

Motivation Network Flow[1] is well-suited for MOT problem. Previous work e.g.[3] do not utilize global data association results to learn matching costs for Network Flow. P=0.9 P=0.2 P=0.1 Edges in, Graph out VS Graph in, Graph out Classification Network Working with graphs should improve tracking performance! Contributions > Novel Bi-Level optimization formulation for differentiating Linear Program (LP) through optimal **KKT** conditions[2]. > Approximation of LP as a quadratic

- program (QP) enables end-to-end training data association costs.
- \succ Tracking performance comparable to SOTA[8], while being significantly faster.

Learning of Global Objective for Network Flow in Multi-Object Tracking

Shuai Li¹, Yu Kong¹, Hamid Rezatofighi² Rochester Institute of Technology¹, Monash University²

Our Method

Training

• Implicit Function Theorem.

$argmin - \mathbf{x}^T \mathbf{O} \mathbf{x} + \mathbf{c}^T \mathbf{x} \mathbf{A}$	$\left[\begin{array}{c} \mathbf{Q} \end{array} \right]$	\mathbf{G}^{T}	\mathbf{A}^T	ſ
$\mathbf{x} \in \mathcal{X}$ 2	$diag(\boldsymbol{\lambda})\mathbf{G}$	$diag(\mathbf{Gx} - \mathbf{h})$	0	
s.t. $\mathbf{Ax} = \mathbf{b}, \mathbf{Gx} \le \mathbf{h}$ V	\mathbf{A}	0	0	

Inference

Polynomial-time algorithm for Network Flow

References

- [1] L.Zhang et.al. Global Data Association for Multi-Object Tracking using Network-Flows. CVPR2008
- [2] B.Amos et.al. OptNet: Differentiable Optimization as a Layer in Neural Networks. ICML2017 [3] Laura et.al. Learning by Tracking: Siamese CNN for Robust Target Association. CVPRW2016
- [4] C.Kim et.al. Multiple Hypothesis Tracking Revisited. ICCV2015
- [5] F.Bergman et.al. Tracking without Bells and Whistles. ICCV2019
- [6] Y.Xu et.al. How to Train Your Multi-Object Tracker. CVPR2020
- [7] G.Braso et.al. Learning a Neural Solver for Multi-Object Tracking. CVPR2020
- [8] A.Hornakova et.al. Lifted Disjoint path with applications in multiple object tracking. ICML2020
- [9] I.Papakis et.al. GCNNMatch: Graph Convolutional Neural Networks for multiple object tracking via Sinkhorn Normalization. arXiv2020 [10] F.Saleh et.al. Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking. CVPR2021
- [11] A.Hornakova et.al. Making High-Order MOT scalable: An Efficient Approximate Solver for Multi-Object Tracking. ICCV2021

Set of tracks

Tracking results on MOT17(Top) and MOT20(Bottom)									
Method	Mode	ΜΟΤΑ	IDF1	MT	ML	IDS			
[6]	Online	53.7	53.8	19.4	36.6	1947			
[5]	Online	56.3	55.1	21.2	35.5	1987			
[9]	Online	57.3	56.3	24.2	33.4	1911			
[4]	Offline	50.7	47.2	20.8	36.9	2314			
[7]	Offline	58.8	61.7	28.8	33.5	1185			
[8]	Offline	60.5	65.6	27.0	33.6	1189			
Ours	Offline	57.3	57.7	23.2	36.9	1424			
Method	Mode	ΜΟΤΑ	IDF1	ΜΤ	ML	IDS			
[5]	Online	52.6	52.7	29.4	26.7	1648			
[10]	Online	53.6	51.0	31.6	28.1	1531			
[9]	Online	54.5	49.0	32.8	25.5	2038			
[11]	Offline	58.9	56.5	41.3	21.3	2241			
Ours	Offline	57.9	53.5	39.0	22.8	1827			
0084	012		0180		0254				
					The second				
					No Population				
				6150-00					
					· 370				
	J.A.					NIN			

JUNE NEW ORLEANS 19-24 2022 LOUISIANA

Roculte

