
Vol. 45 No. 4 SCIENCE IN CHINA (Series F) August 2002

FC-normal and extended strati�ed logic program

XU Daoyun (���) & DING Decheng (���)

Department of Mathematics, Nanjing University, Nanjing 210093, China

Correspondence should be addressed to Xu Daoyun (email: dgqqxdy@163.net)

Received July 25, 2001; revised January 13, 2002

Abstract This paper investigates the consistency property of FC-normal logic program and presents

an equivalent deciding condition whether a logic program P is an FC-normal program. The deciding

condition describes the characterizations of FC-normal program. By the Petri-net presentation of

a logic program, the characterizations of strati�cation of FC-normal program are investigated. The

strati�cation of FC-normal program motivates us to introduce a new kind of strati�cation, extended

strati�cation, over logic program. It is shown that an extended (locally) strati�ed logic program is

an FC-normal program. Thus, an extended (locally) strati�ed logic program has at least one stable

model. Finally, we have presented algorithms about computation of consistency property and a few

equivalent deciding methods of the �nite FC-normal program.

Keywords: forward chaining, FC-normal program, stable model, extended strati�cation.

Marek's forward-chaining construction is one of important techniques for investigating the

nonmonotonic reasoning. In refs. [1, 2], Marek et al. showed that a forward-chaining technique,

supplemented by a properly chosen safeguard, can be used to construct stable models of a logic

program. By the introduction of consistency property over a logic program, they proposed a

class of logic programs, FC-normal programs, each of which has at least one stable model.

In the process of construction of stable models, an FC-normal program has the property that

an applied nonmomotonic clause C would not be negated by the applications of clauses later.

The property ensures intuitively the existence of stable models of a logic program. And we

can construct a stable model by the simpli�ed forward-chaining construction, normal forward-

chaining construction, if a logic program P is FC-normal. Please note that an FC-normal

program is associated with a consistency property.

Given a logic program P , we can always construct a consistency property Con over P . But

it does not hold that P is FC-normal with respect to every consistency property Con over P . We

can also construct two consistency properties Con1 and Con2 over P such that P is FC-normal

with respect to Con1 and P is not FC-normal with respect to Con2.

However, we can construct a consistency property Connorm(P), called normal consistency

property, by the normal forward-chaining construction for all well-ordering over nmon(P) such

that

if P is FC-normal with respect to a consistency property Con, then Connorm(P) � Con and

P is FC-normal with respect to Connorm(P).

260 SCIENCE IN CHINA (Series F) Vol. 45

It is that for a given logic program P we only need to decide whether P is FC-normal with

respect to Connorm(P). Please note that Connorm(P) is unique for a given logic program P .

In this paper, we analyse the consistency property over a logic program and present an

equivalent deciding condition whether a logic program P is FC-normal. The new deciding

condition shows that if a nonmonotonic clause C1 is applied at stage � in the construction, and

another nonmonotonic clause C2 is applied at stage �, where � � � and � is a well-ordering over

nmon(P), then the application of C2 would not negate the application of C1. In the construction

the application of any nonmonotonic clause C in P could block applications of all nonmonotonic

clauses that would negate the application of C later.

For the strati�cation of a logic program, Apt et al.[3] and Przymusinski[4] have introduced

a (locally) strati�cation over a logic program by de�ning a rank function rank: for every clause

a a1; : : : ; am;:b1; : : : ;:bk rank(ai) 6 rank(a) for all 1 6 i 6 m, and rank(bj) < rank(a)

for all 1 6 j 6 k. The conditions imposed on the rank function rank over a logic program

P protect from the occurrence of the nonmonotonic deduction cycles over P . By the Petri-net

representation N(P) of P [6], it follows that N(P) contains no nonmonotonic cycles. Thus, a

(locally) strati�ed program has the unique stable model.

In this paper, we introduce a new strati�cation called extended strati�cation by de�ning a

new rank function rank�. The conditions imposed on rank� are weaker than that on rank, i.e.

a (locally) strati�ed program is extended (locally) strati�ed and an extended (locally) strati�ed

program may not be (locally) strati�ed. In an extended (locally) strati�ed program P , it is

allowed that N(P) contains nonmonotonic cycles. We will prove that an extended (locally)

strati�ed program is FC-normal and present an example to show that an FC-normal program

may not be extended (locally) strati�ed.

Finally, we present algorithms to compute the normal consistency property over a �nite logic

program, and consider a few equivalent deciding methods of the �nite FC-normal program. For

our algorithms, the worst time complexity, deciding whether a �nite logic program is FC-normal,

is still in exponential time.

1 Preliminaries

In this section, we introduce some necessary notions and notations. It is supposed that we

discuss atoms underlying language L and deal with the propositional case only.

De�nition 1.1. (i) A de�nite logic program P consists of clauses of form a a1; : : : ; am;

where a; a1; : : : ; am are atoms of language L. We call such clauses Horn program clauses or

simply Horn clauses. The set of atoms occurring in clauses of P is called the Herbrand base of

P , and is denoted by HP .

(ii) A subset M � HP is called a model of a set P of program clauses if for all clauses

a a1; : : : ; am of P , a1; : : : ; am 2M implies a 2M .

De�nition 1.2. (i) A general logic program P consists of clauses of form

C = a a1; : : : ; am;:b1; : : : ;:bk;

where a; a1; : : : ; am; b1; : : : ; bk are atoms in language L. Here a1; : : : ; am are called the premises

No. 4 C-NORMAL & EXTENDED STRATIFIED LOGIC PROGRAM 261

of clause C, b1; : : : ; bk are called the constraints of clause C and a is called the conclusion of

clause C. We shall write prem(C) = fa1; : : : ; amg, cons(C) = fb1; : : : ; bkg and c(C) = fag.

Either one of prem(C), cons(C), or both may be empty. If prem(C) = cons(C) = ?, then the

clause C is called an axiom.

(In this paper, a logic program means a general logic program.)

(ii) Let HP be the set of atoms occurring in clauses of P . A subset M of HP is called a

model of P if for any clause a a1; : : : ; am;:b1; : : : ;:bk of P , whenever the premises a1; : : : ; am

of C are in M and the constraints b1; : : : ; bk of C are not in M , the conclusion a of C belongs to

M .

For a given general program P , let mon(P) denote the set of all Horn clauses in P and

nmon(P) = P nmon(P). The elements of nmon(P) are called nonmonotonic clauses. And the

monotone operator of derivation closure under the clauses in mon(P) is denoted by clmon(P).

For a clause C = a a1; : : : ; am;:b1; : : : ;:bk, the Horn clause a a1; : : : ; am is called the

Horn projection of C, denoted by CHorn. Let P be a logic program. Then the Horn program

mon(P) [fCHornjC 2 nmon(P)g is called Horn projection of P , denoted by PHorn.

Given a logic program P , sets M � HP and I � HP , a M -deduction of c from I in P is a

�nite sequence < c1; c2; : : : ; cl > such that cl = c and for all 1 6 i 6 l, each ci either

(i) ci 2 I, or

(ii) ci = c(C) for some axiom C 2 P , or

(iii) ci = c(C) for some clause C = a a1; : : : ; am;:b1; : : : ;:bk in P such that fa1; : : : ; amg �

fc1; : : : ; ci�1g and fb1; : : : ; bkg \M = ?.

For the case (iii), we say that the clause C = a a1; : : : ; am;:b1; : : : ;:bk is applied in

M -deduction of c from I in P . Especially, we say that < c1; c2; : : : ; cl > is a proof sequence of

c from I in P if all applied clauses in the deduction are in mon(P), i.e. all applied clauses are

monotonic clauses in P .

For c 2 HP , we say that c is M -deducible from I over P if there is a M -deduction of c from

I over P . We denote CM (I) = fcj c is M -deducible from I over Pg. M is called a stable model

of P from I if CM (I) = M . Especially, M is called a stable model of P if CM (?) =M .

Moreover, we present a kind of Petri-net representation for a logic program to describe the

characterization of FC-normal program.

Given a logic program P , every non-axiom clause

C = a a1; : : : ; am;:b1; : : : ;:bk

in P is associated to a transition tC as given in �g.

1, where an arrow with a small circle corresponds to a

constraint bi in the clause C. It means that the clause

C is not applicable whenever bi is deducible.

De�ne notations:
�tC = fa1; : : : ; amg;

ÆtC = fb1; : : : ; bkg and t�
C
= fag:

Generally, we assume that �tC \
ÆtC = ?. Fig. 1

De�nition 1.3. Let P be a (propositional) logic program and let N be a Petri-net with

262 SCIENCE IN CHINA (Series F) Vol. 45

a set S of states and a set T of transitions. N is called the Petri-net representation of P if the

following conditions hold:

(i) S = HP and T = ftC j C is a non-axiom clause in Pg.

(ii) A state s 2 prem(C) if and only if an arrow from s to tC occurring in N .

(iii) A state s 2 cons(C) if and only if an arrow with a small circle from s to tC occurring

in N .

(iv) A state s 2 c(C) if and only if an arrow from tC to s occurring in N .

We denote the Petri-net representation of P by N(P). The set fa j a 2 Pg is the set of

initial states (initial active conditions) of N(P), denoted by IN .

Let N(P) be the Petri-net representation of a logic program P . In N(P), a cycle is a

sequence: C 0 = a01t
0
1a

0
2t
0
2 : : : a

0
p
t0
p
a01, where t

0
1; : : : ; t

0
p
are transitions, a0

i
2� t0

i
[Æ t0

i
(1 6 i 6 p),

a0
i+1 2 t0�

i
(1 6 i < p) and a01 2 t0�

p
. If a0

i
2�t0

i
for each 1 6 i 6 p , then C 0 is called a monotonic

cycle. A cycle is called a nonmonotonic cycle if the cycle is not monotonic. In this paper, we

always assume a cycle to be a simple cycle.

Example 1.1. The logic program P consists of clauses fa ; b c; c b; c

a;:d; e c;:f; d e;:fg.

In �g. 2, a is the initial state of Petri-net N(P), t3 is �rst applied (�red) transition and t5

has to be applied. On the other hand, the application of t5 must negate the application of t3.

This is a contradiction. Thus, P has no stable model.

Moreover, the sequence ct1bt2c is a monotonic cycle and ct4et5dt3c is a nonmonotonic cycle

in �g. 2.

Example 1.2. The logic program P consists of clauses fa ; b c; c b; c

a;:d; e c;:f; f c;:eg.

In �g. 3, a is the initial state of Petri-net N(P). t3 is �rst applied (�red) transition. It

follows that if t5 is applied �rst, then the application of t5 will block the application of t4. Sym-

metrically, if t4 is applied �rst, then the application of t4 will block the application of t5. Thus,

P has two stable models fa; b; c; eg and fa; b; c; fg.

Fig. 2 Fig. 3

2 Equivalent deciding condition of FC-normal program

In this section, we will present an equivalent condition deciding whether a logic program is

an FC-normal program.

No. 4 C-NORMAL & EXTENDED STRATIFIED LOGIC PROGRAM 263

De�nition 2.1[1]. Let P be a logic program. We say that a subset Con of P(HP), where

P(HP) is the power set of HP , is a consistency property over P if

(i) ? 2 Con,

(ii) 8A;B�HP
[(A � B)&(B 2 Con)) (A 2 Con)],

(iii) 8A�HP
[(A 2 Con)) (clmon(P)(A) 2 Con)], and

(iv) whenever A � Con has the property that (A;B 2 A) ! 9C2A[(A � C)&(B � C)],

then
S
A 2 Con.

De�nition 2.2[1]. Let P be a logic program and Con a consistency property over P .

(i) A clause C = a a1; : : : ; am;:b1; : : : ;:bk 2 nmon(P) is FC-normal with respect to

(w.r.t.) Con if V [fag 2 Con and not V [fa; big 2 Con for all 1 6 i 6 k whenever a subset V

of HP is such that V 2 Con; clmon(P)(V) = V; a1; : : : ; am 2 V , and a; b1; : : : ; bk =2 V .

In other words, if for any subset V of HP such that V 2 Con; clmon(V) = V; a1; : : : ; am 2 V

and a; b1; : : : ; bk =2 V , we have V [fag 2 Con and V [fa; big =2 Con for all 1 6 i 6 k, then the

clause C = a a1; : : : ; am;:b1; : : : ;:bk 2 nmon(P) is FC-normal w.r.t. Con.

(ii) P is an FC-normal program w.r.t. Con if all clauses C in P are FC-normal w.r.t. Con.

(iii) P is an FC-normal program if for some consistency property Con � P(HP), P is

FC-normal w.r.t. Con.

In ref. [1], it is proved that an FC-normal program has at least one stable model.

De�nition 2.3. Let P be a logic program and Con a consistency property over P , and

let V be in Con and clmon(P)(V) = V .

(i) A clause C = a a1; : : : ; am;:b1; : : : ;:bk 2 nomn(P) is V -applicable if prem(P) � V

and cons(C) \ V = ?, i.e. a1; : : : ; am 2 V and b1; : : : ; bk =2 V .

(ii) A clause C = a a1; : : : ; am;:b1; : : : ;:bk 2 nomn(P) is V -auto-inconsistent if C

is V -applicable and for some i (1 6 i 6 k) bi is in clmon(P)(V [fag). A clause C = a

a1; : : : ; am;:b1; : : : ;:bk 2 nomn(P) is V -auto-consistent if C is not V -auto-inconsistent. Clearly,

if C is V -auto-consistent, then clmon(P)(V [fag) \ fb1; : : : ; bkg = ?.

(iii)[7] Two clauses C1 = a a1; : : : ; am;:b1; : : : ;:bk; C2 = a0 a01; : : : ; a
0
n
;:b01; : : : ;:b

0

l

in nmon(P) are V -independent. If both C1 and C2 are V -applicable, then the following relation

holds:

clmon(P)(V [fag) \ fb
0

1; : : : ; b
0

l
g = ?() clmon(P)(V [fa

0g) \ fb1; : : : ; bkg = ?;

(or clmon(P)(V [fag) \ fb
0

1; : : : ; b
0

l
g 6= ?() clmon(P)(V [fa

0g) \ fb1; : : : ; bkg 6= ?:)

Theorem 2.1. Let P be a logic program and Con a consistency property over P . Then,

the program P is FC-normal w.r.t. Con if and only if for any V 2 Con satisfying clmon(P)(V) =

V the following conditions hold:

(P1) For any clause C 2 nmon(P), if C is V -applicable, then C is V -auto-consistent and

V [fag 2 Con.

(P2) For any clauses C1; C2 2 nmon(P), if both C1 and C2 are V -applicable, then C1; C2

are V -independent.

264 SCIENCE IN CHINA (Series F) Vol. 45

Corollary 2.1. Let P be a logic program and Con a consistency property over P . For

any V 2 Con satisfying clmon(P)(V) = V , if the conditions (P1) and (P2) in Theorem 2.1 hold,

then P has stable models.

Proof of Theorem 2.1. (Only if part) Assume that P is FC-normal w.r.t. the consis-

tency property Con. Then for all clauses C = a a1; : : : ; am;:b1; : : ::bk 2 nmon(P), we have

V [fag 2 Con and V [fa; big =2 Con for all 1 6 i 6 k whenever a subset V of HP is such that

V 2 Con; clmon(P)(V) = V; a1; : : : ; am 2 V and a; b1; : : : ; bk =2 V .

For the condition (P1), the result is clear for a 2 V . We assume that a clause C = a

a1; : : : ; am;:b1; : : ::bk 2 nmon(P) and a1; : : : ak 2 V and a; b1; : : : ; bk =2 V . We will prove

that clmon(P)(V [fag) \ fb1; : : : ; bkg = ?. Otherwise, there exists some bi0 (1 6 i0 6 k) such

that bi0 2 clmon(P)(V [fag). Hence V [fa; bi0g � clmon(P)(V [fag). Since V [fag 2 Con,

clmon(P)(V [fag) is in Con too. Thus V [fa; bi0g 2 Con, a contradiction.

For the condition (P2), let C1 = a a1; : : : ; am;:b1; : : : ;:bk, C2 = a0 a01; : : : ; a
0
n
;

:b01; : : : ;:b
0

l
be in nmon(P) and both V -applicable, i.e. fa1; : : : ; amg � V; b1; : : : ; bk =2 V and

fa1; : : : ; ang � V; b01; : : : ; b
0

l
=2 V . Let clmon(P)(V [fag) \ fb

0
1; : : : ; b

0

l
g = ?. We will prove that

clmon(P)(V [fa
0g) \ fb1; : : : ; bkg = ?. We discuss it by the following cases.

Case 1. a 2 V and a0 2 V . It is clear.

Case 2. a 2 V and a0 =2 V . In this case, we note that V [fbig =2 Con for all 1 6 i 6 k, V =

clmon(P)(V) = clmon(P)(V [fag) and V [fa
0g 2 Con. Thus, clmon(P)(V [fa

0g)\fb1; : : : ; bkg = ?.

Otherwise, there exists some bi0 (1 6 i0 6 k) such that V [fbi0g � clmon(P)(V [fa
0g) 2 Con.

Hence V [fbi0g 2 Con. This is a contradiction.

Case 3. a =2 V and a0 2 clmon(P)(V [fag). In this case, clmon(P)(V [fa
0g) � clmon(P)(V [

fag). Thus clmon(P)(V [fa
0g) \ fb1; : : : ; bkg = ?.

Case 4. a =2 V and a0 =2 clmon(P)(V [fag). Let Va = clmon(P)(V [fag). Then clmon(P)(Va) =

Va and Va 2 Con. By the assumption, we have fb01; : : : ; b
0

l
g \ Va = ?. Thus, clmon(P)(V [

fa; a0g) = clmon(P)(Va [fa
0g) 2 Con because C2 is a FC-normal clause w.r.t. Con. Therefore,

clmon(P)(V [fa
0g) \ fb1; : : : ; bkg = ? since V [fa; big =2 Con for all 1 6 i 6 k. (Otherwise,

there exists some bi0 (1 6 i0 6 k) such that V [fa; bi0g � clmon(P)(V [fa; a
0g) 2 Con. Hence

V [fa; bi0g 2 Con. This is a contradiction.)

Finally, we have clmon(P)(V [fa
0g)\fb1; : : : ; bkg = ?. Symmetrically, if clmon(P)(V [fa

0g)\

fb1; : : : ; bkg = ?, then clmon(P)(V [fag) \ fb
0
1; : : : ; b

0

l
g = ?.

(If part) Assume that P satis�es the conditions (P1) and (P2) w.r.t. Con. We show that P

is FC-normal w.r.t. Con. Given any clause C = a a1; : : : ; am;:b1; : : : ;:bk 2 nmon(P) and

any V � HP such that V 2 Con, clmon(P)(V) = V; fa1; : : : ; amg � V and a; b1; : : : ; bk =2 V . By

the condition (P1), V [fag 2 Con. Thus, we only show V [fa; big =2 Con for all 1 6 i 6 k. If

there exists some bi0 (1 6 i0 6 k) such that V [fa; bi0g 2 Con, then there exists a set V0 2 Con

satisfying clmon(P)(V0) = V0 and V [fa; bi0g � V0. By Kuratowski-Zorn Lemma, there exists a

minimal subset V � of HP such that V � 2 Con; V [fa; bi0g � V � and clmon(P)(V
�) = V �. By the

condition (P1), we note that clmon(P)(V [fag)\fb1; : : : ; bkg = ?. Thus clmon(P)(V [fag) � V �

(proper inclusion). Thus, we have a clause C 0 = a0 a01; : : : ; a
0
n
;:b01; : : : ;:b

0

l
2 nmon(P) and

No. 4 C-NORMAL & EXTENDED STRATIFIED LOGIC PROGRAM 265

a set V 0 � HP such that a01; : : : ; a
0
n
2 V 0, a0; b01; : : : ; b

0

l
=2 V 0, clmon(P)(V [fag) � V 0 � V �

and clmon(P)(V
0 [fa0g) � V �. Therefore, we have clmon(P)(V [fag) � clmon(P)(V [fa; a

0g) �

clmon(P)(V
0 [fa0g) � V �. (Please note that V 0 2 Con since V 0 � V � and V � 2 Con.)

We can repeat the above procedure until we get a set V 00 2 Con and V 00 � V � and a clause

C 00 = a00 a001 ; : : : ; a
00
s
;:b001 ; : : : ;:b

00
t
2 nmon(P) satisfying the following conditions:

a001 ; : : : ; a
00

s
2 V 00; a00; b001 ; : : : ; b

00

t
=2 V 00 and clmon(P)(V

00 [fa00g) � V �:

Thus, V [fa; bi0g � clmon(P)(V
00 [fa00g), i.e. clmon(P)(V

00 [fa00g) \ fb1; : : : ; bkg 6= ?.

By the condition (P1), clmon(P)(V
00 [fa00g) \ fb001 ; : : : ; b

00
t
g = ? . Please note that a 2 V 0 �

V 00. Thus clmon(P)(V
00 [fag) \ fb001 ; : : : ; b

00
t
g = ?. By the condition (P2), clmon(P)(V

00 [fag) \

fb001 ; : : : ; b
00
t
g = ? if and only if clmon(P)(V

00 [fa00g) \ fb1; : : : ; bkg = ?. This is a contradiction.

Q.E.D.

Intuitively, the condition (P1) in Theorem 2.1 shows that if C 2 nmon(P) is applicable at

some stage of the construction of stable model of P , the application of C would not negate itself.

And the the condition (P2) in Theorem 2.1 shows that for any two clauses C1; C2 2 nmon(P)

and any well-order �, if C1 is applied before C2 is applied, then the application of C2 would not

negate the application of C1. The condition of FC-normal program shows that for any clause

C = a a1; : : : ; am;:b1; : : : ;:bk 2 nmon(P), the application of C in some consistency property

Con would not cause any inconsistentency.

Example 2.1. Let P = fa ; b c; c a;:bg. Then P is not FC-normal because the

clause C = c a;:b is V -auto-inconsistent, where V = fag.

Example 2.2. Let P = fa ; b c; c b; c a;:d; e c;:f; f c;:eg. Then P

is FC-normal w.r.t. the consistency property Con = P(fa; b; c; eg) [P(fa; b; c; fg). Clearly, P

satis�es the conditions (P1) and (P2) w.r.t. Con in Theorem 2.1.

On the other hand, we can construct a family of subsets of HP , denoted by C(P), over a

logic program P as follows: that is the least subset of P(HP) satisfying the following conditions:

(i) ? 2 C(P),

(ii) for any A � HP , clmon(P)(A) 2 C(P),

(iii) for any A � HP , if A 2 C(P), then any subset B of A belongs to C(P),

(iv) for any A � HP , if A 2 C(P), then clmon(P)(A [fag) 2 C(P) whenever any clause

C = a a1; : : : ; am;:b1; : : : ;:bk in P is such that fa1; : : : ; amg � A and a; b1; : : : ; bk =2 A.

(v) C(P) contains no others.

It is easy to check that the above C(P) is a consistency property over P . We say that C(P)

is normal consistency property of P , denoted by Connorm(P). Please note that P need not be

FC-normal here. Clearly, for any consistency property Con such that P is FC-normal w.r.t.

Con, we have Connorm(P) � Con. In other words, if P is FC-normal w.r.t. Connorm(P), then

Connorm(P) is the least consistency property, where P is FC-normal w.r.t., under the inclusion

of sets. In Example 2.2, P is FC-normal w.r.t. Connorm(P) = P(fa; b; c; eg)[P(fa; b; c; fg), and

P is also FC-normal w.r.t. Con0 = P(fa; b; c; eg)[P(fa; b; c; fg)[P(fa; b; d; eg)[P(fa; b; d; fg).

In fact, we can introduce a well-order � of nmon(P), that is the well-order � determining

some listing of clauses in nmon(P), f
� : � 2
g, where
 is some ordinal. Let �
 be the least

266 SCIENCE IN CHINA (Series F) Vol. 45

cardinal such that
 6 �
 . By the normal forward chaining construction in ref. [1], we can

construct a set M� =
S
�2�

M�
�
.

The Normal Forward Chaining Construction of M�

Step 0. Let M�

0 = clmon(P)(?).

Step 1. � = � + 1 is a successor ordinal. Given M�
�
, let l(�) be the least � 2
 such that

� = a a1; : : : ; am;:b1; : : : ;:bk

where a1; : : : ; am 2M
�
�
and b1; : : : ; bk; a =2M�

�
. If there is no such l(�), then let M�

�+1 =M�
�
=

M�
�
. Otherwise, let

M�

�+1 =M�

�
= clmon(P)(M

�

�
[fc(

l(�)
)g):

Step 2. � is a limit ordinal. Then M�
�
=
S
�2�

M�

�
.

Finally, M� =
S
�2�

M�
�
.

Clearly, Connorm(P) =
S
�2WO(P)P(M

�), where WO(P) is the set of all well-orders over

nmon(P).

3 Extended strati�cation over logic program

In this section, we introduce a new strati�cation, extended strati�cation, over logic program

by de�ning a new rank function. We restrict our attention to propositional logic program.

Following refs. [3, 4], a logic program P called (locally) strati�ed if there exists an ordinal �

and a function rank : HP ! � such that for every clause C = a a1; : : : ; am;:b1; : : : ;:bk,

rank(ai) 6 rank(a) for all 1 6 i 6 m and rank(bj) < rank(a), for all 1 6 j 6 k. Using a

generally well-known argument (see ref. [5]) one can show that a strati�ed program has the

unique stable model.

Please note that in the de�nition of strati�cation function rank and in nonmonotonic deriva-

tion, the equal symbol = is applied to dealing with monotonic derivation cycle and the exact

nonequal symbol < is applied to preventing nonmonotonic derivation cycle. It means intuitively

that the earlier applied nonmonotonic clauses would not be negated by the later applied (mono-

tonic and nonmonotonic) clauses.

We, however, note that FC-normal program has the characterization:

the earlier applied nonmonotonic clause C1 would not be negated by the later applied non-

monotonic clauses C2 because the application of C1 could block the application of C2.

In Petri-net representation N(P) of an FC-normal program P , both monotonic cycles and

nonmonotonic cycle are allowed to occur. For the convenience of description, we view a transition

tC and the clause C corresponding to tC to be the same. It is interesting that in the derivation

of FC-normal program, for any nonmonotonic cycle C in N(P), if a nonmonotonic clause C in

C is applied, then all other nonmonotonic clauses in C, which may be applied, are immediately

blocked by the application of C.

Our motivation is how to deal with the two kinds of cycles in N(P).

De�nition 3.1. Let P be a (propositional) logic program. P is called extended (locally)

strati�ed if there exist an ordinal � and a function rank� : HP ! � � � such that for every

clause C = a a1; : : : ; am;:b1; : : : ;:bk in P , the following conditions hold:

No. 4 C-NORMAL & EXTENDED STRATIFIED LOGIC PROGRAM 267

(i) for all i, 1 6 i 6 m, max(rank�(ai)) 6 min(rank�(a)) and

(ii) for all j, 1 6 j 6 k, min(rank�(bj)) < max(rank�(a));

where rank�(a) = (�l; �r), max(rank�(a)) = max(�l; �r) and min(rank�(a)) = min(�l; �r). Ob-

viously, we have

Corollary 3.1. Let P be a (propositional) logic program. If P is (locally) strati�ed, then

P is extended (locally) strati�ed.

However, an extended (locally) strati�ed program may not be (locally) strati�ed.

Example 3.1. The logic program P consists of clauses fa ; b c; c b; c

a;:d; e c;:f;:g; f c;:e; g f;:e; h g; g hg. De�ne a rank function rank� over P

as follows: rank�(a) = (0; 0); rank�(b) = (1; 1); rank�(c) = (1; 1); rank�(d) = (0; 0); rank�(e) =

(2; 4); rank�(f) = (2; 3); rank�(g) = (3; 3); rank�(h) = (3; 3) (�g. 4).

Clearly, P is extended (locally) strati�ed, and P is not (locally) strati�ed since P has two

stable models, fa; b; c; eg and fa; b; c; f; g; hg.

Example 3.2. The logic program P consists of clauses fa ; c b; b a;:cg.

Clearly, P is neither (locally) strati�ed nor FC-normal.

Moreover, we have an example that an FC-normal program may not be extended (locally)

strati�ed.

Example 3.3. The logic program P consists of clauses fa ; c a;:b; b a;:c; b

d; d b; c e; e cg (�g. 5).

Fig. 4 Fig. 5

Clearly, P is FC-normal. And it is not extended (locally) strati�ed, if otherwise, there exists

a rank function rank� satisfying the conditions in De�nition 3.1. Thus, we have the following

contradictory relations:

max(rank�(b)) = min(rank�(b)); max(rank�(c) = min(rank�(c));

min(rank�(b)) < max(rank�(c)) and min(rank�(c) < max(rank�(b)):

We, however, will prove that an extended (locally) strati�ed program is FC-normal.

268 SCIENCE IN CHINA (Series F) Vol. 45

The following lemmas are helpful for the proof later.

Lemma 3.1. Let P be a logic program and I a subset of HP . If c 2 clmon(P)(I) and

c =2 I [fa0j a0 2 Pg, then

(i) there exists a proof sequence < c1; c2; : : : ; cl > of c from I in P , and

(ii) there exists a subsequence < ci1 ; ci2 ; : : : ; cip ; cl > of < c1; c2; : : : ; cl > and a sequence

C 0
1; : : : ; C

0
p
of clauses in mon(P) such that

(a) ci1 2 I [fa
0j a0 2 Pg,

(b) for all 1 < j 6 p, cij = c(C 0
j�1),

(c) cl = c(Cip).

Proof. (i) By the compactness theorem in propositional calculus.

(ii) By the de�nition of proof sequence. Q. E. D.

Lemma 3.2. Let P be a logic program and V a subset of HP satisfying clmon(P)(V) = V .

If neither a nor b is in V [fa0j a0 2 Pg, and b 2 clmon(P)(V [fag), then a occurs in the

sequence < c1; c2; : : : ; cl >, where < c1; c2; : : : ; cl; b > is a proof sequence of b from V [fag over

P .

Furthermore, we have a subsequence < a; ci1 ; ci2 ; : : : ; cip ; b > of < c1; c2; : : : ; cl; b > and a

sequence C 0
1; : : : ; C

0
p
; C� of clauses in mon(P) such that for all j (1 6 j 6 p), cij = c(C 0

j
) and

b = c(C�), and a 2 prem(C 0
1).

Proof. By Lemma 3.1 and the de�nition of proof sequence. Q.E.D.

Theorem 3.1. Let P be a logic program. If P is extended (locally) strati�ed, then P is

FC-normal.

Proof. Assume that the logic program P is extended (locally) strati�ed w.r.t. the rank

function rank�: HP ! � � �, where � is an ordinal.

We now prove that P is FC-normal w.r.t. the consistency property Connorm(P) de�ned in

section 2.

For any V 2 Connorm(P) and clause C = a a1; : : : ; am;:b1; : : : ;:bk 2 P , we assume that

clmon(P)(V) = V , fa1; : : : ; amg � V and V \ fa; b1; : : : ; bkg = ?. We will show that

(i) V [fag 2 Connorm(P) and

(ii) for all 1 6 i 6 k, V [fa; big =2 Connorm(P).

By the assumptions and de�nition of Connorm(P), we have V [fag 2 Connorm(P). Thus,

we only prove that V [fa; big =2 Connorm(P) for all i (1 6 i 6 k). By the construction of

Connorm(P), we have to prove the following conclusion:

for any V 0 2 Connorm(P), if V [fag � V 0 and clmon(P)(V
0) = V 0, then b1; : : : ; bk =2 V 0.

We prove the above conclusion by the following cases.

Case 1. V 0 = clmon(P)(V [fag).

(Please note that clmon(P)(V) = V , fa1; : : : ; amg � V and V \ fa; b1; : : : ; bkg = ?.)

Otherwise, there exists some bj0 2 clmon(P)(V [fag). By Lemma 3.2, we have a se-

quence < a; ci1 ; ci2 ; : : : ; cip ; bj0 > over HP and a sequence C 0
1; : : : ; C

0
p
; C� of clauses in mon(P)

such that for all j (1 6 j 6 p) cij = c(C 0
j
) and bj0 = c(C�). By the de�nition of rank�,

No. 4 C-NORMAL & EXTENDED STRATIFIED LOGIC PROGRAM 269

we have: max(rank�(a)) 6 min(rank�(ci1)) 6 max(rank�(ci1)) 6 : : : 6 min(rank�(cip)) 6

max(rank�(cip)) 6 min(rank�(bj0)).

It contradicts min(rank�(bj0)) < max(rank�(a)).

Case 2. clmon(P)(V [fag) � V 0 2 Connorm(P).

Please note that the nonmonotonic clause C = a a1; : : : ; am;:b1; : : : ;:bk in P is applied

to V to get V [fag, and only some monotonic clauses in P are applied in the procedure of

forming clmon(P)(V [fag) from V [fag. Thus, at least one nonmonotonic clause in P has been

applied from clmon(P)(V [fag) to V
0. We denote the set of these nonmonotonic clauses in P by

P 0 = fC 0
1; : : : ; C

0

�
; : : :g, and assume that the order of applied clauses is C 0

1 � : : : � C 0

�
� : : : in

some well-order � over nmon(P).

From the set P 0 of clauses and C 0
1 � : : : � C 0

�
� : : :, we set V0 = clmon(P)(V [fag), and if

 = �+1, then set V
 = clmon(P)(V�[fc(C
0

)g), and if
 is a limit ordinal, then set V
 =

S
�<

V� .

Finally, we have V 0 =
S
�<jP 0j+

V� .

Additionally, V0 � V1 : : : ; V� � : : : � V 0, V0 � V 0 and V 0 2 Connorm(P).

From Case 1, we know that V0 \ fb1; : : : ; bkg = V0 \ cons(C) = ?. By trans�nite induction

on
, we can prove that V
 \ cons(C
) = ? for any C 0

in P 0.

Suppose that there exists some bj0 2 V 0 = clmon(P)(V
0). Consider the Horn projection of

P 0, P 0

Horn
. We know that bj0 is in clmon(P�)(V [fag), where P

� = P [P 0

Horn
. By a similar

reason to that in Case 1, we have a contradiction with min(rank�(bj0)) < max(rank�(a)).

Q. E. D.

Corollary 3.2. An extended (locally) strati�ed program has at least one stable model.

4 Finite FC-normal logic program

In this section, we focus our attention on �nite logic program. By the Petri-net represen-

tation of a logic program P , please note that in the construction of stable models the number

of all applicable well-ordering over nmon(P) is much less than 2jnmon(P)j in many cases. In an

application of nonmonotonic clauses, the orders among some nonmonotonic clauses are �xed.

For example, in �g. 4, the order ft3g, ft4; t5g, ft6g is �xed. That is, in the application, t3 must

be applied �rst, and if t6 is applied, then it must be the last one. In fact, we only use two

well-orders in Example 3.1.

In ref. [1], Marek et al. presented two versions of normal forward chaining constructions for

general and countable logic program, respectively. If we restrict ourselves to �nite logic program

P , then de�ne an index function Ind : nmon(P) ! N , where N denotes the set of natural

numbers, to replace a well-order � over nmon(P). For some �xed Ind, we can introduce the

following algorithm to compute M Ind.

Algorithm 4.1. Finite normal forward chaining construction.

Input: A �nite logic program P and an index function Ind of nmon(P).

Output: M Ind.

procedure FFC(P; Ind);

begin

270 SCIENCE IN CHINA (Series F) Vol. 45

MInd := clmon(P)(?);

mark := 1;

while (mark == 1) do

AC := fC 2 nmon(P)j prem(C) �MInd; and (fc(C)g [cons(C)) \MInd = ?g;

if (AC == ?) then mark := 0

else

f1 min ind := minfInd(C)j C 2 ACg;

M Ind := clmon(P)(M
Ind [fc(Cmin ind)g); g1 *Ind(Cmin ind) = min ind*

end(while)

return MInd;

end;

M Ind is called the base set w.r.t. the index function Ind here.

Clearly, the complexity of Algorithm 4.1 isO(jnmon(P)j2), where a computation of clmon(P)(:)

is viewed as a unit time.

Modifying Algorithm 4.1 and using the code function < x; y >= 1
2
(x2 + 2xy + y2 + 3x+ y)

and de�ning < x; y; z >=< x;< y; z >>, we can compute the normal consistency property

Connorm(P) of a �nite logic program P by the following algorithm.

Algorithm 4.2. Base set of normal consistency property

Input: A �nite logic program P .

Output: the base set of the normal consistency property over P , Base � P(HP).

procedure Base set(P);

begin

nmon0(P) = nmon(P);

I0 := f< 0; 0 >g;

M
<0;0>
0 := clmon(P)(?);

n := 0;

Base := ?;

while (n < jnmon(P)j) do

In+1 := ?;

for every < i; j >2 In do

f1 A<i;j>

n
:= fC 2 nmonn(P)j prem(C) �M<i;j>

n
and

(fc(C)g [cons(C)) \M<i;j>

n
= ?g;

k<n;i;j> := jA<i;j>

n
j;

if (k<n;i;j> == 0) then

f2 Base := Base [fM<i;j>

n
g; In := In n f< i; j >g; g2

else

f3 listing A<i;j>

n
: fC<<n;i;j>;0>; : : : ; C<<n;i;j>;k<n;i;j>�1>g;

I<n;i;j> := f<< n; i; j >; 0 >; : : : ; << n; i; j >; k<n;i;j> � 1 >g;

In+1 := In+1 [I<n;i;j>; g3

g1

No. 4 C-NORMAL & EXTENDED STRATIFIED LOGIC PROGRAM 271

nmonn+1(P) := nmonn(P);

for every << n; i; j >; k >2 In+1 do

f4 M
<<n;i;j>;k>

n+1 := clmon(P)(M
<i;j>

n
[fc(C<<n;i;j>;k>)g);

nmonn+1(P) := nmonn+1(P) n A
<i;j>

n
; g4

n := n+ 1;

end(while);

return Base;

end.

For the logic program P in example 3.1, algorithm 4.2 returns to Base = ffa; b; c; eg,

fa; b; c; f; g; hgg.

The worst time complexity of Algorithm 4.2 is O(2jnmon(P)jjnmon(P)j2). For example,

P = fa ; c1 a;:b1; : : : ; cn a;:bng although Base = ffa; c1; : : : ; cngg and jBasej = 1.

By Algorithms 4.1 and 4.2, it follows that

Theorem 4.1. Let P be a �nite logic program. Then, the following holds:

(i) For any index function Ind : nmon(P)! N , M Ind 2 Base.

(ii) For any M 2 Base, there exists an index function Ind : nmon(P) ! N such that

M =MInd,

where M Ind is the output set of Algorithm 4.1 and Base is the output set of Algorithm 4.2.

Theorem 4.2. Let P be a �nite logic program and Base the output set of Algorithm 4.2.

Then Connorm(P) =
S
M2Base

P(M) is a consistency property, normal consistency property.

Theorem 4.3. Let P be a �nite logic and Con a consistency property over P . If P is

FC-normal with respect to Con, then Connorm(P) � Con and P is FC-normal with respect to

Connorm(P).

Theorem 4.4. Let P be a �nite logic program and Base the output set of Algorithm

4.2. For M 2 Base, M is a stable model of P if and only if (8C 2 nmon(P))(prem(P) �M)

cons(C) \M = ?).

Theorem 4.5. Let P be a �nite logic and Base the output set of Algorithm 4.2. The

following are equivalent.

(i) P is FC-normal.

(ii) P is FC-normal with respect to Connorm(P).

(iii) For any M 2 Base and any C 2 nmon(P), if prem(C) �M , then cons(C) \M = ?.

(iv) For any M 2 Base, M is a stable model of P .

Theorem 4.5 shows that for the deciding of a �nite FC-normal program P , we only check

whether P is FC-normal with respect to Connorm(P).

5 Conclusions

In this paper, we have presented an equivalent condition of deciding whether a logic program

is FC-normal. The deciding condition describes clearly the characterization of an FC-normal

program. By the Petri-net representation of a logic program, we have introduced extended

(locally) strati�cation over a logic program, and proved that an extended (locally) strati�ed

272 SCIENCE IN CHINA (Series F) Vol. 45

program is FC-normal, thus an extended (locally) strati�ed program has at least one stable

model. Moreover, we have given examples that an FC-normal program may not be extended

(locally) strati�ed and an extended (locally) strati�ed program may not be (locally) strati�ed.

Finally, we have presented algorithms about computation of consistency property and some

deciding methods of FC-normal program for �nite logic program. The Petri-net representation

of a logic program is useful for investigating the stable models of the logic program and its

complexity.

References

1. Marek, V. M., Nerode, A., Remmel, J. B., Logic programs, well-ordering, and forward chaining, Annals of

Pure and Applied Logic, 1999, 96: 231|276.

2. Marek, V. M., Nerode, A., Remmel, J. B., A context for belief revision: forward chaining-normal nonmono-

tonic rules systems, Annals of Pure and Applied Logic, 1994, 67: 269|323.

3. Apt, K., Blair, H. A., Walker, A., Towards a theory of declaritive knowledge, in Foundation of Deductive

Databases and Logic Programming (ed. Minker, J.), Los Altos, CA: Morgan Kaufmann, 1987, 89|142.

4. Przymusinski, T., On the declarative semanitics of strati�ed deductive databases and logic programs, in

Foundation of Deductive Databases and Logic Programming (ed. Minker, J.), Los Altos, CA: Morgan

Kaufmann, 1987, 99: 193|216.

5. Marek, V. M., Truszczy�nski, M., Nonmonotonic Logic, Berlin: Springer-Verlag, 1993.

6. Lin, C., Murata, T., A Petri net model for nonmonotonic reasoning based on annotated logic programs,

IEICE Trans. Fundamentals, 1994, E77-A (10): 1579|1587.

7. Zhao Xi-shun, Disjunction-free default logic and its complexity, Ph. D. Thesis., Nanjing University in China,

1999.

