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Motivation

> Network Flow[1] is well-suited for MOT
problem.

> Previous work e.g.[3] do not utilize global
data association results to learn matching
costs for Network Flow.
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Working with graphs should
improve tracking performance!

Contributions

> Novel Bi-Level optimization formulation for
differentiating Linear Program (LP) through
optimal KKT conditions|2].

> Approximation of LP as a quadratic
program (QP) enables end-to-end training
data association costs.

> Tracking performance comparable to
SOTA[8], while being significantly faster.

Learning of Global Objective for Network Flow
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Our Method
Back Propagation
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Able to learn the cost function end-to-end!
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Results
Tracking results on MOT17(Top) and MOT20(Bottom)
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Online 53.7 53.8 19.4 36.6 1947
Online 56.3 55.1 21.2 35.5 1987
Online 57.3 56.3 24.2 33.4 1911
Offline 50.7 47 .2 20.8 36.9 2314
Offline 58.8 61.7 28.8 33.5 1185
Offline 60.5 65.6 27.0 33.6 1189
Offline 57.3 57.7 23.2 36.9 1424
Online 52.6 52.7 29.4 20.7 1648
Online 53.6 51.0 31.6 28.1 1531
Online 54.5 49.0 32.8 25.5 2038
Offline 58.9 56.5 41.3 21.3 2241
Offline 57.9 53.5 39.0 22.8 1827




