default search action
Richard S. Zemel
Person information
- affiliation: Columbia University, New York, NY, USA
- affiliation: University of Toronto, ON, Canada
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c153]Sruthi Sudhakar, Ruoshi Liu, Basile Van Hoorick, Carl Vondrick, Richard S. Zemel:
Controlling the World by Sleight of Hand. ECCV (30) 2024: 414-430 - [c152]Ninareh Mehrabi, Palash Goyal, Christophe Dupuy, Qian Hu, Shalini Ghosh, Richard S. Zemel, Kai-Wei Chang, Aram Galstyan, Rahul Gupta:
FLIRT: Feedback Loop In-context Red Teaming. EMNLP 2024: 703-718 - [c151]Tao Meng, Ninareh Mehrabi, Palash Goyal, Anil Ramakrishna, Aram Galstyan, Richard S. Zemel, Kai-Wei Chang, Rahul Gupta, Charith Peris:
Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification. EMNLP (Findings) 2024: 13329-13341 - [c150]Sachit Menon, Richard S. Zemel, Carl Vondrick:
Whiteboard-of-Thought: Thinking Step-by-Step Across Modalities. EMNLP 2024: 20016-20031 - [c149]Xudong Lin, Manling Li, Richard S. Zemel, Heng Ji, Shih-Fu Chang:
Training-free Deep Concept Injection Enables Language Models for Video Question Answering. EMNLP 2024: 22399-22416 - [c148]Thomas P. Zollo, Todd Morrill, Zhun Deng, Jake Snell, Toniann Pitassi, Richard S. Zemel:
Prompt Risk Control: A Rigorous Framework for Responsible Deployment of Large Language Models. ICLR 2024 - [c147]Benjamin Eyre, Elliot Creager, David Madras, Vardan Papyan, Richard S. Zemel:
Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift. ICML 2024 - [c146]Zhewei Sun, Qian Hu, Rahul Gupta, Richard S. Zemel, Yang Xu:
Toward Informal Language Processing: Knowledge of Slang in Large Language Models. NAACL-HLT 2024: 1683-1701 - [c145]Anaelia Ovalle, Ninareh Mehrabi, Palash Goyal, Jwala Dhamala, Kai-Wei Chang, Richard S. Zemel, Aram Galstyan, Yuval Pinter, Rahul Gupta:
Tokenization Matters: Navigating Data-Scarce Tokenization for Gender Inclusive Language Technologies. NAACL-HLT (Findings) 2024: 1739-1756 - [c144]Junyi Li, Charith Peris, Ninareh Mehrabi, Palash Goyal, Kai-Wei Chang, Aram Galstyan, Richard S. Zemel, Rahul Gupta:
The steerability of large language models toward data-driven personas. NAACL-HLT 2024: 7290-7305 - [i100]Elliot Creager, Richard S. Zemel:
Online Algorithmic Recourse by Collective Action. CoRR abs/2401.00055 (2024) - [i99]Tiantian Feng, Anil Ramakrishna, Jimit Majmudar, Charith Peris, Jixuan Wang, Clement Chung, Richard S. Zemel, Morteza Ziyadi, Rahul Gupta:
Partial Federated Learning. CoRR abs/2403.01615 (2024) - [i98]Zhewei Sun, Qian Hu, Rahul Gupta, Richard S. Zemel, Yang Xu:
Toward Informal Language Processing: Knowledge of Slang in Large Language Models. CoRR abs/2404.02323 (2024) - [i97]Yipeng Zhang, Laurent Charlin, Richard S. Zemel, Mengye Ren:
Integrating Present and Past in Unsupervised Continual Learning. CoRR abs/2404.19132 (2024) - [i96]Sachit Menon, Richard S. Zemel, Carl Vondrick:
Whiteboard-of-Thought: Thinking Step-by-Step Across Modalities. CoRR abs/2406.14562 (2024) - [i95]Sruthi Sudhakar, Ruoshi Liu, Basile Van Hoorick, Carl Vondrick, Richard S. Zemel:
Controlling the World by Sleight of Hand. CoRR abs/2408.07147 (2024) - [i94]Thomas P. Zollo, Zhun Deng, Jake C. Snell, Toniann Pitassi, Richard S. Zemel:
Improving Predictor Reliability with Selective Recalibration. CoRR abs/2410.05407 (2024) - [i93]Tao Meng, Ninareh Mehrabi, Palash Goyal, Anil Ramakrishna, Aram Galstyan, Richard S. Zemel, Kai-Wei Chang, Rahul Gupta, Charith Peris:
Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification. CoRR abs/2410.05559 (2024) - 2023
- [c143]Ninareh Mehrabi, Palash Goyal, Apurv Verma, Jwala Dhamala, Varun Kumar, Qian Hu, Kai-Wei Chang, Richard S. Zemel, Aram Galstyan, Rahul Gupta:
Resolving Ambiguities in Text-to-Image Generative Models. ACL (1) 2023: 14367-14388 - [c142]Jack Good, Jimit Majmudar, Christophe Dupuy, Jixuan Wang, Charith Peris, Clement Chung, Richard S. Zemel, Rahul Gupta:
Coordinated Replay Sample Selection for Continual Federated Learning. EMNLP (Industry Track) 2023: 331-342 - [c141]Anaelia Ovalle, Palash Goyal, Jwala Dhamala, Zachary Jaggers, Kai-Wei Chang, Aram Galstyan, Richard S. Zemel, Rahul Gupta:
"I'm fully who I am": Towards Centering Transgender and Non-Binary Voices to Measure Biases in Open Language Generation. FAccT 2023: 1246-1266 - [c140]Arjun Mani, Ishaan Preetam Chandratreya, Elliot Creager, Carl Vondrick, Richard S. Zemel:
SurfsUp: Learning Fluid Simulation for Novel Surfaces. ICCV 2023: 14179-14189 - [c139]Jake Snell, Thomas P. Zollo, Zhun Deng, Toniann Pitassi, Richard S. Zemel:
Quantile Risk Control: A Flexible Framework for Bounding the Probability of High-Loss Predictions. ICLR 2023 - [c138]Zhun Deng, Thomas P. Zollo, Jake Snell, Toniann Pitassi, Richard S. Zemel:
Distribution-Free Statistical Dispersion Control for Societal Applications. NeurIPS 2023 - [c137]Rahul Gupta, Lisa Bauer, Kai-Wei Chang, Jwala Dhamala, Aram Galstyan, Palash Goyal, Qian Hu, Avni Khatri, Rohit Parimi, Charith Peris, Apurv Verma, Richard S. Zemel, Prem Natarajan:
Incorporating Fairness in Large Scale NLU Systems. WSDM 2023: 1289-1290 - [c136]Charith Peris, Christophe Dupuy, Jimit Majmudar, Rahil Parikh, Sami Smaili, Richard S. Zemel, Rahul Gupta:
Privacy in the Time of Language Models. WSDM 2023: 1291-1292 - [i92]Arjun Mani, Ishaan Preetam Chandratreya, Elliot Creager, Carl Vondrick, Richard S. Zemel:
SURFSUP: Learning Fluid Simulation for Novel Surfaces. CoRR abs/2304.06197 (2023) - [i91]Anaelia Ovalle, Palash Goyal, Jwala Dhamala, Zachary Jaggers, Kai-Wei Chang, Aram Galstyan, Richard S. Zemel, Rahul Gupta:
"I'm fully who I am": Towards Centering Transgender and Non-Binary Voices to Measure Biases in Open Language Generation. CoRR abs/2305.09941 (2023) - [i90]Ninareh Mehrabi, Palash Goyal, Christophe Dupuy, Qian Hu, Shalini Ghosh, Richard S. Zemel, Kai-Wei Chang, Aram Galstyan, Rahul Gupta:
FLIRT: Feedback Loop In-context Red Teaming. CoRR abs/2308.04265 (2023) - [i89]Zhun Deng, Thomas P. Zollo, Jake C. Snell, Toniann Pitassi, Richard S. Zemel:
Distribution-Free Statistical Dispersion Control for Societal Applications. CoRR abs/2309.13786 (2023) - [i88]Jack Good, Jimit Majmudar, Christophe Dupuy, Jixuan Wang, Charith Peris, Clement Chung, Richard S. Zemel, Rahul Gupta:
Coordinated Replay Sample Selection for Continual Federated Learning. CoRR abs/2310.15054 (2023) - [i87]Junyi Li, Ninareh Mehrabi, Charith Peris, Palash Goyal, Kai-Wei Chang, Aram Galstyan, Richard S. Zemel, Rahul Gupta:
On the steerability of large language models toward data-driven personas. CoRR abs/2311.04978 (2023) - [i86]Ninareh Mehrabi, Palash Goyal, Anil Ramakrishna, Jwala Dhamala, Shalini Ghosh, Richard S. Zemel, Kai-Wei Chang, Aram Galstyan, Rahul Gupta:
JAB: Joint Adversarial Prompting and Belief Augmentation. CoRR abs/2311.09473 (2023) - [i85]Thomas P. Zollo, Todd Morrill, Zhun Deng, Jake C. Snell, Toniann Pitassi, Richard S. Zemel:
Prompt Risk Control: A Rigorous Framework for Responsible Deployment of Large Language Models. CoRR abs/2311.13628 (2023) - [i84]Marc-Etienne Brunet, Ashton Anderson, Richard S. Zemel:
ICL Markup: Structuring In-Context Learning using Soft-Token Tags. CoRR abs/2312.07405 (2023) - [i83]Anaelia Ovalle, Ninareh Mehrabi, Palash Goyal, Jwala Dhamala, Kai-Wei Chang, Richard S. Zemel, Aram Galstyan, Rahul Gupta:
Are you talking to ['xem'] or ['x', 'em']? On Tokenization and Addressing Misgendering in LLMs with Pronoun Tokenization Parity. CoRR abs/2312.11779 (2023) - [i82]Benjamin Eyre, Elliot Creager, David Madras, Vardan Papyan, Richard S. Zemel:
Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift. CoRR abs/2312.17463 (2023) - 2022
- [j24]Lachlan McCalman, Daniel Steinberg, Grace Abuhamad, Marc-Etienne Brunet, Robert C. Williamson, Richard S. Zemel:
Assessing AI Fairness in Finance. Computer 55(1): 94-97 (2022) - [c135]Sindy Löwe, David Madras, Richard S. Zemel, Max Welling:
Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data. CLeaR 2022: 509-525 - [c134]Christina M. Funke, Paul Vicol, Kuan-Chieh Wang, Matthias Kümmerer, Richard S. Zemel, Matthias Bethge:
Disentanglement and Generalization Under Correlation Shifts. CoLLAs 2022: 116-141 - [c133]António Câmara, Nina Taneja, Tamjeed Azad, Emily Allaway, Richard S. Zemel:
Mapping the Multilingual Margins: Intersectional Biases of Sentiment Analysis Systems in English, Spanish, and Arabic. LT-EDI 2022: 90-106 - [c132]Zhewei Sun, Richard S. Zemel, Yang Xu:
Semantically Informed Slang Interpretation. NAACL-HLT 2022: 5213-5231 - [c131]Taiga Abe, Estefany Kelly Buchanan, Geoff Pleiss, Richard S. Zemel, John P. Cunningham:
Deep Ensembles Work, But Are They Necessary? NeurIPS 2022 - [c130]Marc-Etienne Brunet, Ashton Anderson, Richard S. Zemel:
Implications of Model Indeterminacy for Explanations of Automated Decisions. NeurIPS 2022 - [i81]Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard S. Zemel, Alireza Makhzani:
Variational Model Inversion Attacks. CoRR abs/2201.10787 (2022) - [i80]Taiga Abe, Estefany Kelly Buchanan, Geoff Pleiss, Richard S. Zemel, John P. Cunningham:
Deep Ensembles Work, But Are They Necessary? CoRR abs/2202.06985 (2022) - [i79]António Câmara, Nina Taneja, Tamjeed Azad, Emily Allaway, Richard S. Zemel:
Mapping the Multilingual Margins: Intersectional Biases of Sentiment Analysis Systems in English, Spanish, and Arabic. CoRR abs/2204.03558 (2022) - [i78]Zhewei Sun, Richard S. Zemel, Yang Xu:
Semantically Informed Slang Interpretation. CoRR abs/2205.00616 (2022) - [i77]Jimit Majmudar, Christophe Dupuy, Charith Peris, Sami Smaili, Rahul Gupta, Richard S. Zemel:
Differentially Private Decoding in Large Language Models. CoRR abs/2205.13621 (2022) - [i76]Ninareh Mehrabi, Palash Goyal, Apurv Verma, Jwala Dhamala, Varun Kumar, Qian Hu, Kai-Wei Chang, Richard S. Zemel, Aram Galstyan, Rahul Gupta:
Is the Elephant Flying? Resolving Ambiguities in Text-to-Image Generative Models. CoRR abs/2211.12503 (2022) - [i75]Jake C. Snell, Thomas P. Zollo, Zhun Deng, Toniann Pitassi, Richard S. Zemel:
Quantile Risk Control: A Flexible Framework for Bounding the Probability of High-Loss Predictions. CoRR abs/2212.13629 (2022) - 2021
- [j23]Zhewei Sun, Richard S. Zemel, Yang Xu:
A Computational Framework for Slang Generation. Trans. Assoc. Comput. Linguistics 9: 462-478 (2021) - [c129]Renjie Liao, Raquel Urtasun, Richard S. Zemel:
A PAC-Bayesian Approach to Generalization Bounds for Graph Neural Networks. ICLR 2021 - [c128]James Lucas, Mengye Ren, Irene Raissa Kameni, Toniann Pitassi, Richard S. Zemel:
Theoretical bounds on estimation error for meta-learning. ICLR 2021 - [c127]Mengye Ren, Michael Louis Iuzzolino, Michael Curtis Mozer, Richard S. Zemel:
Wandering within a world: Online contextualized few-shot learning. ICLR 2021 - [c126]Jake Snell, Richard S. Zemel:
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma Augmented Gaussian Processes. ICLR 2021 - [c125]Elliot Creager, Jörn-Henrik Jacobsen, Richard S. Zemel:
Environment Inference for Invariant Learning. ICML 2021: 2189-2200 - [c124]James Lucas, Juhan Bae, Michael R. Zhang, Stanislav Fort, Richard S. Zemel, Roger B. Grosse:
On Monotonic Linear Interpolation of Neural Network Parameters. ICML 2021: 7168-7179 - [c123]Eleni Triantafillou, Hugo Larochelle, Richard S. Zemel, Vincent Dumoulin:
Learning a Universal Template for Few-shot Dataset Generalization. ICML 2021: 10424-10433 - [c122]Alexander Wang, Mengye Ren, Richard S. Zemel:
SketchEmbedNet: Learning Novel Concepts by Imitating Drawings. ICML 2021: 10870-10881 - [c121]Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard S. Zemel, Alireza Makhzani:
Variational Model Inversion Attacks. NeurIPS 2021: 9706-9719 - [c120]David Madras, Richard S. Zemel:
Identifying and Benchmarking Natural Out-of-Context Prediction Problems. NeurIPS 2021: 15344-15358 - [c119]Xiaohui Zeng, Raquel Urtasun, Richard S. Zemel, Sanja Fidler, Renjie Liao:
NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation. UAI 2021: 1089-1099 - [e3]Madeleine Clare Elish, William Isaac, Richard S. Zemel:
FAccT '21: 2021 ACM Conference on Fairness, Accountability, and Transparency, Virtual Event / Toronto, Canada, March 3-10, 2021. ACM 2021, ISBN 978-1-4503-8309-7 [contents] - [i74]Zhewei Sun, Richard S. Zemel, Yang Xu:
A Computational Framework for Slang Generation. CoRR abs/2102.01826 (2021) - [i73]James Lucas, Juhan Bae, Michael R. Zhang, Stanislav Fort, Richard S. Zemel, Roger B. Grosse:
Analyzing Monotonic Linear Interpolation in Neural Network Loss Landscapes. CoRR abs/2104.11044 (2021) - [i72]Eleni Triantafillou, Hugo Larochelle, Richard S. Zemel, Vincent Dumoulin:
Learning a Universal Template for Few-shot Dataset Generalization. CoRR abs/2105.07029 (2021) - [i71]Xiaohui Zeng, Raquel Urtasun, Richard S. Zemel, Sanja Fidler, Renjie Liao:
NP-DRAW: A Non-Parametric Structured Latent Variable Modelfor Image Generation. CoRR abs/2106.13435 (2021) - [i70]Jacob Kelly, Richard S. Zemel, Will Grathwohl:
Directly Training Joint Energy-Based Models for Conditional Synthesis and Calibrated Prediction of Multi-Attribute Data. CoRR abs/2108.04227 (2021) - [i69]Mengye Ren, Tyler R. Scott, Michael L. Iuzzolino, Michael C. Mozer, Richard S. Zemel:
Online Unsupervised Learning of Visual Representations and Categories. CoRR abs/2109.05675 (2021) - [i68]David Madras, Richard S. Zemel:
Identifying and Benchmarking Natural Out-of-Context Prediction Problems. CoRR abs/2110.13223 (2021) - [i67]Christina M. Funke, Paul Vicol, Kuan-Chieh Wang, Matthias Kümmerer, Richard S. Zemel, Matthias Bethge:
Disentanglement and Generalization Under Correlation Shifts. CoRR abs/2112.14754 (2021) - 2020
- [j22]Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard S. Zemel, Wieland Brendel, Matthias Bethge, Felix A. Wichmann:
Shortcut learning in deep neural networks. Nat. Mach. Intell. 2(11): 665-673 (2020) - [c118]Ethan Fetaya, Jörn-Henrik Jacobsen, Will Grathwohl, Richard S. Zemel:
Understanding the Limitations of Conditional Generative Models. ICLR 2020 - [c117]Elliot Creager, David Madras, Toniann Pitassi, Richard S. Zemel:
Causal Modeling for Fairness In Dynamical Systems. ICML 2020: 2185-2195 - [c116]Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, Richard S. Zemel:
Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models without Sampling. ICML 2020: 3732-3747 - [c115]Martin Mladenov, Elliot Creager, Omer Ben-Porat, Kevin Swersky, Richard S. Zemel, Craig Boutilier:
Optimizing Long-term Social Welfare in Recommender Systems: A Constrained Matching Approach. ICML 2020: 6987-6998 - [i66]Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, Richard S. Zemel:
Cutting out the Middle-Man: Training and Evaluating Energy-Based Models without Sampling. CoRR abs/2002.05616 (2020) - [i65]Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard S. Zemel, Wieland Brendel, Matthias Bethge, Felix A. Wichmann:
Shortcut Learning in Deep Neural Networks. CoRR abs/2004.07780 (2020) - [i64]Sindy Löwe, David Madras, Richard S. Zemel, Max Welling:
Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data. CoRR abs/2006.10833 (2020) - [i63]Mengye Ren, Michael L. Iuzzolino, Michael C. Mozer, Richard S. Zemel:
Wandering Within a World: Online Contextualized Few-Shot Learning. CoRR abs/2007.04546 (2020) - [i62]Jake Snell, Richard S. Zemel:
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma Augmented Gaussian Processes. CoRR abs/2007.10417 (2020) - [i61]Martin Mladenov, Elliot Creager, Omer Ben-Porat, Kevin Swersky, Richard S. Zemel, Craig Boutilier:
Optimizing Long-term Social Welfare in Recommender Systems: A Constrained Matching Approach. CoRR abs/2008.00104 (2020) - [i60]Alexander Wang, Mengye Ren, Richard S. Zemel:
SketchEmbedNet: Learning Novel Concepts by Imitating Drawings. CoRR abs/2009.04806 (2020) - [i59]James Lucas, Mengye Ren, Irene Kameni, Toniann Pitassi, Richard S. Zemel:
Theoretical bounds on estimation error for meta-learning. CoRR abs/2010.07140 (2020) - [i58]Elliot Creager, Jörn-Henrik Jacobsen, Richard S. Zemel:
Exchanging Lessons Between Algorithmic Fairness and Domain Generalization. CoRR abs/2010.07249 (2020) - [i57]Robert Adragna, Elliot Creager, David Madras, Richard S. Zemel:
Fairness and Robustness in Invariant Learning: A Case Study in Toxicity Classification. CoRR abs/2011.06485 (2020) - [i56]Mengye Ren, Eleni Triantafillou, Kuan-Chieh Wang, James Lucas, Jake Snell, Xaq Pitkow, Andreas S. Tolias, Richard S. Zemel:
Flexible Few-Shot Learning with Contextual Similarity. CoRR abs/2012.05895 (2020) - [i55]Renjie Liao, Raquel Urtasun, Richard S. Zemel:
A PAC-Bayesian Approach to Generalization Bounds for Graph Neural Networks. CoRR abs/2012.07690 (2020)
2010 – 2019
- 2019
- [c114]KiJung Yoon, Renjie Liao, Yuwen Xiong, Lisa Zhang, Ethan Fetaya, Raquel Urtasun, Richard S. Zemel, Xaq Pitkow:
Inference in Probabilistic Graphical Models by Graph Neural Networks. ACSSC 2019: 868-875 - [c113]Zhewei Sun, Richard S. Zemel, Yang Xu:
Slang Generation as Categorization. CogSci 2019: 2898-2904 - [c112]Seyed Kamyar Seyed Ghasemipour, Richard S. Zemel, Shixiang Gu:
A Divergence Minimization Perspective on Imitation Learning Methods. CoRL 2019: 1259-1277 - [c111]David Madras, Elliot Creager, Toniann Pitassi, Richard S. Zemel:
Fairness through Causal Awareness: Learning Causal Latent-Variable Models for Biased Data. FAT 2019: 349-358 - [c110]Seyed Kamyar Seyed Ghasemipour, Shane Gu, Richard S. Zemel:
Understanding the Relation Between Maximum-Entropy Inverse Reinforcement Learning and Behaviour Cloning. DGS@ICLR 2019 - [c109]Jörn-Henrik Jacobsen, Jens Behrmann, Richard S. Zemel, Matthias Bethge:
Excessive Invariance Causes Adversarial Vulnerability. ICLR (Poster) 2019 - [c108]Marc T. Law, Jake Snell, Amir-massoud Farahmand, Raquel Urtasun, Richard S. Zemel:
Dimensionality Reduction for Representing the Knowledge of Probabilistic Models. ICLR (Poster) 2019 - [c107]Renjie Liao, Zhizhen Zhao, Raquel Urtasun, Richard S. Zemel:
LanczosNet: Multi-Scale Deep Graph Convolutional Networks. ICLR (Poster) 2019 - [c106]James Lucas, Shengyang Sun, Richard S. Zemel, Roger B. Grosse:
Aggregated Momentum: Stability Through Passive Damping. ICLR (Poster) 2019 - [c105]Marc-Etienne Brunet, Colleen Alkalay-Houlihan, Ashton Anderson, Richard S. Zemel:
Understanding the Origins of Bias in Word Embeddings. ICML 2019: 803-811 - [c104]Elliot Creager, David Madras, Jörn-Henrik Jacobsen, Marissa A. Weis, Kevin Swersky, Toniann Pitassi, Richard S. Zemel:
Flexibly Fair Representation Learning by Disentanglement. ICML 2019: 1436-1445 - [c103]Marc Teva Law, Renjie Liao, Jake Snell, Richard S. Zemel:
Lorentzian Distance Learning for Hyperbolic Representations. ICML 2019: 3672-3681 - [c102]Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, William L. Hamilton, David Duvenaud, Raquel Urtasun, Richard S. Zemel:
Efficient Graph Generation with Graph Recurrent Attention Networks. NeurIPS 2019: 4257-4267 - [c101]Mengye Ren, Renjie Liao, Ethan Fetaya, Richard S. Zemel:
Incremental Few-Shot Learning with Attention Attractor Networks. NeurIPS 2019: 5276-5286 - [c100]Seyed Kamyar Seyed Ghasemipour, Shixiang Gu, Richard S. Zemel:
SMILe: Scalable Meta Inverse Reinforcement Learning through Context-Conditional Policies. NeurIPS 2019: 7879-7889 - [i54]Renjie Liao, Zhizhen Zhao, Raquel Urtasun, Richard S. Zemel:
LanczosNet: Multi-Scale Deep Graph Convolutional Networks. CoRR abs/1901.01484 (2019) - [i53]Amir Rosenfeld, Richard S. Zemel, John K. Tsotsos:
High-Level Perceptual Similarity is Enabled by Learning Diverse Tasks. CoRR abs/1903.10920 (2019) - [i52]Ethan Fetaya, Jörn-Henrik Jacobsen, Richard S. Zemel:
Conditional Generative Models are not Robust. CoRR abs/1906.01171 (2019) - [i51]Elliot Creager, David Madras, Jörn-Henrik Jacobsen, Marissa A. Weis, Kevin Swersky, Toniann Pitassi, Richard S. Zemel:
Flexibly Fair Representation Learning by Disentanglement. CoRR abs/1906.02589 (2019) - [i50]Guangyong Chen, Pengfei Chen, Chang-Yu Hsieh, Chee-Kong Lee, Benben Liao, Renjie Liao, Weiwen Liu, Jiezhong Qiu, Qiming Sun, Jie Tang, Richard S. Zemel, Shengyu Zhang:
Alchemy: A Quantum Chemistry Dataset for Benchmarking AI Models. CoRR abs/1906.09427 (2019) - [i49]Elliot Creager, David Madras, Toniann Pitassi, Richard S. Zemel:
Causal Modeling for Fairness in Dynamical Systems. CoRR abs/1909.09141 (2019) - [i48]Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash, William L. Hamilton, David Duvenaud, Raquel Urtasun, Richard S. Zemel:
Efficient Graph Generation with Graph Recurrent Attention Networks. CoRR abs/1910.00760 (2019) - [i47]Seyed Kamyar Seyed Ghasemipour, Richard S. Zemel, Shixiang Gu:
A Divergence Minimization Perspective on Imitation Learning Methods. CoRR abs/1911.02256 (2019) - 2018
- [c99]Will Grathwohl, Elliot Creager, Seyed Kamyar Seyed Ghasemipour, Richard S. Zemel:
Gradient-based Optimization of Neural Network Architecture. ICLR (Workshop) 2018 - [c98]Renjie Liao, Marc Brockschmidt, Daniel Tarlow, Alexander L. Gaunt, Raquel Urtasun, Richard S. Zemel:
Graph Partition Neural Networks for Semi-Supervised Classification. ICLR (Workshop) 2018 - [c97]David Madras, Toniann Pitassi, Richard S. Zemel:
Predict Responsibly: Increasing Fairness by Learning to Defer. ICLR (Workshop) 2018 - [c96]Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B. Tenenbaum, Hugo Larochelle, Richard S. Zemel:
Meta-Learning for Semi-Supervised Few-Shot Classification. ICLR (Poster) 2018 - [c95]KiJung Yoon, Renjie Liao, Yuwen Xiong, Lisa Zhang, Ethan Fetaya, Raquel Urtasun, Richard S. Zemel, Xaq Pitkow:
Inference in probabilistic graphical models by Graph Neural Networks. ICLR (Workshop) 2018 - [c94]Lisa Zhang, Gregory Rosenblatt, Ethan Fetaya, Renjie Liao, William E. Byrd, Raquel Urtasun, Richard S. Zemel:
Leveraging Constraint Logic Programming for Neural Guided Program Synthesis. ICLR (Workshop) 2018 - [c93]Thomas N. Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, Richard S. Zemel:
Neural Relational Inference for Interacting Systems. ICML 2018: 2693-2702 - [c92]Renjie Liao, Yuwen Xiong, Ethan Fetaya, Lisa Zhang, KiJung Yoon, Xaq Pitkow, Raquel Urtasun, Richard S. Zemel:
Reviving and Improving Recurrent Back-Propagation. ICML 2018: 3088-3097 - [c91]David Madras, Elliot Creager, Toniann Pitassi, Richard S. Zemel:
Learning Adversarially Fair and Transferable Representations. ICML 2018: 3381-3390 - [c90]Kuan-Chieh Wang, Paul Vicol, James Lucas, Li Gu, Roger B. Grosse, Richard S. Zemel:
Adversarial Distillation of Bayesian Neural Network Posteriors. ICML 2018: 5177-5186 - [c89]Lisa Zhang, Gregory Rosenblatt, Ethan Fetaya, Renjie Liao, William E. Byrd, Matthew Might, Raquel Urtasun, Richard S. Zemel:
Neural Guided Constraint Logic Programming for Program Synthesis. NeurIPS 2018: 1744-1753 - [c88]David Madras, Toniann Pitassi, Richard S. Zemel:
Predict Responsibly: Improving Fairness and Accuracy by Learning to Defer. NeurIPS 2018: 6150-6160 - [c87]Jack Klys, Jake Snell, Richard S. Zemel:
Learning Latent Subspaces in Variational Autoencoders. NeurIPS 2018: 6445-6455 - [i46]Thomas N. Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, Richard S. Zemel:
Neural Relational Inference for Interacting Systems. CoRR abs/1802.04687 (2018) - [i45]David Madras, Elliot Creager, Toniann Pitassi, Richard S. Zemel:
Learning Adversarially Fair and Transferable Representations. CoRR abs/1802.06309 (2018) - [i44]Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B. Tenenbaum, Hugo Larochelle, Richard S. Zemel:
Meta-Learning for Semi-Supervised Few-Shot Classification. CoRR abs/1803.00676 (2018) - [i43]Renjie Liao, Marc Brockschmidt, Daniel Tarlow, Alexander L. Gaunt, Raquel Urtasun, Richard S. Zemel:
Graph Partition Neural Networks for Semi-Supervised Classification. CoRR abs/1803.06272 (2018) - [i42]Renjie Liao, Yuwen Xiong, Ethan Fetaya, Lisa Zhang, KiJung Yoon, Xaq Pitkow, Raquel Urtasun, Richard S. Zemel:
Reviving and Improving Recurrent Back-Propagation. CoRR abs/1803.06396 (2018) - [i41]KiJung Yoon, Renjie Liao, Yuwen Xiong, Lisa Zhang, Ethan Fetaya, Raquel Urtasun, Richard S. Zemel, Xaq Pitkow:
Inference in Probabilistic Graphical Models by Graph Neural Networks. CoRR abs/1803.07710 (2018) - [i40]James Lucas, Richard S. Zemel, Roger B. Grosse:
Aggregated Momentum: Stability Through Passive Damping. CoRR abs/1804.00325 (2018) - [i39]Kuan-Chieh Wang, Paul Vicol, James Lucas, Li Gu, Roger B. Grosse, Richard S. Zemel:
Adversarial Distillation of Bayesian Neural Network Posteriors. CoRR abs/1806.10317 (2018) - [i38]Amir Rosenfeld, Richard S. Zemel, John K. Tsotsos:
The Elephant in the Room. CoRR abs/1808.03305 (2018) - [i37]David Madras, Elliot Creager, Toniann Pitassi, Richard S. Zemel:
Fairness Through Causal Awareness: Learning Latent-Variable Models for Biased Data. CoRR abs/1809.02519 (2018) - [i36]Lisa Zhang, Gregory Rosenblatt, Ethan Fetaya, Renjie Liao, William E. Byrd, Matthew Might, Raquel Urtasun, Richard S. Zemel:
Neural Guided Constraint Logic Programming for Program Synthesis. CoRR abs/1809.02840 (2018) - [i35]Marc-Etienne Brunet, Colleen Alkalay-Houlihan, Ashton Anderson, Richard S. Zemel:
Understanding the Origins of Bias in Word Embeddings. CoRR abs/1810.03611 (2018) - [i34]Mengye Ren, Renjie Liao, Ethan Fetaya, Richard S. Zemel:
Incremental Few-Shot Learning with Attention Attractor Networks. CoRR abs/1810.07218 (2018) - [i33]Jörn-Henrik Jacobsen, Jens Behrmann, Richard S. Zemel, Matthias Bethge:
Excessive Invariance Causes Adversarial Vulnerability. CoRR abs/1811.00401 (2018) - [i32]Jack Klys, Jake Snell, Richard S. Zemel:
Learning Latent Subspaces in Variational Autoencoders. CoRR abs/1812.06190 (2018) - 2017
- [c86]Mengye Ren, Richard S. Zemel:
End-to-End Instance Segmentation with Recurrent Attention. CVPR 2017: 293-301 - [c85]Marc T. Law, Yaoliang Yu, Raquel Urtasun, Richard S. Zemel, Eric P. Xing:
Efficient Multiple Instance Metric Learning Using Weakly Supervised Data. CVPR 2017: 5948-5956 - [c84]Jake Snell, Karl Ridgeway, Renjie Liao, Brett D. Roads, Michael C. Mozer, Richard S. Zemel:
Learning to generate images with perceptual similarity metrics. ICIP 2017: 4277-4281 - [c83]Eugene Belilovsky, Matthew B. Blaschko, Jamie Ryan Kiros, Raquel Urtasun, Richard S. Zemel:
Joint Embeddings of Scene Graphs and Images. ICLR (Workshop) 2017 - [c82]Mengye Ren, Renjie Liao, Raquel Urtasun, Fabian H. Sinz, Richard S. Zemel:
Normalizing the Normalizers: Comparing and Extending Network Normalization Schemes. ICLR (Poster) 2017 - [c81]Marc T. Law, Raquel Urtasun, Richard S. Zemel:
Deep Spectral Clustering Learning. ICML 2017: 1985-1994 - [c80]Eleni Triantafillou, Richard S. Zemel, Raquel Urtasun:
Few-Shot Learning Through an Information Retrieval Lens. NIPS 2017: 2255-2265 - [c79]Jake Snell, Kevin Swersky, Richard S. Zemel:
Prototypical Networks for Few-shot Learning. NIPS 2017: 4077-4087 - [c78]Yujia Li, Alexander G. Schwing, Kuan-Chieh Wang, Richard S. Zemel:
Dualing GANs. NIPS 2017: 5606-5616 - [c77]Christos Louizos, Uri Shalit, Joris M. Mooij, David A. Sontag, Richard S. Zemel, Max Welling:
Causal Effect Inference with Deep Latent-Variable Models. NIPS 2017: 6446-6456 - [c76]Jake Snell, Richard S. Zemel:
Stochastic Segmentation Trees for Multiple Ground Truths. UAI 2017 - [i31]Wenjie Luo, Yujia Li, Raquel Urtasun, Richard S. Zemel:
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks. CoRR abs/1701.04128 (2017) - [i30]Jake Snell, Kevin Swersky, Richard S. Zemel:
Prototypical Networks for Few-shot Learning. CoRR abs/1703.05175 (2017) - [i29]Christos Louizos, Uri Shalit, Joris M. Mooij, David A. Sontag, Richard S. Zemel, Max Welling:
Causal Effect Inference with Deep Latent-Variable Models. CoRR abs/1705.08821 (2017) - [i28]Yujia Li, Alexander G. Schwing, Kuan-Chieh Wang, Richard S. Zemel:
Dualing GANs. CoRR abs/1706.06216 (2017) - [i27]Eleni Triantafillou, Richard S. Zemel, Raquel Urtasun:
Few-Shot Learning Through an Information Retrieval Lens. CoRR abs/1707.02610 (2017) - [i26]David Madras, Toniann Pitassi, Richard S. Zemel:
Predict Responsibly: Increasing Fairness by Learning To Defer. CoRR abs/1711.06664 (2017) - 2016
- [c75]Richard S. Zemel:
Learning to generate images and their descriptions (keynote). ICMI 2016: 2 - [c74]Yang Song, Alexander G. Schwing, Richard S. Zemel, Raquel Urtasun:
Training Deep Neural Networks via Direct Loss Minimization. ICML 2016: 2169-2177 - [c73]Wenjie Luo, Yujia Li, Raquel Urtasun, Richard S. Zemel:
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks. NIPS 2016: 4898-4906 - [c72]Renjie Liao, Alexander G. Schwing, Richard S. Zemel, Raquel Urtasun:
Learning Deep Parsimonious Representations. NIPS 2016: 5076-5084 - [c71]Eleni Triantafillou, Jamie Ryan Kiros, Raquel Urtasun, Richard S. Zemel:
Towards Generalizable Sentence Embeddings. Rep4NLP@ACL 2016: 239-248 - [c70]Yujia Li, Daniel Tarlow, Marc Brockschmidt, Richard S. Zemel:
Gated Graph Sequence Neural Networks. ICLR (Poster) 2016 - [c69]Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, Richard S. Zemel:
The Variational Fair Autoencoder. ICLR 2016 - [i25]Mengye Ren, Richard S. Zemel:
End-to-End Instance Segmentation and Counting with Recurrent Attention. CoRR abs/1605.09410 (2016) - [i24]Mengye Ren, Renjie Liao, Raquel Urtasun, Fabian H. Sinz, Richard S. Zemel:
Normalizing the Normalizers: Comparing and Extending Network Normalization Schemes. CoRR abs/1611.04520 (2016) - 2015
- [j21]Yin Zheng, Richard S. Zemel, Yu-Jin Zhang, Hugo Larochelle:
A Neural Autoregressive Approach to Attention-based Recognition. Int. J. Comput. Vis. 113(1): 67-79 (2015) - [j20]Karteek Alahari, Dhruv Batra, Srikumar Ramalingam, Nikos Paragios, Richard S. Zemel:
Guest Editors' Introduction: Special Section on Higher Order Graphical Models in Computer Vision. IEEE Trans. Pattern Anal. Mach. Intell. 37(7): 1321-1322 (2015) - [c68]Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, Sanja Fidler:
Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching Movies and Reading Books. ICCV 2015: 19-27 - [c67]Yujia Li, Kevin Swersky, Richard S. Zemel:
Generative Moment Matching Networks. ICML 2015: 1718-1727 - [c66]Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhutdinov, Richard S. Zemel, Yoshua Bengio:
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. ICML 2015: 2048-2057 - [c65]Mengye Ren, Ryan Kiros, Richard S. Zemel:
Exploring Models and Data for Image Question Answering. NIPS 2015: 2953-2961 - [c64]Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Raquel Urtasun, Antonio Torralba, Sanja Fidler:
Skip-Thought Vectors. NIPS 2015: 3294-3302 - [i23]Yujia Li, Kevin Swersky, Richard S. Zemel:
Generative Moment Matching Networks. CoRR abs/1502.02761 (2015) - [i22]Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhutdinov, Richard S. Zemel, Yoshua Bengio:
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. CoRR abs/1502.03044 (2015) - [i21]Mengye Ren, Ryan Kiros, Richard S. Zemel:
Image Question Answering: A Visual Semantic Embedding Model and a New Dataset. CoRR abs/1505.02074 (2015) - [i20]Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, Sanja Fidler:
Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books. CoRR abs/1506.06724 (2015) - [i19]Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Antonio Torralba, Raquel Urtasun, Sanja Fidler:
Skip-Thought Vectors. CoRR abs/1506.06726 (2015) - [i18]Karl Ridgeway, Jake Snell, Brett Roads, Richard S. Zemel, Michael C. Mozer:
Learning to generate images with perceptual similarity metrics. CoRR abs/1511.06409 (2015) - [i17]Yang Song, Alexander G. Schwing, Richard S. Zemel, Raquel Urtasun:
Direct Loss Minimization for Training Deep Neural Nets. CoRR abs/1511.06411 (2015) - 2014
- [j19]Maksims Volkovs, Richard S. Zemel:
New learning methods for supervised and unsupervised preference aggregation. J. Mach. Learn. Res. 15(1): 1135-1176 (2014) - [c63]Ryan Kiros, Ruslan Salakhutdinov, Richard S. Zemel:
Multimodal Neural Language Models. ICML 2014: 595-603 - [c62]Yujia Li, Richard S. Zemel:
High Order Regularization for Semi-Supervised Learning of Structured Output Problems. ICML 2014: 1368-1376 - [c61]Jasper Snoek, Kevin Swersky, Richard S. Zemel, Ryan P. Adams:
Input Warping for Bayesian Optimization of Non-Stationary Functions. ICML 2014: 1674-1682 - [c60]Laurent Charlin, Richard S. Zemel, Hugo Larochelle:
Leveraging user libraries to bootstrap collaborative filtering. KDD 2014: 173-182 - [c59]Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov:
A Multiplicative Model for Learning Distributed Text-Based Attribute Representations. NIPS 2014: 2348-2356 - [i16]Jasper Snoek, Kevin Swersky, Richard S. Zemel, Ryan P. Adams:
Input Warping for Bayesian Optimization of Non-stationary Functions. CoRR abs/1402.0929 (2014) - [i15]Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov:
A Multiplicative Model for Learning Distributed Text-Based Attribute Representations. CoRR abs/1406.2710 (2014) - [i14]Yujia Li, Richard S. Zemel:
Mean-Field Networks. CoRR abs/1410.5884 (2014) - [i13]Ryan Kiros, Ruslan Salakhutdinov, Richard S. Zemel:
Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models. CoRR abs/1411.2539 (2014) - [i12]Yujia Li, Kevin Swersky, Richard S. Zemel:
Learning unbiased features. CoRR abs/1412.5244 (2014) - 2013
- [c58]Maksims Volkovs, Richard S. Zemel:
CRF framework for supervised preference aggregation. CIKM 2013: 89-98 - [c57]Yujia Li, Daniel Tarlow, Richard S. Zemel:
Exploring Compositional High Order Pattern Potentials for Structured Output Learning. CVPR 2013: 49-56 - [c56]Daniel Tarlow, Kevin Swersky, Laurent Charlin, Ilya Sutskever, Richard S. Zemel:
Stochastic k-Neighborhood Selection for Supervised and Unsupervised Learning. ICML (3) 2013: 199-207 - [c55]Richard S. Zemel, Yu Wu, Kevin Swersky, Toniann Pitassi, Cynthia Dwork:
Learning Fair Representations. ICML (3) 2013: 325-333 - [c54]Jasper Snoek, Richard S. Zemel, Ryan Prescott Adams:
A Determinantal Point Process Latent Variable Model for Inhibition in Neural Spiking Data. NIPS 2013: 1932-1940 - [c53]James Martens, Arkadev Chattopadhyay, Toniann Pitassi, Richard S. Zemel:
On the Expressive Power of Restricted Boltzmann Machines. NIPS 2013: 2877-2885 - 2012
- [c52]Maksims Volkovs, Hugo Larochelle, Richard S. Zemel:
Learning to rank by aggregating expert preferences. CIKM 2012: 843-851 - [c51]Laurent Charlin, Richard S. Zemel, Craig Boutilier:
Active Learning for Matching Problems. ICML 2012 - [c50]Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, Richard S. Zemel:
Fairness through awareness. ITCS 2012: 214-226 - [c49]Maksims Volkovs, Richard S. Zemel:
Efficient Sampling for Bipartite Matching Problems. NIPS 2012: 1322-1330 - [c48]Maksims Volkovs, Richard S. Zemel:
Collaborative Ranking With 17 Parameters. NIPS 2012: 2303-2311 - [c47]Kevin Swersky, Daniel Tarlow, Ryan P. Adams, Richard S. Zemel, Brendan J. Frey:
Probabilistic n-Choose-k Models for Classification and Ranking. NIPS 2012: 3059-3067 - [c46]Kevin Swersky, Daniel Tarlow, Ilya Sutskever, Ruslan Salakhutdinov, Richard S. Zemel, Ryan P. Adams:
Cardinality Restricted Boltzmann Machines. NIPS 2012: 3302-3310 - [c45]Daniel Tarlow, Kevin Swersky, Richard S. Zemel, Ryan Prescott Adams, Brendan J. Frey:
Fast Exact Inference for Recursive Cardinality Models. UAI 2012: 825-834 - [c44]Maksims Volkovs, Richard S. Zemel:
A flexible generative model for preference aggregation. WWW 2012: 479-488 - [c43]Daniel Tarlow, Richard S. Zemel:
Structured Output Learning with High Order Loss Functions. AISTATS 2012: 1212-1220 - [c42]Daniel Tarlow, Ryan Prescott Adams, Richard S. Zemel:
Randomized Optimum Models for Structured Prediction. AISTATS 2012: 1221-1229 - [i11]Laurent Charlin, Richard S. Zemel, Craig Boutilier:
A Framework for Optimizing Paper Matching. CoRR abs/1202.3706 (2012) - [i10]Daniel Tarlow, Richard S. Zemel, Brendan J. Frey:
Flexible Priors for Exemplar-based Clustering. CoRR abs/1206.3294 (2012) - [i9]Laurent Charlin, Richard S. Zemel, Craig Boutilier:
Active Learning for Matching Problems. CoRR abs/1206.4647 (2012) - [i8]Benjamin M. Marlin, Richard S. Zemel, Sam T. Roweis, Malcolm Slaney:
Collaborative Filtering and the Missing at Random Assumption. CoRR abs/1206.5267 (2012) - [i7]Daniel Tarlow, Kevin Swersky, Richard S. Zemel, Ryan Prescott Adams, Brendan J. Frey:
Fast Exact Inference for Recursive Cardinality Models. CoRR abs/1210.4899 (2012) - [i6]Craig Boutilier, Richard S. Zemel, Benjamin M. Marlin:
Active Collaborative Filtering. CoRR abs/1212.2442 (2012) - [i5]Max Welling, Richard S. Zemel, Geoffrey E. Hinton:
Efficient Parametric Projection Pursuit Density Estimation. CoRR abs/1212.2513 (2012) - 2011
- [c41]Benjamin M. Marlin, Richard S. Zemel, Sam T. Roweis, Malcolm Slaney:
Recommender Systems, Missing Data and Statistical Model Estimation. IJCAI 2011: 2686-2691 - [c40]Laurent Charlin, Richard S. Zemel, Craig Boutilier:
A Framework for Optimizing Paper Matching. UAI 2011: 86-95 - [c39]Daniel Tarlow, Inmar E. Givoni, Richard S. Zemel, Brendan J. Frey:
Graph Cuts is a Max-Product Algorithm. UAI 2011: 671-680 - [e2]John Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett, Fernando C. N. Pereira, Kilian Q. Weinberger:
Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011. Proceedings of a meeting held 12-14 December 2011, Granada, Spain. 2011 [contents] - [i4]Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, Richard S. Zemel:
Fairness Through Awareness. CoRR abs/1104.3913 (2011) - [i3]Daniel Tarlow, Inmar E. Givoni, Richard S. Zemel, Brendan J. Frey:
Interpreting Graph Cuts as a Max-Product Algorithm. CoRR abs/1105.1178 (2011) - [i2]Ryan Prescott Adams, Richard S. Zemel:
Ranking via Sinkhorn Propagation. CoRR abs/1106.1925 (2011) - [i1]Maksims Volkovs, Hugo Larochelle, Richard S. Zemel:
Loss-sensitive Training of Probabilistic Conditional Random Fields. CoRR abs/1107.1805 (2011) - 2010
- [j18]David A. Ross, Daniel Tarlow, Richard S. Zemel:
Learning Articulated Structure and Motion. Int. J. Comput. Vis. 88(2): 214-237 (2010) - [j17]Tanya Schmah, Grigori Yourganov, Richard S. Zemel, Geoffrey E. Hinton, Steven L. Small, Stephen C. Strother:
Comparing Classification Methods for Longitudinal fMRI Studies. Neural Comput. 22(11): 2729-2762 (2010) - [c38]Daniel Tarlow, Inmar E. Givoni, Richard S. Zemel:
HOP-MAP: Efficient Message Passing with High Order Potentials. AISTATS 2010: 812-819 - [e1]John D. Lafferty, Christopher K. I. Williams, John Shawe-Taylor, Richard S. Zemel, Aron Culotta:
Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a meeting held 6-9 December 2010, Vancouver, British Columbia, Canada. Curran Associates, Inc. 2010 [contents]
2000 – 2009
- 2009
- [j16]Jasper Snoek, Jesse Hoey, Liam Stewart, Richard S. Zemel, Alex Mihailidis:
Automated detection of unusual events on stairs. Image Vis. Comput. 27(1-2): 153-166 (2009) - [c37]Maksims Volkovs, Richard S. Zemel:
BoltzRank: learning to maximize expected ranking gain. ICML 2009: 1089-1096 - [c36]Benjamin M. Marlin, Richard S. Zemel:
Collaborative prediction and ranking with non-random missing data. RecSys 2009: 5-12 - 2008
- [j15]F. Klam, Richard S. Zemel, Alexandre Pouget:
Population Coding with Motion Energy Filters: The Impact of Correlations. Neural Comput. 20(1): 146-175 (2008) - [j14]Rama Natarajan, Quentin J. M. Huys, Peter Dayan, Richard S. Zemel:
Encoding and Decoding Spikes for Dynamic Stimuli. Neural Comput. 20(9): 2325-2360 (2008) - [j13]Liam Stewart, Xuming He, Richard S. Zemel:
Learning Flexible Features for Conditional Random Fields. IEEE Trans. Pattern Anal. Mach. Intell. 30(8): 1415-1426 (2008) - [c35]Xuming He, Richard S. Zemel:
Latent topic random fields: Learning using a taxonomy of labels. CVPR 2008 - [c34]Edward Meeds, David A. Ross, Richard S. Zemel, Sam T. Roweis:
Learning stick-figure models using nonparametric Bayesian priors over trees. CVPR 2008 - [c33]David A. Ross, Daniel Tarlow, Richard S. Zemel:
Unsupervised Learning of Skeletons from Motion. ECCV (3) 2008: 560-573 - [c32]Xuming He, Richard S. Zemel:
Learning Hybrid Models for Image Annotation with Partially Labeled Data. NIPS 2008: 625-632 - [c31]Rama Natarajan, Iain Murray, Ladan Shams, Richard S. Zemel:
Characterizing response behavior in multisensory perception with conflicting cues. NIPS 2008: 1153-1160 - [c30]Tanya Schmah, Geoffrey E. Hinton, Richard S. Zemel, Steven L. Small, Stephen C. Strother:
Generative versus discriminative training of RBMs for classification of fMRI images. NIPS 2008: 1409-1416 - [c29]Daniel Tarlow, Richard S. Zemel, Brendan J. Frey:
Flexible Priors for Exemplar-based Clustering. UAI 2008: 537-545 - 2007
- [j12]Quentin J. M. Huys, Richard S. Zemel, Rama Natarajan, Peter Dayan:
Fast Population Coding. Neural Comput. 19(2): 404-441 (2007) - [c28]Benjamin M. Marlin, Richard S. Zemel, Sam T. Roweis, Malcolm Slaney:
Collaborative Filtering and the Missing at Random Assumption. UAI 2007: 267-275 - 2006
- [j11]Xuming He, Richard S. Zemel, Volodymyr Mnih:
Topological map learning from outdoor image sequences. J. Field Robotics 23(11-12): 1091-1104 (2006) - [j10]David A. Ross, Richard S. Zemel:
Learning Parts-Based Representations of Data. J. Mach. Learn. Res. 7: 2369-2397 (2006) - [c27]Jasper Snoek, Jesse Hoey, Liam Stewart, Richard S. Zemel:
Automated Detection of Unusual Events on Stairs. CRV 2006: 5 - [c26]Xuming He, Richard S. Zemel, Debajyoti Ray:
Learning and Incorporating Top-Down Cues in Image Segmentation. ECCV (1) 2006: 338-351 - [c25]David A. Ross, Simon Osindero, Richard S. Zemel:
Combining discriminative features to infer complex trajectories. ICML 2006: 761-768 - 2005
- [c24]Benjamin M. Marlin, Sam T. Roweis, Richard S. Zemel:
Unsupervised Learning with Non-Ignorable Missing Data. AISTATS 2005: 222-229 - 2004
- [j9]Max Welling, Richard S. Zemel, Geoffrey E. Hinton:
Probabilistic sequential independent components analysis. IEEE Trans. Neural Networks 15(4): 838-849 (2004) - [c23]Xuming He, Richard S. Zemel, Miguel Á. Carreira-Perpiñán:
Multiscale Conditional Random Fields for Image Labeling. CVPR (2) 2004: 695-702 - [c22]Benjamin M. Marlin, Richard S. Zemel:
The multiple multiplicative factor model for collaborative filtering. ICML 2004 - [c21]Miguel Á. Carreira-Perpiñán, Richard S. Zemel:
Proximity Graphs for Clustering and Manifold Learning. NIPS 2004: 225-232 - [c20]Richard S. Zemel, Quentin J. M. Huys, Rama Natarajan, Peter Dayan:
Probabilistic Computation in Spiking Populations. NIPS 2004: 1609-1616 - 2003
- [c19]Richard S. Zemel, Craig Boutilier:
An Active Approach to Collaborative Filtering. AISTATS 2003: 330-337 - [c18]Craig Boutilier, Richard S. Zemel, Benjamin M. Marlin:
Active Collaborative Filtering. UAI 2003: 98-106 - [c17]Max Welling, Richard S. Zemel, Geoffrey E. Hinton:
Efficient Parametric Projection Pursuit Density Estimation. UAI 2003: 575-582 - [p1]Richard S. Zemel:
Cortical Belief Networks. Computational Models for Neuroscience 2003: 267-287 - 2002
- [c16]Max Welling, Richard S. Zemel, Geoffrey E. Hinton:
Self Supervised Boosting. NIPS 2002: 665-672 - [c15]David A. Ross, Richard S. Zemel:
Multiple Cause Vector Quantization. NIPS 2002: 1017-1024 - 2001
- [j8]Richard S. Zemel, Michael Mozer:
Localist Attractor Networks. Neural Comput. 13(5): 1045-1064 (2001) - 2000
- [j7]Richard S. Zemel, Jonathan W. Pillow:
Encoding multiple orientations in a recurrent network. Neurocomputing 32-33: 609-616 (2000) - [c14]Richard S. Zemel, Toniann Pitassi:
A Gradient-Based Boosting Algorithm for Regression Problems. NIPS 2000: 696-702
1990 – 1999
- 1999
- [c13]Richard S. Zemel, Michael Mozer:
A Generative Model for Attractor Dynamics. NIPS 1999: 80-88 - [c12]Zhiyong Yang, Richard S. Zemel:
Managing Uncertainty in Cue Combination. NIPS 1999: 869-878 - 1998
- [j6]Richard S. Zemel, Peter Dayan, Alexandre Pouget:
Probabilistic Interpretation of Population Codes. Neural Comput. 10(2): 403-430 (1998) - [c11]Richard S. Zemel, Peter Dayan:
Distributional Population Codes and Multiple Motion Models. NIPS 1998: 174-182 - 1997
- [c10]Richard S. Zemel, Peter Dayan:
Combining Probabilistic Population Codes. IJCAI 1997: 1114-1119 - 1996
- [c9]Richard S. Zemel, Peter Dayan, Alexandre Pouget:
Probabilistic Interpretation of Population Codes. NIPS 1996: 676-684 - [c8]Michael S. Gray, Alexandre Pouget, Richard S. Zemel, Steven J. Nowlan, Terrence J. Sejnowski:
Selective Integration: A Model for Disparity Estimation. NIPS 1996: 866-872 - 1995
- [j5]Richard S. Zemel, Geoffrey E. Hinton:
Learning Population Codes by Minimizing Description Length. Neural Comput. 7(3): 549-564 (1995) - [j4]Peter Dayan, Richard S. Zemel:
Competition and Multiple Cause Models. Neural Comput. 7(3): 565-579 (1995) - [j3]Peter Dayan, Geoffrey E. Hinton, Radford M. Neal, Richard S. Zemel:
The Helmholtz machine. Neural Comput. 7(5): 889-904 (1995) - [j2]Richard S. Zemel, Christopher K. I. Williams, Michael Mozer:
Lending direction to neural networks. Neural Networks 8(4): 503-512 (1995) - 1994
- [b1]Richard S. Zemel:
A minimum description length framework for unsupervised learning. University of Toronto, Canada, 1994 - [c7]Richard S. Zemel, Terrence J. Sejnowski:
Grouping Components of Three-Dimensional Moving Objects in Area MST of Visual Cortex. NIPS 1994: 165-172 - 1993
- [c6]Geoffrey E. Hinton, Richard S. Zemel:
Autoencoders, Minimum Description Length and Helmholtz Free Energy. NIPS 1993: 3-10 - [c5]Richard S. Zemel, Geoffrey E. Hinton:
Developing Population Codes by Minimizing Description Length. NIPS 1993: 11-18 - 1992
- [j1]Michael C. Mozer, Richard S. Zemel, Marlene Behrmann, Christopher K. I. Williams:
Learning to Segment Images Using Dynamic Feature Binding. Neural Comput. 4(5): 650-665 (1992) - [c4]Richard S. Zemel, Christopher K. I. Williams, Michael Mozer:
Directional-Unit Boltzmann Machines. NIPS 1992: 172-179 - 1991
- [c3]Michael Mozer, Richard S. Zemel, Marlene Behrmann:
Learning to Segment Images Using Dynamic Feature Binding. NIPS 1991: 436-443 - 1990
- [c2]Richard S. Zemel, Geoffrey E. Hinton:
Discovering Viewpoint-Invariant Relationships That Characterize Objects. NIPS 1990: 299-305
1980 – 1989
- 1989
- [c1]Richard S. Zemel, Michael Mozer, Geoffrey E. Hinton:
TRAFFIC: Recognizing Objects Using Hierarchical Reference Frame Transformations. NIPS 1989: 266-273
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 13:05 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint