default search action
Meelis Kull
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j10]Ida Rahu, Meelis Kull, Anneli Kruve:
Predicting the Activity of Unidentified Chemicals in Complementary Bioassays from the HRMS Data to Pinpoint Potential Endocrine Disruptors. J. Chem. Inf. Model. 64(8): 3093-3104 (2024) - [c24]Mari-Liis Allikivi, Joonas Järve, Meelis Kull:
Cautious Calibration in Binary Classification. ECAI 2024: 1503-1510 - [c23]Viacheslav Komisarenko, Meelis Kull:
Improving Calibration by Relating Focal Loss, Temperature Scaling, and Properness. ECAI 2024: 1535-1542 - [c22]Novin Shahroudi, Mihkel Lepson, Meelis Kull:
Evaluation of Trajectory Distribution Predictions with Energy Score. ICML 2024 - [e9]Albert Bifet, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Indre Zliobaite:
Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part I. Lecture Notes in Computer Science 14941, Springer 2024, ISBN 978-3-031-70340-9 [contents] - [e8]Albert Bifet, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Indre Zliobaite:
Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part II. Lecture Notes in Computer Science 14942, Springer 2024, ISBN 978-3-031-70343-0 [contents] - [e7]Albert Bifet, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Indre Zliobaite:
Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part III. Lecture Notes in Computer Science 14943, Springer 2024, ISBN 978-3-031-70351-5 [contents] - [e6]Albert Bifet, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Indre Zliobaite:
Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part IV. Lecture Notes in Computer Science 14944, Springer 2024, ISBN 978-3-031-70358-4 [contents] - [e5]Albert Bifet, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Indre Zliobaite:
Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part V. Lecture Notes in Computer Science 14945, Springer 2024, ISBN 978-3-031-70361-4 [contents] - [e4]Albert Bifet, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Indre Zliobaite:
Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part VI. Lecture Notes in Computer Science 14946, Springer 2024, ISBN 978-3-031-70364-5 [contents] - [e3]Albert Bifet, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Indre Zliobaite:
Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part VII. Lecture Notes in Computer Science 14947, Springer 2024, ISBN 978-3-031-70367-6 [contents] - [e2]Albert Bifet, Povilas Daniusis, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Kai Puolamäki, Indre Zliobaite:
Machine Learning and Knowledge Discovery in Databases. Research Track and Demo Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part VIII. Lecture Notes in Computer Science 14948, Springer 2024, ISBN 978-3-031-70370-6 [contents] - [i17]Mari-Liis Allikivi, Joonas Järve, Meelis Kull:
Cautious Calibration in Binary Classification. CoRR abs/2408.05120 (2024) - [i16]Viacheslav Komisarenko, Meelis Kull:
Improving Calibration by Relating Focal Loss, Temperature Scaling, and Properness. CoRR abs/2408.11598 (2024) - [i15]Daniel Urda, Branly Martínez, Nuño Basurto, Meelis Kull, Ángel Arroyo, Álvaro Herrero:
Enhancing web traffic attacks identification through ensemble methods and feature selection. CoRR abs/2412.16791 (2024) - 2023
- [j9]Telmo de Menezes e Silva Filho, Hao Song, Miquel Perelló-Nieto, Raúl Santos-Rodríguez, Meelis Kull, Peter A. Flach:
Classifier calibration: a survey on how to assess and improve predicted class probabilities. Mach. Learn. 112(9): 3211-3260 (2023) - [j8]Kaspar Valk, Meelis Kull:
Assuming Locally Equal Calibration Errors for Non-Parametric Multiclass Calibration. Trans. Mach. Learn. Res. 2023 (2023) - [c21]Bhawani Shankar Leelar, Meelis Kull:
Generality-Training of a Classifier for Improved Calibration in Unseen Contexts. ECML/PKDD (5) 2023: 374-391 - 2022
- [c20]Daniel Urda, Nuño Basurto, Meelis Kull, Álvaro Herrero:
Evaluating Classifiers' Performance to Detect Attacks in Website Traffic. CISIS-ICEUTE 2022: 205-215 - [i14]Kacper Sokol, Meelis Kull, Jeffrey Chan, Flora Dilys Salim:
Ethical and Fairness Implications of Model Multiplicity. CoRR abs/2203.07139 (2022) - [i13]Markus Kängsepp, Kaspar Valk, Meelis Kull:
On the Usefulness of the Fit-on-the-Test View on Evaluating Calibration of Classifiers. CoRR abs/2203.08958 (2022) - [i12]Markus Kängsepp, Meelis Kull:
Calibrated Perception Uncertainty Across Objects and Regions in Bird's-Eye-View. CoRR abs/2211.04340 (2022) - 2021
- [j7]Fernando Martínez-Plumed, Lidia Contreras Ochando, Cèsar Ferri, José Hernández-Orallo, Meelis Kull, Nicolas Lachiche, María José Ramírez-Quintana, Peter A. Flach:
CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories. IEEE Trans. Knowl. Data Eng. 33(8): 3048-3061 (2021) - [c19]Mohamed Maher, Meelis Kull:
Instance-based Label Smoothing For Better Calibrated Classification Networks. ICMLA 2021: 746-753 - [i11]Mohamed Maher, Meelis Kull:
Instance-based Label Smoothing For Better Calibrated Classification Networks. CoRR abs/2110.05355 (2021) - [i10]Theodore James Thibault Heiser, Mari-Liis Allikivi, Meelis Kull:
Shift Happens: Adjusting Classifiers. CoRR abs/2111.02529 (2021) - [i9]Telmo de Menezes e Silva Filho, Hao Song, Miquel Perelló-Nieto, Raúl Santos-Rodríguez, Meelis Kull, Peter A. Flach:
Classifier Calibration: How to assess and improve predicted class probabilities: a survey. CoRR abs/2112.10327 (2021) - 2020
- [i8]Anti Ingel, Novin Shahroudi, Markus Kängsepp, Andre Tättar, Viacheslav Komisarenko, Meelis Kull:
Correlated daily time series and forecasting in the M4 competition. CoRR abs/2003.12796 (2020)
2010 – 2019
- 2019
- [c18]Hao Song, Tom Diethe, Meelis Kull, Peter A. Flach:
Distribution calibration for regression. ICML 2019: 5897-5906 - [c17]Meelis Kull, Miquel Perelló-Nieto, Markus Kängsepp, Telmo de Menezes e Silva Filho, Hao Song, Peter A. Flach:
Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities with Dirichlet calibration. NeurIPS 2019: 12295-12305 - [c16]Theodore James Thibault Heiser, Mari-Liis Allikivi, Meelis Kull:
Shift Happens: Adjusting Classifiers. ECML/PKDD (2) 2019: 55-70 - [c15]Mari-Liis Allikivi, Meelis Kull:
Non-parametric Bayesian Isotonic Calibration: Fighting Over-Confidence in Binary Classification. ECML/PKDD (2) 2019: 103-120 - [i7]Hao Song, Tom Diethe, Meelis Kull, Peter A. Flach:
Distribution Calibration for Regression. CoRR abs/1905.06023 (2019) - [i6]Tom Diethe, Meelis Kull, Niall Twomey, Kacper Sokol, Hao Song, Miquel Perelló-Nieto, Emma Tonkin, Peter A. Flach:
HyperStream: a Workflow Engine for Streaming Data. CoRR abs/1908.02858 (2019) - [i5]Meelis Kull, Miquel Perelló-Nieto, Markus Kängsepp, Telmo de Menezes e Silva Filho, Hao Song, Peter A. Flach:
Beyond temperature scaling: Obtaining well-calibrated multiclass probabilities with Dirichlet calibration. CoRR abs/1910.12656 (2019) - 2018
- [c14]Tom Diethe, Mike Holmes, Meelis Kull, Miquel Perelló-Nieto, Kacper Sokol, Hao Song, Emma Tonkin, Niall Twomey, Peter A. Flach:
Releasing eHealth Analytics into the Wild: Lessons Learnt from the SPHERE Project. KDD 2018: 243-252 - [i4]Hao Song, Meelis Kull, Peter A. Flach:
Non-Parametric Calibration of Probabilistic Regression. CoRR abs/1806.07690 (2018) - 2017
- [c13]Meelis Kull, Telmo de Menezes e Silva Filho, Peter A. Flach:
Beta calibration: a well-founded and easily implemented improvement on logistic calibration for binary classifiers. AISTATS 2017: 623-631 - [i3]Tom Diethe, Niall Twomey, Meelis Kull, Peter A. Flach, Ian Craddock:
Probabilistic Sensor Fusion for Ambient Assisted Living. CoRR abs/1702.01209 (2017) - [i2]Fernando Martínez-Plumed, Lidia Contreras Ochando, César Ferri, Peter A. Flach, José Hernández-Orallo, Meelis Kull, Nicolas Lachiche, María José Ramírez-Quintana:
CASP-DM: Context Aware Standard Process for Data Mining. CoRR abs/1709.09003 (2017) - 2016
- [j6]José Hernández-Orallo, Adolfo Martínez Usó, Ricardo B. C. Prudêncio, Meelis Kull, Peter A. Flach, Chowdhury Farhan Ahmed, Nicolas Lachiche:
Reframing in context: A systematic approach for model reuse in machine learning. AI Commun. 29(5): 551-566 (2016) - [j5]Nikolaos Nikolaou, Narayanan Unny Edakunni, Meelis Kull, Peter A. Flach, Gavin Brown:
Cost-sensitive boosting algorithms: Do we really need them? Mach. Learn. 104(2-3): 359-384 (2016) - [c12]Reem Al-Otaibi, Meelis Kull, Peter A. Flach:
Declaratively Capturing Local Label Correlations with Multi-Label Trees. ECAI 2016: 1467-1475 - [c11]Miquel Perelló-Nieto, Telmo de Menezes e Silva Filho, Meelis Kull, Peter A. Flach:
Background Check: A General Technique to Build More Reliable and Versatile Classifiers. ICDM 2016: 1143-1148 - [c10]Hao Song, Meelis Kull, Peter A. Flach, Georgios Kalogridis:
Subgroup Discovery with Proper Scoring Rules. ECML/PKDD (2) 2016: 492-510 - [i1]Niall Twomey, Tom Diethe, Meelis Kull, Hao Song, Massimo Camplani, Sion L. Hannuna, Xenofon Fafoutis, Ni Zhu, Pete Woznowski, Peter A. Flach, Ian Craddock:
The SPHERE Challenge: Activity Recognition with Multimodal Sensor Data. CoRR abs/1603.00797 (2016) - 2015
- [c9]Chowdhury Farhan Ahmed, Md. Samiullah, Nicolas Lachiche, Meelis Kull, Peter A. Flach:
Reframing in Frequent Pattern Mining. ICTAI 2015: 799-806 - [c8]Peter A. Flach, Meelis Kull:
Precision-Recall-Gain Curves: PR Analysis Done Right. NIPS 2015: 838-846 - [c7]Meelis Kull, Peter A. Flach:
Novel Decompositions of Proper Scoring Rules for Classification: Score Adjustment as Precursor to Calibration. ECML/PKDD (1) 2015: 68-85 - [c6]Reem Al-Otaibi, Ricardo B. C. Prudêncio, Meelis Kull, Peter A. Flach:
Versatile Decision Trees for Learning Over Multiple Contexts. ECML/PKDD (1) 2015: 184-199 - [c5]Meelis Kull, Nicolas Lachiche, Adolfo Martínez Usó:
Model Reuse with Bike rental Station data (Preamble). DC@PKDD/ECML 2015 - [e1]Adolfo Martínez Usó, João Mendes-Moreira, Luís Moreira-Matias, Meelis Kull, Nicolas Lachiche:
Proceedings of the ECML/PKDD 2015 Discovery Challenges co-located with European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2015), Porto, Portugal, September 7-11, 2015. CEUR Workshop Proceedings 1526, CEUR-WS.org 2015 [contents] - 2014
- [c4]Reem Al-Otaibi, Meelis Kull, Peter A. Flach:
LaCova: A Tree-Based Multi-label Classifier Using Label Covariance as Splitting Criterion. ICMLA 2014: 74-79 - [c3]Meelis Kull, Peter A. Flach:
Reliability Maps: A Tool to Enhance Probability Estimates and Improve Classification Accuracy. ECML/PKDD (2) 2014: 18-33 - [c2]Louise A. C. Millard, Meelis Kull, Peter A. Flach:
Rate-Oriented Point-Wise Confidence Bounds for ROC Curves. ECML/PKDD (2) 2014: 404-421 - 2010
- [c1]Meelis Kull, Konstantin Tretyakov, Jaak Vilo:
An Evolutionary Model of DNA Substring Distribution. Algorithms and Applications 2010: 147-157
2000 – 2009
- 2009
- [j4]Darya Krushevskaya, Hedi Peterson, Jüri Reimand, Meelis Kull, Jaak Vilo:
VisHiC - hierarchical functional enrichment analysis of microarray data. Nucleic Acids Res. 37(Web-Server-Issue): 587-592 (2009) - 2008
- [j3]Meelis Kull, Jaak Vilo:
Fast approximate hierarchical clustering using similarity heuristics. BioData Min. 1 (2008) - 2007
- [j2]Jüri Reimand, Meelis Kull, Hedi Peterson, Jaanus Hansen, Jaak Vilo:
g: Profiler - a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 35(Web-Server-Issue): 193-200 (2007) - 2004
- [j1]Misha Kapushesky, Patrick Kemmeren, Aedín C. Culhane, Steffen Durinck, Jan Ihmels, Christine Körner, Meelis Kull, Aurora Torrente, Ugis Sarkans, Jaak Vilo, Alvis Brazma:
Expression Profiler: next generation - an online platform for analysis of microarray data. Nucleic Acids Res. 32(Web-Server-Issue): 465-470 (2004)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-24 18:11 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint