (2023) - [i9]Ian Dunn, David Ryan Koes:
Accelerating Inference in Molecular Diffusion Models with Latent Representations of Protein Structure. CoRR abs/2311.13466 (2023) - 2022
- [j20]Andrew T. McNutt, David Ryan Koes:
Improving ΔΔG Predictions with a Multitask Convolutional Siamese Network. J. Chem. Inf. Model. 62(8): 1819-1829 (2022) - 2021
- [j19]Andrew T. McNutt, Paul G. Francoeur, Rishal Aggarwal, Tomohide Masuda, Rocco Meli, Matthew Ragoza, Jocelyn Sunseri, David Ryan Koes:
GNINA 1.0: molecular docking with deep learning. J. Cheminformatics 13(1): 43 (2021) - [j18]Paul G. Francoeur, David Ryan Koes:
SolTranNet-A Machine Learning Tool for Fast Aqueous Solubility Prediction. J. Chem. Inf. Model. 61(6): 2530-2536 (2021) - [j17]Paul G. Francoeur, David Ryan Koes:
Correction to "SolTranNet - A Machine Learning Tool for Fast Aqueous Solubility Prediction". J. Chem. Inf. Model. 61(8): 4120-4123 (2021) - [i8]Matthew Ragoza, Tomohide Masuda, David Ryan Koes:
Generating 3D Molecules Conditional on Receptor Binding Sites with Deep Generative Models. CoRR abs/2110.15200 (2021) - 2020
- [j16]Jocelyn Sunseri, David Ryan Koes:
libmolgrid: Graphics Processing Unit Accelerated Molecular Gridding for Deep Learning Applications. J. Chem. Inf. Model. 60(3): 1079-1084 (2020) - [j15]Paul G. Francoeur, Tomohide Masuda, Jocelyn Sunseri, Andrew Jia, Richard B. Iovanisci, Ian Snyder, David Ryan Koes:
Three-Dimensional Convolutional Neural Networks and a Cross-Docked Data Set for Structure-Based Drug Design. J. Chem. Inf. Model. 60(9): 4200-4215 (2020) - [i7]Jonathan E. King, David Ryan Koes:
SidechainNet: An All-Atom Protein Structure Dataset for Machine Learning. CoRR abs/2010.08162 (2020) - [i6]Matthew Ragoza, Tomohide Masuda, David Ryan Koes:
Learning a Continuous Representation of 3D Molecular Structures with Deep Generative Models. CoRR abs/2010.08687 (2020) - [i5]Tomohide Masuda, Matthew Ragoza, David Ryan Koes:
Generating 3D Molecular Structures Conditional on a Receptor Binding Site with Deep Generative Models. CoRR abs/2010.14442 (2020)
2010 – 2019
- 2019
- [j14]Jocelyn Sunseri, Jonathan E. King, Paul G. Francoeur, David Ryan Koes:
Convolutional neural network scoring and minimization in the D3R 2017 community challenge. J. Comput. Aided Mol. Des. 33(1): 19-34 (2019) - [i4]Jocelyn Sunseri, David Ryan Koes:
libmolgrid: GPU Accelerated Molecular Gridding for Deep Learning Applications. CoRR abs/1912.04822 (2019) - 2018
- [j13]David Ryan Koes:
The Pharmit backend: A computer systems approach to enabling interactive online drug discovery. IBM J. Res. Dev. 62(6): 3:1-3:6 (2018) - [i3]Joshua E. Hochuli, Alec Helbling, Tamar Skaist, Matthew Ragoza, David Ryan Koes:
Visualizing Convolutional Neural Network Protein-Ligand Scoring. CoRR abs/1803.02398 (2018) - 2017
- [j12]Matthew Ragoza, Joshua E. Hochuli, Elisa Idrobo, Jocelyn Sunseri, David Ryan Koes:
Protein-Ligand Scoring with Convolutional Neural Networks. J. Chem. Inf. Model. 57(4): 942-957 (2017) - [i2]Matthew Ragoza, Lillian Turner, David Ryan Koes:
Ligand Pose Optimization with Atomic Grid-Based Convolutional Neural Networks. CoRR abs/1710.07400 (2017) - 2016
- [j11]Jocelyn Sunseri, Matthew Ragoza, Jasmine Collins, David Ryan Koes:
A D3R prospective evaluation of machine learning for protein-ligand scoring. J. Comput. Aided Mol. Des. 30(9): 761-771 (2016) - [j10]Jocelyn Sunseri, David Ryan Koes:
Pharmit: interactive exploration of chemical space. Nucleic Acids Res. 44(Webserver-Issue): W442-W448 (2016) - [i1]Matthew Ragoza, Joshua E. Hochuli, Elisa Idrobo, Jocelyn Sunseri, David Ryan Koes:
Protein-Ligand Scoring with Convolutional Neural Networks. CoRR abs/1612.02751 (2016) - 2015
- [j9]Nicholas Rego, David Koes:
3Dmol.js: molecular visualization with WebGL. Bioinform. 31(8): 1322-1324 (2015) - [j8]David Ryan Koes, Carlos J. Camacho:
Indexing volumetric shapes with matching and packing. Knowl. Inf. Syst. 43(1): 157-180 (2015) - 2014
- [j7]David Ryan Koes, Carlos J. Camacho:
Shape-based virtual screening with volumetric aligned molecular shapes. J. Comput. Chem. 35(25): 1824-1834 (2014) - 2013
- [j6]David Ryan Koes, Matthew P. Baumgartner, Carlos J. Camacho:
Lessons Learned in Empirical Scoring with smina from the CSAR 2011 Benchmarking Exercise. J. Chem. Inf. Model. 53(8): 1893-1904 (2013) - 2012
- [j5]David Ryan Koes, Carlos J. Camacho:
Small-molecule inhibitor starting points learned from protein-protein interaction inhibitor structure. Bioinform. 28(6): 784-791 (2012) - [j4]David Ryan Koes, Carlos J. Camacho:
Small-molecule inhibitor starting points learned from protein-protein interaction inhibitor structure. Bioinform. 28(14): 1951 (2012) - [j3]David Ryan Koes, Carlos J. Camacho:
PocketQuery: protein-protein interaction inhibitor starting points from protein-protein interaction structure. Nucleic Acids Res. 40(Web-Server-Issue): 387-392 (2012) - [j2]David Ryan Koes, Carlos J. Camacho:
ZINCPharmer: pharmacophore search of the ZINC database. Nucleic Acids Res. 40(Web-Server-Issue): 409-414 (2012) - 2011
- [j1]David Ryan Koes, Carlos J. Camacho:
Pharmer: Efficient and Exact Pharmacophore Search. J. Chem. Inf. Model. 51(6): 1307-1314 (2011)
2000 – 2009
- 2009
- [c6]David Ryan Koes, Seth Copen Goldstein:
Register allocation deconstructed. SCOPES 2009: 21-30 - 2008
- [c5]David Ryan Koes, Seth Copen Goldstein:
Near-optimal instruction selection on dags. CGO 2008: 45-54 - 2006
- [c4]David Ryan Koes, Seth Copen Goldstein:
A global progressive register allocator. PLDI 2006: 204-215 - 2005
- [c3]David Koes, Seth Copen Goldstein:
A Progressive Register Allocator for Irregular Architectures. CGO 2005: 269-280 - 2004
- [c2]David Koes, Mihai Budiu, Girish Venkataramani:
Programmer specified pointer independence. Memory System Performance 2004: 51-59 - 2001
- [c1]Dennis Strelow, Jeffrey Mishler, David Koes, Sanjiv Singh:
Precise Omnidirectional Camera Calibration. CVPR (1) 2001: 689-694
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-07 20:46 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint