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Abstract—Because of the small energy available aboard a
satellite, the power amplifier must achieve a very high power
efficiency which suggest to work close to the saturation point. This
would be power efficient, but unfortunately would add non-linear
distortions to the communication channel. Several equalization
algorithms have been proposed to compensate for this non-linear
behaviour. The Echo State Network (ESN), an algorithm coming
from the field of artificial neural networks, has also been proposed
for this task but has never been compared to state-of-the-art
equalizers for non-linear channel. The aim of this paper is to adapt
the ESN to the satellite communication channel and to compare
it to the baseband Volterra equalizer. We show that the ESN is
able to reach the same performances as the Volterra equalizer,
evaluated in terms of bit error rate, and has similar complexity.
In addition, we propose a new training strategy for the ESN and
the Volterra equalizer to improve their performance.

Index Terms—Satellite Communications, Non-linear communi-
cation channel, Equalization, Volterra, Echo State Network

I. INTRODUCTION

The increasing demand of bit rate in wireless communi-
cations requires the use of higher modulation orders. Such
modulations require a higher signal-to-noise ratio (SNR) on the
receiving side to achieve sufficiently low bit error rate (BER).
But in the case of the satellite communications, like DVB-S2
[1], the available power is very limited which strongly degrades
the link budget. To ensure a high power output, the power
amplifier in the satellite must work close to the saturation point
which allows a high efficiency. However the power amplifier
adds important non-linear distortions in the communication
channel which have to be compensated, at the transmitter side
with pre-distortion or at the receiver side with equalization,
to ensure a low BER. In this paper, we will study the digital
compensation of the non-linear channel at the receiver side.

Such a channel can be represented by using a baseband
Volterra model that can represent at the same time the memory
and the non-linearity of the channel [2]. A baseband Volterra
model can also be used as an efficient equalizer for these non-
linear communication channels [3][4][5]. In the following, the
term Volterra will always refer to the baseband Volterra model.

Other approaches based on artificial recurrent neural network
structures have been investigated. One of them is called the

Echo State Network (ESN) [6][7], also known as reservoir
computer [8]. A recent reviewing of this algorithm is presented
in [9]. This algorithm has the advantage to offer an interesting
compromise between performances and complexity in com-
parison with classical recurrent neural networks. Preliminary
results on ESN applied to non-linear channel equalization were
reported in [10] but with a non-realistic channel model. The
performances of this ESN was limited by the fact that it
only considered real inputs. The extension to complex symbols
has been proposed in [11]. Several papers have evaluated the
performances of the ESN for the equalization of a non-linear
communication channel but they were mostly compared with
a linear filter [11] [12]. In the best of the knowledge of the
authors, the ESN has never been compared to state-of-the-art
equalizers for non-linear channels, like the Volterra equalizer.

Note that, recently, high performance experimental imple-
mentations have been reported on optoelectronic [13][14] and
all-optical [15][16] circuits. This suggest that analog equalizers
could be efficiently implemented using the ESN approach.

The objective of this paper is to apply the ESN to the satellite
communication channel. A comparison will be done with the
Volterra equalizer in terms of BER and complexity to evaluate
the interest of the ESN for the digital equalization of non-linear
communication channels.

Most of the time, the coefficients of the ESN or the Volterra
equalizer are evaluated to minimize the mean square error
(MSE) between the transmitted signal and the estimated one
[4]. So the equalizers have to compensate for the inter-symbol
interferences and the compression of the received constellation
due to the saturated behaviour of the power amplifier. We will
show that we can improve the quality of the equalization if we
take this compression into account in the training process.

The outline of this paper is the following. In Section 2,
the satellite communication channel is described. In Section 3,
the ESN will be introduced. The improvement of the training
process will be proposed in Section 4. The Volterra equalizer
and the ESN will be compared in terms of BER and complexity
in Section 5.
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Fig. 1. Block scheme of a satellite communication channel

II. SYSTEM MODEL

The baseband satellite communication channel is described
in Fig. 1. The power amplifier aboard the satellite is the
source of non-linearity. It is described by its baseband model
which gives the amplitude modulation (AM-AM) and phase
modulation (AM-PM) characteristics (Fig. 2). If the input of
the power amplifier is defined as z(n) = |z(n)|ejϕ(z(n)), the
output of the amplifier y(n) is

y(n) = g(|z(n)|)ej(ϕ(z(n))+ψ(|z(n)|)) (1)

where g(.) represents the AM-AM relation and ψ(.) represents
the AM-PM relation.

The operating point is defined by the output back off (OBO)
defined as

OBO = 20log10
Aout
Asat

(2)

where Aout is the mean amplitude of the signal at the output of
the power amplifier and Asat is the saturation amplitude of the
amplifier. A low OBO is required to work in the linear regime
but reduces the efficiency of the power amplifier.

The satellite also contains low-pass filters before and after
the power amplifier (respectively, imux and omux filters) that
can be modelled with a Butterworth response. Half-root Nyquist
shaping filters are considered on the ground stations.

Because of the demand for ever increasing bit rates, high
symbol rates are used, leading to an increase of the spectral
bandwidth. When the bandwidth of the signal becomes com-
parable or larger than the bandwidth of the imux and omux
filters, inter-symbol interferences will occur. In this regime, and
with high OBO, the satellite is used more efficiently, but the
equalization becomes more difficult.

This communication channel can be described by a Volterra
model. This model describing the relation between the transmit-
ted symbols s(n) and the samples at the output of a noiseless
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Fig. 2. AM-AM (characterised with the OBO) and AM-PM (characterised
with the phase) relations of the power amplifier as a function of the amplitude
of the input signal normalised to one for an OBO of 0 dB

channel r(n) is of the form [2]

r(n) =
∑
p=0

L2p+1−1∑
n1=−L′

2p+1

L2p+1−1∑
n2=n1

...

L2p+1−1∑
np+1=np

L2p+1−1∑
np+2=−L′

2p+1

...

L2p+1−1∑
n2p+1=n2p

h2p+1(n1, ..., n2p+1)

p+1∏
i=1

s(n− ni)

2p+1∏
j=p+2

s∗(n− nj) (3)

where h2p+1(n1, ..., n2p+1) are the kernels of the Volterra
model and M2p+1 = L′

2p+1+L2p+1 is the size of the memory
of order 2p+1. The restrictions on the summation indices take
into account the symmetry of the kernels [17].
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III. ECHO STATE NETWORKS

Artificial neural networks, such as the recurrent neural net-
work, are often used for linear or non-linear signal processing.
Their main source of complexity comes from the adaptation
of the different connections which compose the system. The
learning task becomes very expensive for large networks [11].

The Echo State Network (ESN) has been proposed to sim-
plify the learning task [6][7][8]. The idea is to keep a recurrent
connection between the neurons but the connections between
them (inter-connection matrix α = (αij)) and the connections
with the input (input mask U = (ui)) are randomly generated.
Only the connections with the output (output mask W = (wi))
are trained. In this way, the number of connections to adapt
is strongly reduced which accelerates the learning task without
reducing the performances of the system.

The evolution of an ESN can be defined by:


ai(n) =

∑
j

αijxj(n− 1) + uir(n)

xi(n) = fNL(ai(n))

ŝ(n) =
∑
i

wixi(n)

(4)

where ai(n) is the activation signal transmitted to the neuron
xi(n). The non-linear behaviour of the ESN is created with the
help of the inter-connection function fNL(.).

The ESN requires the echo state property which specifies
that the values of each neuron depend on the past history
of the inputs. This property is kept if the spectral radius of
the linearised connection matrix between the neurons is lower
than 1 [6]. In this way, the network has a fading memory. This
condition guarantees the stability of the linearised recurrent
network.

It has been shown in [18] that a low complexity structure
(which minimizes the number of connections between the
neurons) can achieve the same performances as a random inter-
connection matrix as initially proposed. In the ESN studied
in this paper, we used a circular matrix for the connections

between the neurons:

α = A


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 (5)

where A is the feedback gain. The result is a ring structure
as illustrated in Fig. 3. A low feedback gain means that the
past history is not relevant in comparison with the actual input.
At the opposite, a high feedback gain ensures an important
memory of the neurons.

The ESN was first proposed to work with real inputs. In
[11], an adaptation of the ESN to work with complex values has
been proposed. To make this adaptation, the classical hyperbolic
tangent used as activation function has been replaced by a
complex function defined by:

fNL(a) = th(|a|)ejϕa (6)

where ϕa is the phase of a.
In order to reduce the numerical complexity of the algorithm,

we propose a polynomial function of order 3:

fNL(a) = a(c1 + c3|a|2) (7)

where c1 = 0.716 and c3 = −0.0478. These coefficient have
been found empirically to obtain the same results as with
the complex hyperbolic tangent. However the amplitude of
the input signal must be adapted, through the input mask,
in function of the values of the coefficients c1 and c3 to
ensure sufficient non-linear behaviour and keeping the echo
state property of the ESN.

IV. IMPROVEMENT OF THE TRAINING WITH THE CENTROIDS

The non-linear behaviour of the channel creates important
inter-symbol interferences but also a compression of the re-
ceived constellation as we can see in Fig. 4. In a linear
communication channel, the cloud of points of the received
samples will be centred on the transmitted constellation. But,
in a non-linear channel, the compression creates a displacement
of the center of the cloud of points, called the centroids [19].

This compression is a memoryless effect. So the position of
the centroids can be evaluated from the memoryless part of
the Volterra model of the channel. In the case of a 16-QAM
constellation, we have 16 centroids in the received constellation.
Their positions (Xi)

16
i=1 in the complex plan are defined by:

Xi = H0(Xi) =
∑
p=0

h2p+1(0, ..., 0)Xi|Xi|2p (8)

where (Xi)
16
i=1 are the positions of the centroids of the transmit-

ted constellation. In practice, it is difficult to evaluate exactly
the Volterra model of the channel. So we can evaluate the
position of the centroids Xi by averaging the Ni received
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symbols corresponding to Xi over a finite learning sequence
sT (n) of length N [19]:

Xi =
1

Ni

N−1∑
j=0

r(j|sT (j) = Xi) (9)

where

r(j|sT (j) = Xi) =

{
0, sT (j) ̸= Xi

r(j), sT (j) = Xi

(10)

In previous works [4][5][11], the Volterra equalizer and the
ESN were trained to minimize the MSE between the estimated
sequence ŝ(n) and the transmitted sequence s(n). This means
that a part of the complexity of the equalizers is devoted
to compensating for the displacement of the centroids. But,
as the new positions of the centroids, defined by Xi, are
taken into account for the demapping operation, recovering the
initial position of the centroids during the equalization process
gives no information gain. Furthermore, this correction requires
important displacements of the received symbols which depend
on their amplitude. As this last one is affected by the noise, a
noise amplification can occur if the equalizer try to compensate
for the displacement of the centroids.

Here we propose that the equalizer only compensate for the
interferences and ignore the displacement of the centroids. The
training sequence to recover is therefore

scT (n) = H0(sT (n)) (11)

A simple look-up table can also be used to replace the symbols
of sT (n) defined on X by the new sequence of symbols scT (n)
defined on X . With such a training sequence, the training
algorithm will consider that the positions of the centroids are
correct and will only try to compensate for the interferences.
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Fig. 5. Evolution of the BER in function of the SNR for two different training
strategy for the ESN with 300 neurons and a feedback gain of 0.7

V. NUMERICAL RESULTS

In these simulations, we will consider a 16-QAM modula-
tion. The imux and omux filters have a bandwidth of 36 MHz.
The roll-off factor of the half-root Nyquist shaping filters on
the ground stations is fixed at 0.2. The symbol rate is 33 MHz.
The operating point of the power amplifier will be defined by
a −1 dB OBO.

The coefficients of the Volterra equalizer and the ESN have
been evaluated to minimize the MSE between the estimated
sequence and the training sequence. In both case, we consider
that the training sequence was long enough to converge to the
optimal weight to minimize the MSE. The convergence speed
is not studied in this paper. We can see in Fig. 5 that, if the
training sequence is defined with the centroids of the received
constellation, we can reduce the BER for a SNR higher than
18 dB.

The performances of the Volterra equalizer and the ESN,
both trained on the centroids, are compared in Fig.6. We can
see that an ESN with 300 neurons is able to reach the same per-
formances as a Volterra equalizer for all SNR. A lower number
of neurons implies an important reduction of the performance.
The input mask u is composed by random complex numbers
with uniform phase distribution. Their amplitude is uniformly
distributed between [0;U ] where U depends on the amplitude
of the input signal. The feedback gain of the ESN is equal to
0.8.

The performance of the Volterra equalizer depends on the
memory M2p+1 allowed for each order of non-linearity 2p+1.
In these simulations, a Volterra equalizer of order 3 has been
used with a linear memory of M1 = 21 and an order 3 memory
of M3 = 7. A higher non-linear memory gives no improvement.

For the Volterra equalizer, the complexity depends on the
number of kernels. For the ESN, we can see that this complexity
is proportional to the number of neurons. The main source of
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complexity is the activation function. This is why we replaced
the hyperbolic tangent by an order 3 polynomial function. If
we evaluate the complexity in function of the number of real
summations and products, we can observe that both solutions
have the same order of complexity. For the parameters of the
present simulations, we have complexity ratio of 4 in favour of
the Volterra equalizer.

VI. CONCLUSION

The problem of the equalization of a satellite non-linear
channel has been investigated for both the Volterra equalizer
and ESN equalizer. An improvement of the training sequence,
using the centroids of the received sequence, has been proposed.
We showed that, without adding any complexity in the equaliza-
tion algorithms, a significant performance gain can be achieved.
We showed that the ESN can reach the same performances as a
Volterra filter but with a slightly higher complexity. The interest
of the ESN lies in particular in the possibility of efficient analog
implementation.
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