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Motivation

Neural ODEs offer a solid framework for efficient continuous-time modeling.

Specifically, they hold significant potential in the functional development of dig-

ital twins, which require real-time tracking and forecasting of the physical twin.

Neural ODEs naturally integrate data from irregular time series and show high

compatibility in mirroring the physical principles guiding real-world systems, such

as fluid dynamics in engineering or biological processes in healthcare.

Two key tasks:

1. Optimize the complexity they require for data classification. This facilitates

fast, adaptive decision-making and timely responses to evolving conditions,

essential in risk situations.

2. Understand their expressivity through data control. This demands a detailed

analysis of the role played by the architecture (depth, width of the model), and

contributes to high fidelity in the digital replication of physical assets. It allows

to predict future states based on data trends or to capture intrinsic dynamics.

Model

Residual networks: xk+1 = xk + ℎ𝑊𝑘𝜎 (𝐴𝑘xk + bk) , 𝑘 = 0, … , Nlayers − 1.

↓ (Continuous limit ℎ → 0)

Neural ordinary differential equations (neural ODEs, [4] )

{
̇x(𝑡) = ∑𝑝

𝑖=1 wi(𝑡)𝜎 (ai(𝑡) ⋅ x + 𝑏𝑖(𝑡)) , 𝑡 ∈ (0, 𝑇 ),
x(0) = x0 ∈ ℝ𝑑,

(1)

where 𝜃 ≔ (w𝑖, a𝑖, 𝑏𝑖)
𝑝
𝑖=1 ∶ (0, 𝑇 ) → (ℝ𝑑 × ℝ𝑑 × ℝ) piecewise constant controls.

Predictive model: Flow in time 𝑡 = 𝑇 generated by (1), Φ𝑇(⋅; 𝜃) ∶ ℝ𝑑 → ℝ𝑑,

which maps x0 ∈ ℝ𝑑 ⟼ x(𝑇 ) solution of (1) evaluated in 𝑡 = 𝑇.
Complexity = Number of time switches (𝐿) × constant width (𝑝).

Dataset 𝒟 = {(xn, yn)}𝑁
𝑛=1 ⊂ ℝ𝑑 × 𝒴. {

Binary classification: 𝒴 = {1, 0}.
Simultaneous control: 𝒴 = ℝ𝑑.

Worst-case scenario:
(W-CS)

Random (xn, yn), indep. and uniformly distributed.

Balanced classes: #{(xn, 1)} = #{(xn, 0)}.
Basic dynamics:

a(𝑡), 𝑏(𝑡) define a hyperplane 𝐻(x) = a(𝑡) ⋅ x(𝑡) + 𝑏(𝑡) = 0 in ℝ𝑑.

𝜎(𝑧) = max{𝑧, 0} “activates” the halfspace 𝐻(x) > 0 and “freezes” 𝐻(x) ≤ 0.
w(𝑡) determines the direction of the field in the active halfspace.

Figure 1. Contraction (left), translation (center), expansion (right).

Binary classification

Problem statement

Define a pair of disjoint target regions: Ω1 = {𝑥(𝑗) > 1} and Ω0 = {𝑥(𝑗) < 1}.
For any given 𝑇 > 0, find a control 𝜃 s.t. Φ𝑇(xn; 𝜃) ∈ Ω𝑦𝑛

for all 𝑛 = 1, … , 𝑁.

Theorem 1 (Cluster-based classification inW-CS, [1])

Let 2 ≤ 𝑑 < 2𝑁 and {xn}𝑁
𝑛=1, {xN+n}𝑁

𝑛=1 ⊂ ℝ𝑑 be in general positiona (GP).

Consider the neural ODE (1) with 𝑝 = 1. For any time 𝑇 > 0 and 𝑗 ∈ {1, … , 𝑑},
there exists a piecewise constant control 𝜃 ∶ (0, 𝑇 ) → ℝ2𝑑+1 such that

Φ𝑇(xn; 𝜃)(𝑗) > 1 and Φ𝑇(xN+n; 𝜃)(𝑗) < 1, for all 𝑛 = 1, … , 𝑁.
Furthermore, the number of time switches is 𝐿 = 1 + 𝑂(𝑁/𝑑).

(a) 4 points in

ℝ3 in GP.

(b) Classification method for theorem 1 (one

iteration).

(c) Classification method for theorem 2.

Theorem 2 (Probabilistic bound on complexity, [1])

Let 𝑑 ≥ 2 and consider the neural ODE (1) with 𝑝 = 1. Assume that

xn, xN+n ∼ 𝑈 ([0, 1]𝑑), for all 𝑛 = 1, … , 𝑁. For any time 𝑇 > 0, there exist

𝑗 ∈ {1, … , 𝑑} and a piecewise constant control 𝜃 ∶ (0, 𝑇 ) → ℝ2𝑑+1 such that

Φ𝑇(xn; 𝜃)(𝑗) > 1 and Φ𝑇(xN+n; 𝜃)(𝑗) < 1, for all 𝑛 = 1, … , 𝑁,
and the number of switches 𝐿 satisfies the probabilistic bound, for 𝑘 = 0, … , 2𝑁 −2:
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Linear separability: 𝑃(𝐿 = 0) ≥ 1 − (2(𝑁!)2/(2𝑁)!)𝑑 .
Asymptotics: For 𝑑, 𝑁 ≫ 1, 𝑃(𝐿 = 0) ∼ 1 − exp {−𝑑

√
𝑁/2𝑁} .

(d) (e)

aNo 𝑑 + 1 points lie on the same hyperplane.

Interpolation/Simultaneous control

Problem statement

For any given 𝑇 > 0, find a control 𝜃 s.t. Φ𝑇(xn; 𝜃) = yn for all 𝑛 = 1, … , 𝑁.

Theorem 3 (Architecture: depth vs width, [2])

Let 𝑑 ≥ 2. Consider a dataset {(xn, yn)}𝑁
𝑛=1 ⊂ ℝ𝑑 × ℝ𝑑. For any time 𝑇 > 0, there

exists a piecewise constant control 𝜃 ∶ (0, 𝑇 ) → ℝ𝑑×𝑝 × ℝ𝑝×𝑑 × ℝ𝑝 such that

Φ𝑇(xn; 𝜃) = yn, for all 𝑛 = 1, … , 𝑁.
Furthermore, the number of time switches is 𝐿 = 1 + 𝑂(𝑁/𝑝).

TargetInput

(f) Step 1: Control 𝑑 − 1 coordinates of 𝑝
points simultaneously.

(g) Step 2: Control the remaining coordinate

of the 𝑝 points simultaneously.

Special case: High dimensions

If 𝑑 > 𝑁, then 𝐿 can be improved to

𝐿 = 𝑂(𝑁/𝑝).
Build new basis by x ↦ x′ to eliminate Step 1.

Theorem 4 (Approximate controlwith autonomous model, [2])

Let 𝑑 ≥ 2. Consider a dataset {(xn, yn)}𝑁
𝑛=1 ⊂ ℝ𝑑 × ℝ𝑑. For any time 𝑇 > 0, there

exists a constant control 𝜃 ∈ ℝ𝑑×𝑝 × ℝ𝑝×𝑑 × ℝ𝑝 such that

sup
𝑛∈{1,…,𝑁}

|yn − Φ𝑇(xn; 𝜃)| ≤ 𝐶𝑑,𝑇 ,𝑁
log2(𝑚)

𝑚1/𝑑 , for 𝑚 = (𝑑 + 2)𝑑𝑝.

TargetInput

Figure 2. Handmade vector field that interpolates 𝒟, later approximated with system (1).

Conclusions

Clustering of data enables a reduction of complexity with high probability.

Increasing 𝑑 diminishes the complexity as 𝑂(𝑁) → 1 + 𝑂(𝑁/𝑑).
Increasing the width 𝑝 allows reducing depth 𝐿 as 1 + 𝑂(𝑁/𝑝).
An autonomous, sufficiently wide neural field can achieve approx. control.
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