default search action
Steven L. Brunton
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j55]J. Nathan Kutz, Steven L. Brunton, Krithika Manohar, Hod Lipson, Na Li:
AI Institute in Dynamic Systems: Developing machine learning and AI tools for scientific discovery, engineering design, and data-driven control. AI Mag. 45(1): 48-53 (2024) - [j54]Shaowu Pan, Eurika Kaiser, Brian M. de Silva, J. Nathan Kutz, Steven L. Brunton:
PyKoopman: A Python Package for Data-Driven Approximation of the Koopman Operator. J. Open Source Softw. 9(96): 5881 (2024) - [j53]Steven L. Brunton, J. Nathan Kutz:
Promising directions of machine learning for partial differential equations. Nat. Comput. Sci. 4(7): 483-494 (2024) - [j52]Jiazhong Mei, Steven L. Brunton, J. Nathan Kutz:
Mobile Sensor Path Planning for Kalman Filter Spatiotemporal Estimation. Sensors 24(12): 3727 (2024) - [j51]Aleksei Sholokhov, Saleh Nabi, Joshua Rapp, Steven L. Brunton, J. Nathan Kutz, Petros T. Boufounos, Hassan Mansour:
Single-Pixel Imaging of Spatio-Temporal Flows Using Differentiable Latent Dynamics. IEEE Trans. Computational Imaging 10: 1124-1138 (2024) - [c11]Aleksei Sholokhov, Joshua Rapp, Saleh Nabi, Steven L. Brunton, J. Nathan Kutz, Hassan Mansour:
Single-Pixel Imaging Of Dynamic Flows Using Neural Ode Regularization. ICASSP 2024: 2530-2534 - [i83]Sara M. Ichinaga, Francesco Andreuzzi, Nicola Demo, Marco Tezzele, Karl Lapo, Gianluigi Rozza, Steven L. Brunton, J. Nathan Kutz:
PyDMD: A Python package for robust dynamic mode decomposition. CoRR abs/2402.07463 (2024) - [i82]Jonas Kneifl, Jörg Fehr, Steven L. Brunton, J. Nathan Kutz:
Multi-Hierarchical Surrogate Learning for Structural Dynamical Crash Simulations Using Graph Convolutional Neural Networks. CoRR abs/2402.09234 (2024) - [i81]Preston Rozwood, Edward Mehrez, Ludger Paehler, Wen Sun, Steven L. Brunton:
Koopman-Assisted Reinforcement Learning. CoRR abs/2403.02290 (2024) - [i80]Nicholas Zolman, Urban Fasel, J. Nathan Kutz, Steven L. Brunton:
SINDy-RL: Interpretable and Efficient Model-Based Reinforcement Learning. CoRR abs/2403.09110 (2024) - [i79]Ricardo Vinuesa, Jean Rabault, Hossein Azizpour, Stefan Bauer, Bingni W. Brunton, Arne Elofsson, Elias Jarlebring, Hedvig Kjellström, Stefano Markidis, David Marlevi, Paola Cinnella, Steven L. Brunton:
Opportunities for machine learning in scientific discovery. CoRR abs/2405.04161 (2024) - [i78]Paolo Conti, Jonas Kneifl, Andrea Manzoni, Attilio Frangi, Jörg Fehr, Steven L. Brunton, J. Nathan Kutz:
VENI, VINDy, VICI: a variational reduced-order modeling framework with uncertainty quantification. CoRR abs/2405.20905 (2024) - [i77]Tanner D. Harms, Steven L. Brunton, Beverley J. McKeon:
Estimating Dynamic Flow Features in Groups of Tracked Objects. CoRR abs/2408.16190 (2024) - [i76]Esther Lagemann, Julia Roeb, Steven L. Brunton, Christian Lagemann:
A deep learning approach to wall-shear stress quantification: From numerical training to zero-shot experimental application. CoRR abs/2409.03933 (2024) - [i75]Doris Voina, Steven L. Brunton, J. Nathan Kutz:
Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems. CoRR abs/2410.02079 (2024) - [i74]Maksym Zhelyeznuyakov, Johannes E. Fröch, Shane Colburn, Steven L. Brunton, Arka Majumdar:
Computed tomography using meta-optics. CoRR abs/2411.08995 (2024) - 2023
- [j50]Kartik Krishna, Steven L. Brunton, Zhuoyuan Song:
Finite Time Lyapunov Exponent Analysis of Model Predictive Control and Reinforcement Learning. IEEE Access 11: 118916-118930 (2023) - [j49]Yuying Liu, Colin Ponce, Steven L. Brunton, J. Nathan Kutz:
Multiresolution convolutional autoencoders. J. Comput. Phys. 474: 111801 (2023) - [j48]Shaowu Pan, Steven L. Brunton, J. Nathan Kutz:
Neural Implicit Flow: a mesh-agnostic dimensionality reduction paradigm of spatio-temporal data. J. Mach. Learn. Res. 24: 41:1-41:60 (2023) - [j47]Ana Larrañaga, Steven L. Brunton, Javier Martínez, Sergio Chapela, Jacobo Porteiro:
Data-driven prediction of the performance of enhanced surfaces from an extensive CFD-generated parametric search space. Mach. Learn. Sci. Technol. 4(2): 25012 (2023) - [c10]Damoon Soudbakhsh, Anuradha M. Annaswamy, Yan Wang, Steven L. Brunton, Joseph E. Gaudio, Heather S. Hussain, Draguna L. Vrabie, Ján Drgona, Dimitar P. Filev:
Data-Driven Control: Theory and Applications. ACC 2023: 1922-1939 - [c9]Jiazhong Mei, J. Nathan Kutz, Steven L. Brunton:
Observability-Based Energy Efficient Path Planning with Background Flow via Deep Reinforcement Learning. CDC 2023: 4364-4371 - [c8]Andrea Tagliabue, Yi-Hsuan Hsiao, Urban Fasel, J. Nathan Kutz, Steven L. Brunton, YuFeng Chen, Jonathan P. How:
Robust, High-Rate Trajectory Tracking on Insect-Scale Soft-Actuated Aerial Robots with Deep-Learned Tube MPC. ICRA 2023: 3383-3389 - [i73]Sebastian Peitz, Jan Stenner, Vikas Chidananda, Oliver Wallscheid, Steven L. Brunton, Kunihiko Taira:
Distributed Control of Partial Differential Equations Using Convolutional Reinforcement Learning. CoRR abs/2301.10737 (2023) - [i72]L. Mars Gao, Urban Fasel, Steven L. Brunton, J. Nathan Kutz:
Convergence of uncertainty estimates in Ensemble and Bayesian sparse model discovery. CoRR abs/2301.12649 (2023) - [i71]Alan A. Kaptanoglu, Lanyue Zhang, Zachary G. Nicolaou, Urban Fasel, Steven L. Brunton:
Benchmarking sparse system identification with low-dimensional chaos. CoRR abs/2302.10787 (2023) - [i70]Ricardo Vinuesa, Steven L. Brunton, Beverley J. McKeon:
The transformative potential of machine learning for experiments in fluid mechanics. CoRR abs/2303.15832 (2023) - [i69]Steven L. Brunton, J. Nathan Kutz:
Machine Learning for Partial Differential Equations. CoRR abs/2303.17078 (2023) - [i68]Kartik Krishna, Steven L. Brunton, Zhuoyuan Song:
Finite Time Lyapunov Exponent Analysis of Model Predictive Control and Reinforcement Learning. CoRR abs/2304.03326 (2023) - [i67]Shaowu Pan, Eurika Kaiser, Brian M. de Silva, J. Nathan Kutz, Steven L. Brunton:
PyKoopman: A Python Package for Data-Driven Approximation of the Koopman Operator. CoRR abs/2306.12962 (2023) - [i66]Niharika Karnik, Mohammad G. Abdo, Carlos E. Estrada Perez, Jun Soo Yoo, Joshua J. Cogliati, Richard S. Skifton, Pattrick Calderoni, Steven L. Brunton, Krithika Manohar:
Optimal Sensor Placement with Adaptive Constraints for Nuclear Digital Twins. CoRR abs/2306.13637 (2023) - [i65]Kartik Krishna, Aditya G. Nair, Anand Krishnan, Steven L. Brunton, Eurika Kaiser:
Control of Vortex Dynamics using Invariants. CoRR abs/2308.03920 (2023) - [i64]Cassio M. Oishi, Alan A. Kaptanoglu, J. Nathan Kutz, Steven L. Brunton:
Nonlinear parametric models of viscoelastic fluid flows. CoRR abs/2308.04405 (2023) - [i63]Paolo Conti, Mengwu Guo, Andrea Manzoni, Attilio Frangi, Steven L. Brunton, J. Nathan Kutz:
Multi-fidelity reduced-order surrogate modeling. CoRR abs/2309.00325 (2023) - [i62]Mozes Jacobs, Bingni W. Brunton, Steven L. Brunton, J. Nathan Kutz, Ryan V. Raut:
HyperSINDy: Deep Generative Modeling of Nonlinear Stochastic Governing Equations. CoRR abs/2310.04832 (2023) - [i61]Esther Lagemann, Steven L. Brunton, Christian Lagemann:
Uncovering wall-shear stress dynamics from neural-network enhanced fluid flow measurements. CoRR abs/2310.11147 (2023) - [i60]Samuel E. Otto, Nicholas Zolman, J. Nathan Kutz, Steven L. Brunton:
A Unified Framework to Enforce, Discover, and Promote Symmetry in Machine Learning. CoRR abs/2311.00212 (2023) - 2022
- [j46]Emma Hansen, Steven L. Brunton, Zhuoyuan Song:
Swarm Modeling With Dynamic Mode Decomposition. IEEE Access 10: 59508-59521 (2022) - [j45]Ricardo Vinuesa, Steven L. Brunton:
Emerging Trends in Machine Learning for Computational Fluid Dynamics. Comput. Sci. Eng. 24(5): 33-41 (2022) - [j44]Steven N. Rodriguez, Athanasios P. Iliopoulos, Kevin T. Carlberg, Steven L. Brunton, John C. Steuben, John G. Michopoulos:
Projection-tree reduced-order modeling for fast N-body computations. J. Comput. Phys. 459: 111141 (2022) - [j43]Alan A. Kaptanoglu, Brian de Silva, Urban Fasel, Kadierdan Kaheman, Andy Goldschmidt, Jared Callaham, Charles B. Delahunt, Zachary Nicolaou, Kathleen P. Champion, Jean-Christophe Loiseau, J. Nathan Kutz, Steven L. Brunton:
PySINDy: A comprehensive Python package for robust sparse system identification. J. Open Source Softw. 7(69): 3994 (2022) - [j42]Urban Fasel, Nicola Fonzi, Andrea Iannelli, Steven L. Brunton:
FlexWing-ROM: A matlab framework for data-driven reduced-order modeling of flexible wings. J. Open Source Softw. 7(80): 4211 (2022) - [j41]Moritz Hoffmann, Martin Scherer, Tim Hempel, Andreas Mardt, Brian de Silva, Brooke E. Husic, Stefan Klus, Hao Wu, J. Nathan Kutz, Steven L. Brunton, Frank Noé:
Deeptime: a Python library for machine learning dynamical models from time series data. Mach. Learn. Sci. Technol. 3(1): 15009 (2022) - [j40]Kadierdan Kaheman, Steven L. Brunton, J. Nathan Kutz:
Automatic differentiation to simultaneously identify nonlinear dynamics and extract noise probability distributions from data. Mach. Learn. Sci. Technol. 3(1): 15031 (2022) - [j39]Ricardo Vinuesa, Steven L. Brunton:
Enhancing computational fluid dynamics with machine learning. Nat. Comput. Sci. 2(6): 358-366 (2022) - [j38]Joseph Bakarji, Jared Callaham, Steven L. Brunton, J. Nathan Kutz:
Dimensionally consistent learning with Buckingham Pi. Nat. Comput. Sci. 2(12): 834-844 (2022) - [j37]Andy Goldschmidt, Jonathan L. Dubois, Steven L. Brunton, J. Nathan Kutz:
Model predictive control for robust quantum state preparation. Quantum 6: 837 (2022) - [j36]Steven L. Brunton, Marko Budisic, Eurika Kaiser, J. Nathan Kutz:
Modern Koopman Theory for Dynamical Systems. SIAM Rev. 64(2): 229-340 (2022) - [j35]Krithika Manohar, J. Nathan Kutz, Steven L. Brunton:
Optimal Sensor and Actuator Selection Using Balanced Model Reduction. IEEE Trans. Autom. Control. 67(4): 2108-2115 (2022) - [c7]Lauren E. Conger, Jing Shuang Lisa Li, Eric Mazumdar, Steven L. Brunton:
Nonlinear System Level Synthesis for Polynomial Dynamical Systems. CDC 2022: 3846-3852 - [i59]Joseph Bakarji, Kathleen P. Champion, J. Nathan Kutz, Steven L. Brunton:
Discovering Governing Equations from Partial Measurements with Deep Delay Autoencoders. CoRR abs/2201.05136 (2022) - [i58]Joseph Bakarji, Jared Callaham, Steven L. Brunton, J. Nathan Kutz:
Dimensionally Consistent Learning with Buckingham Pi. CoRR abs/2202.04643 (2022) - [i57]Said Ouala, Steven L. Brunton, Ananda Pascual, Bertrand Chapron, Fabrice Collard, Lucile Gaultier, Ronan Fablet:
Bounded nonlinear forecasts of partially observed geophysical systems with physics-constrained deep learning. CoRR abs/2202.05750 (2022) - [i56]Shaowu Pan, Steven L. Brunton, J. Nathan Kutz:
Neural Implicit Flow: a mesh-agnostic dimensionality reduction paradigm of spatio-temporal data. CoRR abs/2204.03216 (2022) - [i55]Emma Hansen, Steven L. Brunton, Zhuoyuan Song:
Swarm Modelling with Dynamic Mode Decomposition. CoRR abs/2204.06335 (2022) - [i54]Kadierdan Kaheman, Urban Fasel, Jason J. Bramburger, Benjamin Strom, J. Nathan Kutz, Steven L. Brunton:
The Experimental Multi-Arm Pendulum on a Cart: A Benchmark System for Chaos, Learning, and Control. CoRR abs/2205.06231 (2022) - [i53]Andrea Tagliabue, Yi-Hsuan Hsiao, Urban Fasel, J. Nathan Kutz, Steven L. Brunton, YuFeng Chen, Jonathan P. How:
Robust, High-Rate Trajectory Tracking on Insect-Scale Soft-Actuated Aerial Robots with Deep-Learned Tube MPC. CoRR abs/2209.10007 (2022) - [i52]Ricardo Vinuesa, Steven L. Brunton:
Emerging trends in machine learning for computational fluid dynamics. CoRR abs/2211.15145 (2022) - 2021
- [j34]Jason J. Bramburger, J. Nathan Kutz, Steven L. Brunton:
Data-Driven Stabilization of Periodic Orbits. IEEE Access 9: 43504-43521 (2021) - [j33]Daniel E. Shea, Rajiv Giridharagopal, David S. Ginger, Steven L. Brunton, J. Nathan Kutz:
Extraction of Instantaneous Frequencies and Amplitudes in Nonstationary Time-Series Data. IEEE Access 9: 83453-83466 (2021) - [j32]Henning Lange, Steven L. Brunton, J. Nathan Kutz:
From Fourier to Koopman: Spectral Methods for Long-term Time Series Prediction. J. Mach. Learn. Res. 22: 41:1-41:38 (2021) - [j31]Brian M. de Silva, Krithika Manohar, Emily Clark, Bingni W. Brunton, J. Nathan Kutz, Steven L. Brunton:
PySensors: A Python package for sparse sensor placement. J. Open Source Softw. 6(58): 2828 (2021) - [j30]Eurika Kaiser, J. Nathan Kutz, Steven L. Brunton:
Data-driven discovery of Koopman eigenfunctions for control. Mach. Learn. Sci. Technol. 2(3): 35023 (2021) - [c6]Urban Fasel, Eurika Kaiser, J. Nathan Kutz, Bingni W. Brunton, Steven L. Brunton:
SINDy with Control: A Tutorial. CDC 2021: 16-21 - [i51]Craig R. Gin, Daniel E. Shea, Steven L. Brunton, J. Nathan Kutz:
DeepGreen: Deep Learning of Green's Functions for Nonlinear Boundary Value Problems. CoRR abs/2101.07206 (2021) - [i50]Steven L. Brunton, Marko Budisic, Eurika Kaiser, J. Nathan Kutz:
Modern Koopman Theory for Dynamical Systems. CoRR abs/2102.12086 (2021) - [i49]Brian M. de Silva, Krithika Manohar, Emily Clark, Bingni W. Brunton, Steven L. Brunton, J. Nathan Kutz:
PySensors: A Python Package for Sparse Sensor Placement. CoRR abs/2102.13476 (2021) - [i48]Steven N. Rodriguez, Athanasios P. Iliopoulos, Kevin T. Carlberg, Steven L. Brunton, John C. Steuben, John G. Michopoulos:
Projection-tree reduced order modeling for fast N-body computations. CoRR abs/2103.01983 (2021) - [i47]Kartik Krishna, Zhuoyuan Song, Steven L. Brunton:
Finite-Horizon, Energy-Optimal Trajectories in Unsteady Flows. CoRR abs/2103.10556 (2021) - [i46]Daniel E. Shea, Rajiv Giridharagopal, David S. Ginger, Steven L. Brunton, J. Nathan Kutz:
Extraction of instantaneous frequencies and amplitudes in nonstationary time-series data. CoRR abs/2104.01293 (2021) - [i45]Jason J. Bramburger, Steven L. Brunton, J. Nathan Kutz:
Deep Learning of Conjugate Mappings. CoRR abs/2104.01874 (2021) - [i44]Manu Kalia, Steven L. Brunton, Hil G. E. Meijer, Christoph Brune, J. Nathan Kutz:
Learning normal form autoencoders for data-driven discovery of universal, parameter-dependent governing equations. CoRR abs/2106.05102 (2021) - [i43]Steven L. Brunton:
Applying Machine Learning to Study Fluid Mechanics. CoRR abs/2110.02083 (2021) - [i42]Ricardo Vinuesa, Steven L. Brunton:
The Potential of Machine Learning to Enhance Computational Fluid Dynamics. CoRR abs/2110.02085 (2021) - [i41]Moritz Hoffmann, Martin Scherer, Tim Hempel, Andreas Mardt, Brian de Silva, Brooke E. Husic, Stefan Klus, Hao Wu, J. Nathan Kutz, Steven L. Brunton, Frank Noé:
Deeptime: a Python library for machine learning dynamical models from time series data. CoRR abs/2110.15013 (2021) - [i40]Alan A. Kaptanoglu, Brian M. de Silva, Urban Fasel, Kadierdan Kaheman, Jared L. Callaham, Charles B. Delahunt, Kathleen P. Champion, Jean-Christophe Loiseau, J. Nathan Kutz, Steven L. Brunton:
PySINDy: A comprehensive Python package for robust sparse system identification. CoRR abs/2111.08481 (2021) - [i39]Urban Fasel, J. Nathan Kutz, Bingni W. Brunton, Steven L. Brunton:
Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control. CoRR abs/2111.10992 (2021) - [i38]Peter J. Baddoo, Benjamin Herrmann, Beverley J. McKeon, J. Nathan Kutz, Steven L. Brunton:
Physics-informed dynamic mode decomposition (piDMD). CoRR abs/2112.04307 (2021) - 2020
- [j29]Kathleen P. Champion, Peng Zheng, Aleksandr Y. Aravkin, Steven L. Brunton, J. Nathan Kutz:
A Unified Sparse Optimization Framework to Learn Parsimonious Physics-Informed Models From Data. IEEE Access 8: 169259-169271 (2020) - [j28]Thomas L. Mohren, Thomas L. Daniel, Steven L. Brunton:
Learning Precisely Timed Feedforward Control of the Sensor-Denied Inverted Pendulum. IEEE Control. Syst. Lett. 4(3): 731-736 (2020) - [j27]Brian de Silva, David M. Higdon, Steven L. Brunton, J. Nathan Kutz:
Discovery of Physics From Data: Universal Laws and Discrepancies. Frontiers Artif. Intell. 3: 25 (2020) - [j26]Brian de Silva, Kathleen P. Champion, Markus Quade, Jean-Christophe Loiseau, J. Nathan Kutz, Steven L. Brunton:
PySINDy: A Python package for the sparse identification of nonlinear dynamical systems from data. J. Open Source Softw. 5(49): 2104 (2020) - [j25]N. Benjamin Erichson, Krithika Manohar, Steven L. Brunton, J. Nathan Kutz:
Randomized CP tensor decomposition. Mach. Learn. Sci. Technol. 1(2): 25012 (2020) - [j24]Chang Sun, Eurika Kaiser, Steven L. Brunton, J. Nathan Kutz:
Deep reinforcement learning for optical systems: A case study of mode-locked lasers. Mach. Learn. Sci. Technol. 1(4): 45013 (2020) - [j23]Mason Kamb, Eurika Kaiser, Steven L. Brunton, J. Nathan Kutz:
Time-Delay Observables for Koopman: Theory and Applications. SIAM J. Appl. Dyn. Syst. 19(2): 886-917 (2020) - [j22]N. Benjamin Erichson, Peng Zheng, Krithika Manohar, Steven L. Brunton, J. Nathan Kutz, Aleksandr Y. Aravkin:
Sparse Principal Component Analysis via Variable Projection. SIAM J. Appl. Math. 80(2): 977-1002 (2020) - [i37]Henning Lange, Steven L. Brunton, J. Nathan Kutz:
From Fourier to Koopman: Spectral Methods for Long-term Time Series Prediction. CoRR abs/2004.00574 (2020) - [i36]Kadierdan Kaheman, J. Nathan Kutz, Steven L. Brunton:
SINDy-PI: A Robust Algorithm for Parallel Implicit Sparse Identification of Nonlinear Dynamics. CoRR abs/2004.02322 (2020) - [i35]Yuying Liu, Colin Ponce, Steven L. Brunton, J. Nathan Kutz:
Multiresolution Convolutional Autoencoders. CoRR abs/2004.04946 (2020) - [i34]Daniel E. Shea, Steven L. Brunton, J. Nathan Kutz:
SINDy-BVP: Sparse Identification of Nonlinear Dynamics for Boundary Value Problems. CoRR abs/2005.10756 (2020) - [i33]Daniel Dylewsky, Eurika Kaiser, Steven L. Brunton, J. Nathan Kutz:
Principal Component Trajectories (PCT): Nonlinear dynamics as a superposition of time-delayed periodic orbits. CoRR abs/2005.14321 (2020) - [i32]Brian M. de Silva, Jared Callaham, Jonathan Jonker, Nicholas Goebel, Jennifer Klemisch, Darren McDonald, Nathan Hicks, J. Nathan Kutz, Steven L. Brunton, Aleksandr Y. Aravkin:
Physics-informed machine learning for sensor fault detection with flight test data. CoRR abs/2006.13380 (2020) - [i31]Yuying Liu, J. Nathan Kutz, Steven L. Brunton:
Hierarchical Deep Learning of Multiscale Differential Equation Time-Steppers. CoRR abs/2008.09768 (2020) - [i30]Steven L. Brunton, J. Nathan Kutz, Krithika Manohar, Aleksandr Y. Aravkin, Kristi Morgansen, Jennifer Klemisch, Nicholas Goebel, James Buttrick, Jeffrey Poskin, Agnes Blom-Schieber, Thomas A. Hogan, Darren McDonald:
Data-Driven Aerospace Engineering: Reframing the Industry with Machine Learning. CoRR abs/2008.10740 (2020) - [i29]Emily Clark, Angelie Vincent, J. Nathan Kutz, Steven L. Brunton:
Bracketing brackets with bras and kets. CoRR abs/2008.12247 (2020) - [i28]Kadierdan Kaheman, Steven L. Brunton, J. Nathan Kutz:
Automatic Differentiation to Simultaneously Identify Nonlinear Dynamics and Extract Noise Probability Distributions from Data. CoRR abs/2009.08810 (2020)
2010 – 2019
- 2019
- [j21]Peng Zheng, Travis Askham, Steven L. Brunton, J. Nathan Kutz, Aleksandr Y. Aravkin:
A Unified Framework for Sparse Relaxed Regularized Regression: SR3. IEEE Access 7: 1404-1423 (2019) - [j20]Samuel H. Rudy, J. Nathan Kutz, Steven L. Brunton:
Deep learning of dynamics and signal-noise decomposition with time-stepping constraints. J. Comput. Phys. 396: 483-506 (2019) - [j19]Samuel H. Rudy, Steven L. Brunton, J. Nathan Kutz:
Smoothing and parameter estimation by soft-adherence to governing equations. J. Comput. Phys. 398 (2019) - [j18]N. Benjamin Erichson, Steven L. Brunton, J. Nathan Kutz:
Compressed dynamic mode decomposition for background modeling. J. Real Time Image Process. 16(5): 1479-1492 (2019) - [j17]Krithika Manohar, Eurika Kaiser, Steven L. Brunton, J. Nathan Kutz:
Optimized Sampling for Multiscale Dynamics. Multiscale Model. Simul. 17(1): 117-136 (2019) - [j16]Kathleen P. Champion, Steven L. Brunton, J. Nathan Kutz:
Discovery of Nonlinear Multiscale Systems: Sampling Strategies and Embeddings. SIAM J. Appl. Dyn. Syst. 18(1): 312-333 (2019) - [j15]Samuel H. Rudy, Alessandro Alla, Steven L. Brunton, J. Nathan Kutz:
Data-Driven Identification of Parametric Partial Differential Equations. SIAM J. Appl. Dyn. Syst. 18(2): 643-660 (2019) - [j14]N. Benjamin Erichson, Lionel Mathelin, J. Nathan Kutz, Steven L. Brunton:
Randomized Dynamic Mode Decomposition. SIAM J. Appl. Dyn. Syst. 18(4): 1867-1891 (2019) - [j13]Chen Gong, N. Benjamin Erichson, John P. Kelly, Laura C. Trutoiu, Brian T. Schowengerdt, Steven L. Brunton, Eric J. Seibel:
RetinaMatch: Efficient Template Matching of Retina Images for Teleophthalmology. IEEE Trans. Medical Imaging 38(8): 1993-2004 (2019) - [i27]N. Benjamin Erichson, Lionel Mathelin, Zhewei Yao, Steven L. Brunton, Michael W. Mahoney, J. Nathan Kutz:
Shallow Learning for Fluid Flow Reconstruction with Limited Sensors and Limited Data. CoRR abs/1902.07358 (2019) - [i26]Katharina Bieker, Sebastian Peitz, Steven L. Brunton, J. Nathan Kutz, Michael Dellnitz:
Deep Model Predictive Control with Online Learning for Complex Physical Systems. CoRR abs/1905.10094 (2019) - [i25]Steven L. Brunton, Bernd Noack, Petros Koumoutsakos:
Machine Learning for Fluid Mechanics. CoRR abs/1905.11075 (2019) - [i24]Brian de Silva, David M. Higdon, Steven L. Brunton, J. Nathan Kutz:
Discovery of Physics from Data: Universal Laws and Discrepancy Models. CoRR abs/1906.07906 (2019) - [i23]Kathleen P. Champion, Peng Zheng, Aleksandr Y. Aravkin, Steven L. Brunton, J. Nathan Kutz:
A unified sparse optimization framework to learn parsimonious physics-informed models from data. CoRR abs/1906.10612 (2019) - [i22]Zhe Bai, N. Benjamin Erichson, Muralikrishnan Gopalakrishnan Meena, Kunihiko Taira, Steven L. Brunton:
Randomized methods to characterize large-scale vortical flow network. CoRR abs/1909.00535 (2019) - [i21]Kadierdan Kaheman, Eurika Kaiser, Benjamin Strom, J. Nathan Kutz, Steven L. Brunton:
Learning Discrepancy Models From Experimental Data. CoRR abs/1909.08574 (2019) - [i20]Craig Gin, Bethany Lusch, Steven L. Brunton, J. Nathan Kutz:
Deep Learning Models for Global Coordinate Transformations that Linearize PDEs. CoRR abs/1911.02710 (2019) - [i19]Thomas L. Mohren, Thomas L. Daniel, Steven L. Brunton:
Learning Precisely Timed Feedforward Control of the Sensor-Denied Inverted Pendulum. CoRR abs/1912.04922 (2019) - 2018
- [j12]J. Nathan Kutz, Joshua L. Proctor, Steven L. Brunton:
Applied Koopman Theory for Partial Differential Equations and Data-Driven Modeling of Spatio-Temporal Systems. Complex. 2018: 6010634:1-6010634:16 (2018) - [j11]Eurika Kaiser, Marek Morzynski, Guillaume Daviller, J. Nathan Kutz, Bingni W. Brunton, Steven L. Brunton:
Sparsity enabled cluster reduced-order models for control. J. Comput. Phys. 352: 388-409 (2018) - [j10]Joshua L. Proctor, Steven L. Brunton, J. Nathan Kutz:
Generalizing Koopman Theory to Allow for Inputs and Control. SIAM J. Appl. Dyn. Syst. 17(1): 909-930 (2018) - [j9]Syuzanna Sargsyan, Steven L. Brunton, J. Nathan Kutz:
Online Interpolation Point Refinement for Reduced-Order Models using a Genetic Algorithm. SIAM J. Sci. Comput. 40(1) (2018) - [j8]Wei Guo, Krithika Manohar, Steven L. Brunton, Ashis Gopal Banerjee:
Sparse-TDA: Sparse Realization of Topological Data Analysis for Multi-Way Classification. IEEE Trans. Knowl. Data Eng. 30(7): 1403-1408 (2018) - [c5]Eurika Kaiser, J. Nathan Kutz, Steven L. Brunton:
Discovering Conservation Laws from Data for Control. CDC 2018: 6415-6421 - [i18]N. Benjamin Erichson, Lionel Mathelin, Steven L. Brunton, J. Nathan Kutz:
Diffusion Maps meet Nyström. CoRR abs/1802.08762 (2018) - [i17]N. Benjamin Erichson, Peng Zeng, Krithika Manohar, Steven L. Brunton, J. Nathan Kutz, Aleksandr Y. Aravkin:
Sparse Principal Component Analysis via Variable Projection. CoRR abs/1804.00341 (2018) - [i16]Peng Zheng, Travis Askham, Steven L. Brunton, J. Nathan Kutz, Aleksandr Y. Aravkin:
Sparse Relaxed Regularized Regression: SR3. CoRR abs/1807.05411 (2018) - [i15]Eurika Kaiser, J. Nathan Kutz, Steven L. Brunton:
Discovering conservation laws from data for control. CoRR abs/1811.00961 (2018) - [i14]Chen Gong, N. Benjamin Erichson, John P. Kelly, Laura C. Trutoiu, Brian T. Schowengerdt, Steven L. Brunton, Eric J. Seibel:
RetinaMatch: Efficient Template Matching of Retina Images for Teleophthalmology. CoRR abs/1811.11874 (2018) - [i13]Krithika Manohar, J. Nathan Kutz, Steven L. Brunton:
Optimal Sensor and Actuator Placement using Balanced Model Reduction. CoRR abs/1812.01574 (2018) - 2017
- [j7]James M. Kunert, Joshua L. Proctor, Steven L. Brunton, J. Nathan Kutz:
Spatiotemporal Feedback and Network Structure Drive and Encode Caenorhabditis elegans Locomotion. PLoS Comput. Biol. 13(1) (2017) - [c4]J. Nathan Kutz, Samuel H. Rudy, Alessandro Alla, Steven L. Brunton:
Data-Driven discovery of governing physical laws and their parametric dependencies in engineering, physics and biology. CAMSAP 2017: 1-5 - [c3]Seth D. Pendergrass, Steven L. Brunton, J. Nathan Kutz, N. Benjamin Erichson, Travis Askham:
Dynamic Mode Decomposition for Background Modeling. ICCV Workshops 2017: 1862-1870 - [c2]N. Benjamin Erichson, Steven L. Brunton, J. Nathan Kutz:
Compressed Singular Value Decomposition for Image and Video Processing. ICCV Workshops 2017: 1880-1888 - [i12]Wei Guo, Krithika Manohar, Steven L. Brunton, Ashis Gopal Banerjee:
Sparse-TDA: Sparse Realization of Topological Data Analysis for Multi-Way Classification. CoRR abs/1701.03212 (2017) - [i11]Krithika Manohar, Bingni W. Brunton, J. Nathan Kutz, Steven L. Brunton:
Data-Driven Sparse Sensor Placement. CoRR abs/1701.07569 (2017) - [i10]N. Benjamin Erichson, Steven L. Brunton, J. Nathan Kutz:
Randomized Dynamic Mode Decomposition. CoRR abs/1702.02912 (2017) - [i9]N. Benjamin Erichson, Krithika Manohar, Steven L. Brunton, J. Nathan Kutz:
Randomized CP Tensor Decomposition. CoRR abs/1703.09074 (2017) - [i8]Zhe Bai, Eurika Kaiser, Joshua L. Proctor, J. Nathan Kutz, Steven L. Brunton:
Dynamic mode decomposition for compressive system identification. CoRR abs/1710.07737 (2017) - [i7]Thomas Baumeister, Steven L. Brunton, J. Nathan Kutz:
Deep Learning and Model Predictive Control for Self-Tuning Mode-Locked Lasers. CoRR abs/1711.02702 (2017) - [i6]Bethany Lusch, J. Nathan Kutz, Steven L. Brunton:
Deep learning for universal linear embeddings of nonlinear dynamics. CoRR abs/1712.09707 (2017) - 2016
- [b1]J. Nathan Kutz, Steven L. Brunton, Bingni W. Brunton, Joshua L. Proctor:
Dynamic mode decomposition - data-driven modeling of complex systems. SIAM 2016, ISBN 978-1-611-97449-2, pp. 1-234 - [j6]Joshua L. Proctor, Steven L. Brunton, J. Nathan Kutz:
Dynamic Mode Decomposition with Control. SIAM J. Appl. Dyn. Syst. 15(1): 142-161 (2016) - [j5]J. Nathan Kutz, Xing Fu, Steven L. Brunton:
Multiresolution Dynamic Mode Decomposition. SIAM J. Appl. Dyn. Syst. 15(2): 713-735 (2016) - [j4]Bingni W. Brunton, Steven L. Brunton, Joshua L. Proctor, J. Nathan Kutz:
Sparse Sensor Placement Optimization for Classification. SIAM J. Appl. Math. 76(5): 2099-2122 (2016) - [j3]Niall M. Mangan, Steven L. Brunton, Joshua L. Proctor, J. Nathan Kutz:
Inferring Biological Networks by Sparse Identification of Nonlinear Dynamics. IEEE Trans. Mol. Biol. Multi Scale Commun. 2(1): 52-63 (2016) - [i5]Syuzanna Sargsyan, Steven L. Brunton, J. Nathan Kutz:
Online interpolation point refinement for reduced order models using a genetic algorithm. CoRR abs/1607.07702 (2016) - [i4]N. Benjamin Erichson, Sergey Voronin, Steven L. Brunton, J. Nathan Kutz:
Randomized Matrix Decompositions using R. CoRR abs/1608.02148 (2016) - [i3]Seth D. Pendergrass, J. Nathan Kutz, Steven L. Brunton:
Streaming GPU Singular Value and Dynamic Mode Decompositions. CoRR abs/1612.07875 (2016) - 2015
- [c1]J. Nathan Kutz, Xing Fu, Steven L. Brunton, N. Benjamin Erichson:
Multi-resolution Dynamic Mode Decomposition for Foreground/Background Separation and Object Tracking. ICCV Workshops 2015: 921-929 - [i2]N. Benjamin Erichson, Steven L. Brunton, J. Nathan Kutz:
Compressed Dynamic Mode Decomposition for Real-Time Object Detection. CoRR abs/1512.04205 (2015) - 2014
- [j2]Dirk M. Luchtenburg, Steven L. Brunton, Clarence W. Rowley:
Long-time uncertainty propagation using generalized polynomial chaos and flow map composition. J. Comput. Phys. 274: 783-802 (2014) - [j1]Steven L. Brunton, Jonathan H. Tu, Ido Bright, J. Nathan Kutz:
Compressive Sensing and Low-Rank Libraries for Classification of Bifurcation Regimes in Nonlinear Dynamical Systems. SIAM J. Appl. Dyn. Syst. 13(4): 1716-1732 (2014) - 2013
- [i1]Bingni W. Brunton, Steven L. Brunton, Joshua L. Proctor, J. Nathan Kutz:
Optimal Sensor Placement and Enhanced Sparsity for Classification. CoRR abs/1310.4217 (2013)
Coauthor Index
aka: Brian M. de Silva
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-21 00:17 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint