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Abstract

In this paper, we prove that for any positive integers n, s,t such that n > 10,
s,t > 2and n—1 > s+t, there exists a regular polytope with Schléfli type {2¢,2!} and
its automorphism group is of order 2". Furthermore, we classify regular polytopes
with automorphism groups of order 2" and Schlifli types {4,273} {4,2"*} and
{4,273}, therefore giving a partial answer to a problem proposed by Schulte and
Weiss in [Problems on polytopes, their groups, and realizations, Periodica Math.
Hungarica 53(2006) 231-255].
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1 Introduction

Classifications of abstract regular polytopes have been a subject of interest for several
decades. Ome path has been to fix (families of) groups of automorphisms and determine
the abstract regular polytopes having these groups as full automorphism groups. Some
striking results have been obtained, for instance for the symmetric and alternating groups.
Fernandes and Leemans classified abstract regular polytopes of rank n — 1 and n — 2 for
Sn [9, 12] and more recently, they extended this classification to rank n — 3 and n — 4
with Mixer [13]. Cameron, Fernandes, Leemans and Mixer showed that the highest rank
of an abstract regular polytope with full automorphism group an alternating group A, is
|(n —1)/2] when n > 12 [3], and thanks to two previous papers of Fernandes, Leemans
and Mixer [10, 11], this bound is known to be sharp. More recently, Gomi, Loyola and De
Las Penas determined the non-degenerate string C-groups of order 1024 in [14].

There exists a well known one-to-one correspondence between abstract regular poly-
topes and string C-groups. We therefore work with string C-groups as it is more convenient
and easier to define them than abstract regular polytopes. In this paper, we study 2-groups
acting on regular polytopes. The starting point of our research was the following problem
proposed by Schulte and Weiss in [22].
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Problem 1.1 Characterize the groups of orders 2" or 2"p, with n a positive integer and
p an odd prime, which are automorphism groups of reqular or chiral polytopes?

Conder [6] showed that if P is a regular 3-polytope with Schlafli type {k;, ko}, then
|Aut(P)| > 2k1ky. If P has Schléfli type {2°,2¢} and |Aut(P)| = 2", then n — 1 > s + L.
In this paper, we first show the following theorem.

Theorem 1.2 For any positive integers n, s,t such thatn > 10, s,t > 2 andn—1 > s+t,
there exists a string C-group of order 2™ with Schlafli type {2°,2'}.

Cunningham and Pellicer [8] classified the regular 3-polytopes P for the case when
|Aut(P)| = 2k1ky. Note that if |[Aut(P)| = 2" and k; = 4 then ky < 2773, As a special
case, Cunningham and Pellicer [8] obtained the classification of regular 3-polytopes with
automorphism groups of order 2" and Schlafli type {4,273}, and this was also given in
Loyola [17] by using the classification of 2-groups with a cyclic subgroup of order 273 [19].
We prove the result again independently by using new techniques that are described in
this paper, and the techniques work well for more classifications. In particular, we further
classify the regular 3-polytopes with automorphism groups of order 2" and Schlafli types
{4,2"*} and {4,2"°} in this paper.

To state the next result, we need to deﬁne some groups:

G1 = {po. p1.p2 | P3. 3. P%, (pop1)™, (p1p2)*" ", (pop2)?. [(pop1)2. p2l)

Ga = (po,p1, 02 | P2, 03,03, (pop1)?, (prp2)?" ", (pop2)?, [(pop1)?, p2) (p1p2)®" ),

Gs = (po, p1,p2 | P2, 0%, P%, (pop1)™, (p102)>" ", (pop2)?. [(pop1)?, (prp2)?]),

Ga = (po, p1,p2 | 03,0303, (pop1) % (p102)*" ", (pop2)?, [(pop1)?, (p1p2)2)(p1p2)*" ),

Gs = (po,p1,p2 | 03,0303, (pop1) (p102)2" ", (pop2)?, [po, (prp2) 1%, lpo- (p12)").

Ge = (po, p1.p2 | P2, 03, 03, (pop1)?, (p1p2)?" ", (pop2)?, [0, (p1p2)?12(p1p2)?" ", [P0, (p1p2) ™),
Gr = {po. p1.p2 | 3. 3. P3, (pop1)™ . (p1p2)" ", (pop2)?. [P0, (p1p2)21% p0s (p1p2) ] (p1p2)*" ),
Gs = {(po, p1,p2 | P2, 03, 03, (op1)%, (p1p2) > (pop2)?, [pos (p1p2) 12 (p1p2) >

s a1
Theorem 1.3 Forn > 10, let ' := (G, {po, p1, p2}) be a string C-group of order 2™. Then
(1) T has type {4,273} if and only if G = Gy or Gy;
(2) T has type {4,271} if and only if G = G5 or Gy;
(3) T has type {4,275} if and only if G = G5, Gg, G7 or Gs.

Let n < 10. By [4] or [15], there is a unique string C-group of order 2" with type
{4,4}, and Theorem 1.3 is true for the types {4,2"*} with n —s > 3 and s = 3,4 or
5, except for the cases when n = 8 or 9 with s = 5. For n = 8 with s = 5, there
are four string C- groups with type {4,8}: two are G5 and Gg, and the other two are

<po,p1,p2 | 05, P2, 03, (popn)? 2 (0102)7, (pop2)?, [(popr)?, (prp2)?] (prp2)®) and (po, p1, p2 | P2,

22, 03, (popn)™ (12 (popa)®, [((9192)2), p1 o) (p12) ). For m = 9 with s = 5, there are

six string C- groups with type {4,16}: four are G; with 5 < i < 8, and the other two are
4

(po: pr. P2 | 0 %, 93, (por1)”, (prp2)”", (popa)®, [(pop1)?, (p1p2)](pupa)?) and {po. pu pa | 5,

3, 03, (pop1)% s (pipa)? (pom) [(op1)?, (p1p2)?](p2p1)", 1, Pos P2, P15 POs P15 PO))-

2



2 Background results

2.1 String C-groups

Abstract regular polytopes and string C-groups are the same mathematical objects. The
link between these objects may be found for instance in [20, Chapter 2]. We take here the
viewpoint of string C-groups because it is the easiest and the most efficient one to define
abstract regular polytopes.

Let G be a group and let S = {pg, -, pa_1} be a generating set of involutions of G.
For I C {0,---,d — 1}, let G; denote the group generated by {p; : i € I'}. Suppose that

* forany i,j € {0,...,d—1} with |[i—j| > 1, p; and p; commute (the string property);
* for any I,J C {0,--- ,d— 1}, GiNGy; = Gny (the intersection property).

Then the pair (G, S) is called a string C-group of rank d and the order of (G, S) is simply
the order of G. If (G,S) only satisfies the string property, it is called a string group
generated by involutions or sggi. By the intersection property, S is a minimal generating
set of GG. It is known that string C-groups are the same thing as automorphism groups of
regular polytopes [20, Section 2E|. The following proposition is straightforward, and for
details, one may see [5].

Proposition 2.1 The intersection property for a string C-group (G, S) of rank 3 is equiv-
alent to that S is a minimal generating set of G and {po, p1) N {p1, p2) = (p1)-

The i-faces of the regular d-polytope associated with (G, .S) are the right cosets of the
distinguished subgroup G; = (p; | j # @) for each i = 0,1,--- ,d — 1, and two faces are
incident just when they intersect as cosets. The (Schlifii) type of (G, S) is the ordered set
{p1, -+ ,pa_1}, where p; is the order of p;_1p;. In this paper we always assume that each
p; is at least 3 for otherwise the generated group is a direct product of two smaller groups.
If that happens, the string C-group (and the corresponding abstract regular polytope) is
called degenerate. The following proposition is related to degenerate string C-groups of
rank 3.

Proposition 2.2 Fort > 1, let

Ly = (po, pr, p2 | p3: 3, P35 (popr)*s (prp2)?,s (pop2)?),
t
Ly = {po, p1,p2 | p3, P, 03, (Pop1)?, (prp2)*, (pop2)?),
t
Ly = {po, p1, p2 | p3; 7, 05, (pop1)? , (p1p2)%5 (pop2)?)-

Then |Li| = 16, |Ls| = |L3| = 2. In particular, the listed exponents are the true orders
of the corresponding elements.

The proof of Propostion 2.2 is straightforward from the fact that Ly = (po) X (p1, p2) =
Zo X Dat+1 and Ly = (po, p1) X (p2) = Dat+1 X Zsg, where Doe+1 denotes the dihedral group
of order 2+,

The following proposition is called the quotient criterion for a string C-group.
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Proposition 2.3 [20, Section 2E] Let (G, {po, p1, p2}) be an sggi, and let A = ({00, 01, 02),
{o0,01,02}) be a string C-group. If the mapping p; — o; for j =0,1,2 induces a homo-
morphism © : G — A, which is one-to-one on the subgroup {po, p1) or on {p1,p2), then
(G, {po, p1, pa}) is also a string C-group.

The following proposition gives some string C-groups with type {4,4}, which is proved
in [7, Section 8.3] for b > 2 but it is also true for b = 1 by MAGMA [2].

Proposition 2.4 For b > 1, let

My = {po,p1,p2 | P2, P2, 03, (pop1)*, (p1p2)*, (Pop2)?, (p2p100)%),

My = {po, p1,p2 | P2, 3, 3, (pop1)*, (p1p2)t, (Pop2)?, (p1p2p1po)°).

Then |M;| = 16b* and |My| = 8b*. In particular, the listed exponents are the true orders
of the corresponding elements.

2.2 Permutation representation graphs and CPR graphs

In [21], Daniel Pellicer introduced CPR-graphs to give a permutation representation of
string C-groups (CPR stands for C-group Permutation Representation). These graphs
are also sometimes called permutation representation graphs.

Let G be a group and S := {po,...,ps1} be a generating set of involutions of G.
Let ¢ be an embedding of G into the symmetric group .S,, for some n. The permutation
representation graph G of G determined by ¢ is the multigraph with n vertices, and with
edge labels in the set {0,...,d — 1}, such that any two vertices v, w are joined by an edge
of label j if and only if (v)((p;)¢) = w.

If (G, S) is a string C-group, then the permutation representation graph defined above
is called a CPR-graph by Pellicer.

2.3 Group theory

Let G be a group. For z,y € G, we use [r,y] as an abbreviation for the commutator
7'y lzy of x and y, and [H, K] for the subgroup generated by all commutators [z, ]
with x € H and y € K, when H and K are subgroups of G. The following proposition is
a basic property of commutators and its proof is straightforward.

Proposition 2.5 Let G be a group. Then, for any x,y,z € G, [zy, z] = [z, z]Y[y, 2] and
[z,yz] = [z, 2][z, y]*.

The commutator (or derived) subgroup G’ of a group G is the subgroup generated by
all commutators [z, y] for any z,y € G. With Proposition 2.5, it is easy to prove that if
G is generated by a subset M, then G’ is generated by all conjugates in GG of elements
[, z;] with z;, z; € M; see [16, Hilfsatz I11.1.11] for example.

Proposition 2.6 Let G be a group, M C G and G = (M). Then G' = ([z;, ;)9 | x;,x; €
M,g € G).



The Frattini subgroup, denoted by ®(G), of a finite group G is defined to be the
intersection of all maximal subgroups of GG. Let G be a finite p-group for a prime p,
and set U1(G) = (¢* | g € G). The following theorem is the well-known Burnside Basis
Theorem.

Theorem 2.7 |1, Theorem 1.12] Let G be a p-group and |G : ®(GQ)| = p®.
(1) G/®(G) = Z. Moreover, if NG and G/N is elementary abelian, then ®(G) < N.
(2) Every minimal generating set of G contains exactly d elements.
(3) (G) = G'G1(G). In particular, if p =2, then ®(G) = U1(G).
By Theorem 2.7(2), we have the following important result.

Remark 2.8 A string 2-group has C-group representations in only one rank.

The unique cardinality of all minimal generating set of a 2-group G is called the rank
of G, and denoted by d(G). This is quite different from almost simple groups where in
most cases if a group has string C-group representations of maximal rank d, then it has
string C-group representations of ranks from 3 to d. The only known exception is the
alternating group Ai; [10].

For a subgroup H of a group G, the core Coreq(H) of H in G is the largest normal
subgroup of GG contained in H. The following result is called Lucchini’s theorem.

Proposition 2.9 [18, Theorem 2.20] Let A be a cyclic proper subgroup of a finite group

G, and let K = Coreg(A). Then |A: K| < |G : A|, and in particular, if |A| > |G : A,
then K > 1.

3 Proof of Theorem 1.2

Letn > 10, s,t > 2and n—s—t > 1. Set R(po, p1, p2) = {p%, p}, 13, (pop1)*", (p1p2)* . (pop2)?,
[(pop1)*; p2], [po, (p1p2)*]} and define

n—s—t—1
H— { <p0,,01, P2 | R(Io()vpl?pQ)? [(P0;01)27 ;02]2 7>1 - n—s—todd
(pos 1 p2 | R(pos p1s p2), [(popr)?s (pr1p2)?]? 7 ), m—s—t even.

To prove Theorem 1.2, we only need to show that H is a string C-group of order 2" with
Schlafli type {2%,2"}. For convenience, write o(h) for the order of h in H.

Note that py commutes with (p1p2)* because [pg, (p1p2)*] = 1. Since (p1, p2) is a
dihedral group, we have (p1p2)” = (p1p2)?® = (p1p2)~t. Tt follows that ((pip2)?*) < H.
Similarly, ((pop1)*) < H as [(pop1)*, po] = 1.

Let Ly = (po, p1.p2 | P&, 03,03, (pop1)?, (p1p2)*", (pop2)?). Clearly, py commutes with
both p; and py in Ly, and hence [pg, (p1p2)?] = 1. It is easy to see that the generators

P0, P1, p2 in Ly satisfy all relations in H. This implies that Ly is a homomorphic image of
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H. By Proposition 2.2, p;p; has order 2¢ in Lo, and hence has order 2¢ in H. It follows
that [H| = o((p1p2)*) - [H/{(p1p2)")] = 272 [H/((p1p2)")].

Let Ls = (po, p1,p2 | £5, p1, 03, (pop1)*’, (p1p2)?, (pop2)?). The element p, commutes
with both py and p; in Lz, and hence [(pop1)*, p2] = 1. Since pop2 = papo, Propo-
sition 2.5 implies [(pop1)?, p2] = [p1popr, p2] = [po, prpapa]™ = [po, (p1p2)?]?**. Hence
[(pop1)?, p2) = 1 in Lz. Therefore the generators py, p1, p2 in L3 satisfy all relations in H.
By Proposition 2.2, pgp; has order 2° in Lg, and hence has order 2° in H. It follows that
[H| =22 [H/{(pop1)")]-

To finish the proof of Theorem 1.2, we are left to prove that |H| = 2".

Case 1: s = 2. We distinguish two cases, namely the case where n — ¢ is odd and the
case where n — t is even.

n—t—3
Assume that n — t is odd. Then H = {(pg, p1,p2 | R(po, p1,p2), [(popl)z,pQ]Qit: ).
Since popa = papo, we have [(pop1)?, pa] = (prpoprp2)?. Tt follows that [(pop1)?, pal* 7 =
(p1pop1p2)? * . Note that (pop1)* = 1 and ((p1p2)*) < H. Thus [{tfl(p1p2)4> = Hy,

where Hy = (po, p1, p2 | p5, P1, 95, (por1)%, (prp2)%, (pop2)?. (p1poprp2)? * ). By Proposi-
tion 2.4, |[Hy| = 8-(2"F7)2 = 202 and hence | H| = 202 |H/{(p1p2)*)| = 22| H, | = 2".

n—t
Assume that n—t is even. Then H = (pq, p1, p2 | R(po, p1, p2), [(pop1)?, (p1p2)?]* ° >2.
A similar argument as above gives rise to H/{(p1p2)*) = Hy = {(po, p1, p2 | p2, P35 P53, (pop1)?
n—t—4
(p102)%, (pop2)?. [(pop1)?, (prp2)*]> 7). Noting (pop1)? = (pop1) ™ and (p1p2)* = (p1p2)

n—t—4

n 4
in Ha, we have [(pop1)*, (p1p2)"]* = = (((pop1)*(p1p2)")*)* = = (((pop1p2)*)?)* = =
(poprp2)** " becanse popy = papo, and so Hy = {po. pr.p2 | 3. 07, 93, (pop1)”, (prp2)®

n—t—2

(op2)?, (poprp2)*® 7). By Proposition 2.4, [Hy| = 16 (2"%7)? = 272, and |H| =
272 [H/{(p1p2)*)| = 272 - | Ho| = 2.
Case 2: s > 2.

Assume that n —t — s is odd. Then H = {po, p1, p2 | R(po, p1, p2), [(pgpl)z,pg]t
It follows H/((pop1)*) = H, where Hy = {po, p1, 2 | ps, P1, P3: (Pop1)? . (p1p2)* , (pop2)?,

n—s+2)—t—3

[00: (p192)"], [(pop1)?, po]? ). By Case 1, |[Hs| = 2"~**?, and therefore |H| =272
[H/{(pop1)*)| = 2°72 - | H;| = 2".

Assume that n—t—siseven. Then H/{(pop1)*) = Hy, where Hy = {po, p1, p2 | p2, p3, p3,

)
-2

2n7t7571 >

(n—s+2)—t—

(pop1) . (p1p2)?, (pop2)?, [pos (prp2)Y]. [(pop1)?, (prp2)?)?  ° ). Then |Hy| = 2n+2
from Case 1, and therefore |[H| = 2572 - |Hy| = 2". O

Corollary 3.1 The pairs (Gla {p07 P1, /)2}); (G37 {p07 P1, P2}) and <G57 {va P1, p2})7 deﬁned
in Theorem 1.3, are string C-groups of order 2™ with Schlifli type {4,273}, {4,2"*} and
{4,275}, respectively.

Proof. By taking (s,t) = (2,n — 3),(2,n — 4),(2,n — 5) in the proof of Theorem 1.2,
we know that (H;, {po, p1,p2}) for i =1, 3,5 are string C-groups of order 2" with Schlafli
type {4,273}, {4,2"*} and {4, 2"} respectively, where



)2, (pop2)?, [pos (p1p2)*] [(pop1r)?, p2l),
L (p12)%" ", (pop2)?, [po, (p1p2)*], [(Pop1)?, (p1p2)?]),
) (pop2)?, [po, (prp2)]: [po, (p1p2)?]?).

Hy = {po, p1,p2 | P%. 3, 3, (pop1)
Hs = (po, p1,p2 | P&, P3, P3, (pop1)
Hs = (po, p1,p2 | P33, 03, (pop1)
Since popa = papo and ((pop1)*)” = ((pop1)*)”* = (pop1)?, by Proposition 2.5 we have
the following identities in all H; and G; for i = 1,3, 5:
[(pop1)?, p2] = [p1pop1s p2] = [po, prp2p1]Pt = [po, (p1p2)?]P>P1,
(00, (p192)*] = [P0, (p192)?][p0s (p192)2] 172 = [(pop1)?, p2]P2#2 [(pop1)?, po)P1P2)
[(pop1)?, (p1p2)?] = [(pop1)?, p2)[(popr)?, prp2p1]P? = [(popr)?, p2]l(pop1)?, p2]PrP2.
Clearly, Hs; = G5. In Gy, [po, (p1p2)?] = [(Pop1)2,,02]’”’32[(0091)2,Pz](p1p2)3 = 1 because

[(pop1)?,p2) = 1. Thus, H, = G;. To prove Hy = G3, we only need to show that
[po, (p1p2)*] = 1 in G3. Noting that [(pop1)?, (p1p2)?] = 1 in G3, we have

3
’

[(pop1)?, p2)P* [(pop1)?, p2) = [po, (p1p2)?172[(popr)?, p2) = [po, (p2p1)?][(Pop1)?, P2

= PO(P1P2)2P0(P201)2{(0001)2}P2(Popl)2p2 = Po{(ﬂopl)Q}(plp2)2/70(ﬂ201)2/)2(/)0/?1)202
= P1PoP1 (/)1/)2)2/)0{/?2(/71/)2)2}(/?0/)1)2/)2 = P1PopP1 (/)1/)2)2/?0/?2(/30/)1)2(/?1/?2)2/)2

= P1P0P1P1P2P1P2P0P2P0P1P0P1L1P2P1P2P2 = 1,

that is, [(pop1)?, p2]” = [(pop1)?, p2] ™. On the other hand, since 1 = [(pop1)?, p2p2] =
[(pop1)?, p2][(pop1)?, pa]?? and 1 = [(pop1)?, (p1p2)?] = [(pop1)?, p2ll(pop1)?: p2]f172, we have
[(pop1)?, p2]”* = ([(pop1)?, p2]?) ™ = [(pop1)?, p2] - Tt follows that [(pop1)? p2]® = 1 and
KPOPI; 7[)2%[)1;2 = [(pop1)*, p2) ", and 50 [po, (p192)*] = [(popr)*, p2)f*#[(pop)*, pa) 199" =

2
pop1)?, p2] 72 = 1, as required. O

4 Proof of Theorem 1.3

To prove Theorem 1.3, we need the following lemmas.

Lemma 4.1 Let (G, {po, p1,p2}) be a string C-group of type {2°,2'} with 2 < s < t. Let
|G| = 2" and 2t > n— 1. Then N = ((plpg)?i) <G and (G,{po, p1,P2}) is a string
C-group of type {2%,271} and order 2", where G = G/N and T = xN for any x € G.

Proof. Let H = (pop1, p1p2) be the rotation subgroup of G. Then |G : H| < 2. Since
{po, p1, p2} is a minimal generating set of G, Theorem 2.7 (2) implies d(G) = 3, and since
H is generated by two elements, we have |H| = 2"~

Let M = (p1p2). Then |M|= 2" and |M|? > |H| as 2t > n — 1. Then Proposition 2.9
implies that Corey(M) > 1. Since M is cyclic and |N| = 2, N is characteristic in
Corey (M), and so Corey (M) < H implies N < H. Noting that N lies in the center of the
dihedral group (p1, p2), we have N = N, and hence N <G because G = (H, p1). Clearly,
G=2"1

Since t > 2, we have N < U;(G) = (¢*|g € G), and by Theorem 2.7, N < ®(G) and
G/®(G) 2 Z3. Thus, G/®(G) has rank 3, and since G/®(G) = (G/N)/(®(G)/N), G/N
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has rank 3, implying that {pg, p1, P2} is a minimal generating set of G. It follows that
70, p1, P2 and pops are involutions. To prove that G has the intersection property, by
Proposition 2.1 we only need to show (pg, p1) N (o1, p2) = (p1).

Suppose (pg, p1) N (p1,p2) # (p1). Then there exist z1 € (py, p1) and xy € <p1,p2)
such that 77 = 73 € (p1), which 1mphes x1 & (p1). Since (po, p1) N {p1,p2) = (p1), W
have x1 # x9 and T = :Cg(ppo)Q as T1 = T3, which is impossible because otherw1se
w1 = 22(p1p2)” € (po, pr) N {p1, p2) = (p1). Thus, (pg, p1) N (p1, pa) = (pr), as required.

To finish the proof, we are left to show pgp; and pyp; have order 2° and 27! respectively.
Since (G, {po, p1, p2}) has type {2 2'}, pop1 and p1ps have order 2% and 2' respectively.
Since N < {p1p2) and |N| = 2, pips has order 2! and pyp; has order 2° or 2571,

Suppose popr has order 2°71. Then (pop1)* 27 = (p1p2)* " € (po, p1) N (pl,p2> (p1),
and hence (p1p2)? " = p1 because p1p2 has order 2¢. Tt follows that (p1p2)? = py and
(p1p2)? 2 =1, a contradiction. Thus, pgpr has order 2°. This completes the proof. O

Lemma 4.2 Let G = (py, p1, p2 | p5, 03, P53+ (Pop2)?). Then G' = ([po, p1], [p1, p2). [po, p1]7?) .

Proof. Since pypa = papo, Proposition 2.6 implies G’ = ([po, p1]?, [p2, p1]"] 9,k € G).
Since (po, p1) and (py, po) are dihedral groups, we have [pg, p1]?° = ((pop1)*)” = (pop1) >
00, 1™, [P0, pr]?* = [po, pA] " [p1; 2] = [p1, p2] ™ and [p1, pa]* = [p1, p2] ™"

Set L = ([po, p1l, [p1, p2], [po, p1]72). Since ([po, p1]*)* = ([po, p1]*)~", ([po, p1]**)*
[po, p1] and ([po, p1]72)?* = prp2poprpoprpzp1 = [p1. pallp1, pol?[p2, p1], we have [po, p1]?

L for any g € G. Since [p1,p2]” = pop1p2p1P200 = PoP1P0P1L1P2L1P2P201P001P0P2
[0, p1llpr, p2llp1, pol?2, we have [pr, po]* € L for any h € G. It follows that G/ < L, and

hence G' = L

Im I

O

Proof of Theorem 1.3(1): For the sufficiency, we need to show that both G; and G
are string C-groups of order 2", where n > 10 and

Gl = <P0, P1, P2 ’ P%7 p%v P%, (P0P1)22, (p1p2)2"—37 (/00/)2)2’ [(p0p1>27 p2]>7
G2 = (po,p1.p2 | 95,23, 03, (pop1)”", (p1p2)*" " (pop2)?, [(pop1)%, p2) (p1p2)®" ).

By Corollary 3.1, G; is a string C-group of order 2" and we are only left with Gj.
However, to explain the method clearly, we prove the above fact again for G using a
permutation representation graph that is simple and easy to understand. Let G = Gy or
Go. For convenience, we write o(g) for the order of g in G. We first prove the following
claim.

Claim: |G| < 2™,

Note that G/G’ is abelian and is generated by three involutions. Thus |G/G’| < 23.
To prove the claim, it suffices to show |G'| < 2773,

For G = Gy, we have [(pop1)? pa] = 1 and popa = papo, which implies [po, p1]P* =
[0, p1][p1, pollpo, p1]P2 = [po, p1]l(pop1)?. p2] = [po. p1]. Since [po, p1]7° = [po, p1]** = [po, p1] ™"
we have ([po, p1]) < G, and by Lemma 4.2, we have G' = ([po, p1], [p1, p2], [po, p1]7?) =
(oo i) [p1.pal) = ([0, p])[pr, pal)- This implies that 1G] < [0, p)l{[or, pa)]
o((pop1)?)o((p1p2)?) < 2277 = 2773 as required.



For G = G5, we have [(popl)Z,,Oz](le)Th4 = 1 and pops = p2po, which implies

[0, p1]* = [po, prl[(pop1)?, 2] :nﬂgoyﬂl](mpz)_wél € (po, pils [p1, p2]) and [p1, po]™ =
pil(popr)?s palp2prpz = pi(p1p2) 2" pi(pip2)? = (p1p2)* (p1p2)? € ([p1, pal). Tt follows
that ([p1, p2]) < G because [p1, p2]?* = [p1,p2)?? = [p1,p2]7", and by Lemma 4.2, G' =
([po, p1l, [p1, p2], [po, p1]72) = ([po, pal; [p1, p2l) = ([po, pr]){[p1, p2]). In particular, |G'| <

[{[po, D) [K[p1, p21)| = 0((pop1)*)ol(prp2)?) < 22771 = 2773, as required.
Now we are ready to finish the sufficiency proof by considering two cases. We use

another method than the quotient method, based on permutation representation graphs.
We give the details for G; as they are simpler than those of G5 and might help the reader
understand the case Gs.

Case 1: G =G4

The key point is to construct a permutation group A of order at least 2" on a set 2
that is an epimorphic image of GG, that is, A has three generators, say a, b, ¢, satisfying
the same relations as do pg, p1, p2. The permutation representation graph has vertex set
Q) with a-, b- and c-edges. Recall that an z-edge (x=a, b or ¢) connects two points in €2 if
and only if x interchanges them. It is easy to have such graphs when n is small by taking
2 as the set of right cosets of the subgroup (pg, p2) in G, where py, p1 and py produce the
a-, b- and c-edges, respectively. We give in Figure 1 a permutation representation graph
for GG; and explain below how it is constructed.

1 2 3 4 t3 t2 t-1 t t+1t4+2t4+3t4+426-326-22t-1 2¢
oj B %IIOEI% | %IIO
¢! —0 ¢+ s O— —O— —0 -+« O—O—O—0
2t+1 2t+4 3t-3 3t 3t+1 3t+4 4t-3 4t

Figure 1: A permutation representation graph corresponding to G,

Set t = 2% and write ¥, = jt +4i+k where 0 <i<t-10<j<land1 <k <4

Then a, b, ¢ are permutations on the set {1,2,---,2"2}:
1,9 o\/.3 . T71,0 9\ /o1 2\ (53 cAN(i3 s
a =TT (@), 7). b =TLo (o, i) (it i) (i, i) (iF, i),
71,9 . 9. -2 . . . .
¢ = (0p)(0)((§ = D)5 — 1)) - TTZy (5, i) (7. 37) - TTizg (igs (0 + 1)g) (i, (i + 1)7).

Here, (i 4+ 1)% = jt +4(i +1) 4+ k for 0 <i < L — 2. Note that 1-cycles are also given
in the product of distinct cycles of ¢ and this would be helpful to compute conjugations of

some elements by c. It is easy to see that a is fixed under conjugacy of ¢, that is, a® = a.
It follows (ac)? = 1. We further have

1,94 914 9v,3 .4 .3 .

ab = i4:0 (2(1)71372%7Z?)@%J?J?,ﬂ),

be = H%:0(1+tz‘,3+tz’,--- =1 ti b4 tit— 240, 2+ L),
<—1,.1 . 9 . Q. A .

(ab)Z = =0 (Z[l),Z%)(Z%,Z%)(ZS,Z%)(Z%,’L?).

Let A = (a,b,c). Clearly, a®> = b* = ¢ = 1, (ab)* = 1 and (be)?"* = 1. Furthermore,
(ab)? is fixed under conjugacy of ¢, that is, ((ab)?)¢ = (ab)?, and hence [(ab)? ] = 1.



Clearly, A is transitive on {1,2,---,2"?} and the stabilizer A; has order at least 4
because a,c € A;. This implies that A is a permutation group of order at least 2" and
its generators a, b, ¢ satisfy the same relations as do pg, p1,p2 in G. Then there is an
epimorphism ¢ : G — A such that pi = a, p? = b and p§ = c. Since |A] > 2" and
|G| < 2", ¢ is an isomorphism, implying |G| = 2".

The generators po, p1, p2 in Ly := (po, pr, p2 | P8, 3, 3, (Pop1)*, (p1p2)?, (pop2)?) satisty
all relations in G. This implies that the map: py — po, p1 — p1, p2 — p2, induces a
homomorphism from G to Ly. By Proposition 2.2, o(pgp1) = 4 in L; and hence o(pop;) = 4
in G, and by Proposition 2.3, (G, {po, p1, p2}) is a string C-group.

Case 2: GG = (,.

As in Case 1, we give in Figure 2 a permutation representation graph for Gy. Note
that, as in Case 1, bc consists of two paths of length 2t with alternating labels of b and c,
where t = 2", and here all of the real complexity lies in the definition of a.

Figure 2: A permutation representation graph corresponding to Go

Write ¢i = & —i—1for 0 <i < £—1,4% = jt+8i+k and ci¥, = jt + 8ci + k for
0<j<3and1<k<8 Notethat 0 <i< {—1ifand onlyif 0 <eci <Lt —1. Then

a,b, ¢ are permutations on the set {1,2,--- 2" 2}:

o 9N, N9 T N8 BN B N3 Bl -
a= 0 (Z?a Z%t)@%? Clgt)@gta CZZ)(ZSa th)(zf’, ét)(%%a ngt)(lgtv CZ?)@S? th)

(ié, Ci?)(f?)a cz’f)(iét, Cigt)(igt’ cigt),
21,0 9N/ A NgeE BT s
b= H?:o [T (Zjl'ﬁ Z?t)(z?ta Z?t)(zg?t? Z?t)(Z;'tv Z?t): t
1 3 s—1,.9 . 4 6 -
€= Hit:0(06+2ti)((§ - 1)§+2ti)((% - 1)8+2ti70t1+2ti) szo( o (Z?tal?t)(lﬁtﬂ?t)(lgtﬂ;t)‘
Lo o .
o (5 i+ 1)j,)-
Here, (i +1)j, = jt +8(i + 1) + 1 for 0 <i < £ — 2. It is easy to see that a is fixed under
conjugacy of ¢, that is, a¢ = a. It follows (ac)* = 1.
Let @« = a,b, or c. Then « is an involution. Recall that ¢i = £ —4 — 1. Since

8
0<i< % —1lifand only if 0 < ¢i < é — 1, it is easy to see that if a interchanges zfllt and
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then o also 1nterchanges cz;C . and ¢i®2,, and if o interchanges zf , and czk2 then o also

J2t 72 t’
interchanges czklt and zj 2.~ These facts are very helpful for the following computatlons.
L1 0 9 1 ansed o2 8 TNl 2 8 TN(eT 8 T
ab = 31‘8:0 5(27:5l ,31?,%5, z%g)(zé, zgiczgé, cz%)(;il%, zgt,czz, czg)(zé,zgt,zg%, i8)
(1, €y, 3, iy ) (1, €t s Cligg U34) (1, T3y Cliag, iy ) (i, €l s U3y, Clay ),
be = TLio(1 4 2ti,3 + 2ti, - 2t — 1+ 23, 2t + 2t0,2t — 2+ 2ti,--- , 2 + 2ti),
1,4 . 1 - 9 . g ra
(ab)? = 31'8:% (iy ,32%06(@(1), ?gt)g(l?v §Z3t6)(lg7zgt)(lt 74Z2t)5(7’(2)7 glgt)$1Z7§Z§tg(zgv lgt)
) (i, 330 (37, i) (35, ciy) (37, 15,) (i, d3) (3f, €i3) (30, cing ) (37,73,
(be)?"™" = TIZo(l 44,2t —i)(2t + 1 +14,4t — ).

Let A = (a,b,c). Clearly, (ab)* = 1 and (bc)*" " = 1 Since ci = 5 t—i—1,0<i<t-2
if and only if 1 < ¢ < % —1, and smce c interchanges % i3, and (i + 1)}, it also interchanges
ciy, and c(i — 1)j,, where c(z —1)=c—-(G—-1)—1. Thus,

gt

Jto 8
-1 8 9 TN
c(ab)’c = 38 ) (1(1)7323,5)6(18,21%1&)3(2%,CZ%)@?J%Q(Z%ZZ t)5(207?2t)4(11,?7Ezgts)(zlt?72;t)
(if,43,) (85, ci8,) (08, cid ) (i, i) (i, i3,) (ig, ciy) (i, cig) (i, i3,)-
It is clear that (bc)2" " interchanges if and ¢i)™* as if + ¢i)™* = 2t + 1 (note that

1 <if <tandt+1 < ¢id™* < 2t), and similarly (be)*" " interchanges i, and cij; *.
Then it is easy to check [(ab)?, ] = (ab)?c(ab)?c = (be)?" . Tt follows that the generators
a,b, c of A satisfy the same relations as do pg, p1, p2 in GG, and hence A is isomorphic to G
with order 2". Clearly, A is transitive and A; has order at least 4 because a,c € A;. It
follows that |A| > 2™ and hence |G| = 2". On the other hand, the generators pg, p1, p2 in
Ly := {po, p1, p2 | P2, 0%, 03, (pop1)*, (p1p2)?, (pop2)?) (defined in Proposition 2.2) satisfy all
relations in G. This implies that o(pop ) =4 in G, and by Proposition 2.3, (G, {po, p1, p2})
is a string C-group.

Now we prove the necessity. Let (G,{po, p1,p2}) be a string C-group of rank three
with type {4,2" 3} and |G| = 2". Then each of py, p; and ps has order 2, and we further
have o(pop1) = 4, o(pop2) = 2 and o(p1pz) = 2"73. To finish the proof, we aim to show
that G = G, or Gy. Since both G| and G4 are C-groups of order 2" of type {4,273}, it
suffices to show that, in G, [(pop1)% p2] = 1 or [(pop1)?, p2)(p1p2)?" " = 1, which will be
done by induction on n. This can easily be checked to be true for n = 10 by using the
computational algebra package MAGMA [2].

Assume n > 11. Take N = ((p1p2)*" ). By Lemma 4.1, we have N < G and (G =
G /N, {po. p1, pg}) (with p; = Np;) is a string C-group of rank three of type {4,274}
Since |G| = 27!, by induction hypothesis we may assume G = G or Gy, where

n—4

e -
G1 = (po, p1, Pz | o2, 12, P2, (pop1)*, (pip2)*" . (pop2)?. [(Pop1)?, P2)),

=i S o o o _ \92 n—4 - n—>5
G2 = (po,p1, Pz | o*, P12, P22, (pop1)? , (pip2)?" , (Pop2)?, [(Popr)?, P2 (Pip2)*" ).

Suppose G = Go. Since N = {((p1p2)*" ") = Zy, we have [(pop1)2, pol(prp2)? " = 1 or
n—4 . . n—>5 .

(p1p2)*" ", implying [(pop1)?, pa] = (p1p2)”*" ", where § = 1 or —1. Since ((pop1)*)” =

(pop1)™ = (popr)* and pops = papo, we have [(pop1)?, pa]? = [(pop1)®, pl, and hence

[

Po (/)1/)2) "] =1 By Proposition 2.5, 1 = [(pop1)*, pa] = [(pop1)*  p2) P [(popi ) Pz}
((prp2)**" )(popl) (p1p2)’®" " = (p1p2)”®" ", which is impossible because o(p1ps) = 2"~
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Thus, G = G;. Since N = ((p1p2)?" ") = Zy, we have [(pop1)?, p2] = 1 or (pip2)?" .
For the latter, [(pop1)?, po](pip2)®" = (p1p2)?" " = 1. It follows that G = Gy or Go. O

Proof of Theorem 1.3(2): For the sufficiency, we need to show that both G3 and G4
are string C-group of order 2", where n > 10 and

Gs = {po,p1,p2 | P2 PY. P3 (pom)zz, (mpz)z”j, (pop2)?, [(pop1)?, (p1p2)?]),
Gi={po,p1,p2 | P§: P1: 03 (op1)* . (prp2)*" , (por2)?, [(pop1)?, (prp2)?](p1p2)
By Corollary 3.1, we only need to show that G, is a string C-group.
n—>5 .
Let G = G4 Then [(pop1)?, (p1p2)?] = (p1p2)®" . Noting [(pop1)?, (p1p2)*(p1p2)?] =

[(pop)?, (prp2)?][(pop1)?, (prp2)?) 172" = (p1p2)* " = 1, we have [(pop1)?, (p1p2)*" ] =
1, which implies [p1, ((p1p2)?" )™] = 1 as [p1, (p1p2)>" ] = 1. Thus, py fixes K =
((p1p2)?" ", ((p1p2)? ")), Clearly, K» = K” = K, and so K < G. The three gen-
erators poK, p1 K, po K in G/K satisfy the same relations as pg, p1, p2 in G3. In fact,
(p1 K p:K)¥ ™ = K, and hence |G/K| < 2" (here we need to check that |Gs| = 2° for
n = 9 and this can be done using MAGMA). Furthermore, [p1ps, ((p1p2)?" ")™] = 1 as
[p2, ((p1p2)?" )] = 1. Tt follows that |K| < 4 and |G| < 271,

Suppose |G| = 2" Then |G/K| = 2"! and |K| = 4. Tt follows that o(p1p.K) =
2"% in G/K and hence o(p;ps) = 2" % in G. Note that 2(n —4) > n as n > 10,
by Proposition 2.9, Coreg({p1p2)) > 1, so ((p1p2)?" ") < G. It follows that |K| = 2, a
contradiction. Thus |G| < 2™

We give in Figure 3 a permutation representation graph of G. In this case, bc consists
of two paths of length 2¢ and a circle of length 4t with alternating labels b and ¢, where
t=2"""

21’1,75).

12 2 4 5 6 7 8 t7 t6 t5t4 3 t2 t1 t t+1t+2 t+3 t+4 t+5 t+6t+7 148267 2t-6 25 24 2t-3 212 2t-1 2t

blc|b «¢ b blc| b ¢l b ¢ bl|c £ bl b blcl 6 ¢ blcl b
b b

i
O
i

~b‘1£_*\
2t+1 2t+2 1 4t
c c
At+[1 4t+2 16

D
blc|b ¢ B b c b ¢ b c b ﬁvbj\b
blc| b ¢ b bl ¢| b ¢ ¢t b ¢ b|c c b b b [e] c blclb

o . \b\z\ o

6t+16t+2 8t-1 8t

R

I

Figure 3: A permutation representation graph corresponding to G4

Write i?t = jt+8i+k and cz';?t :jt+8(§—i—1)+kfor0§i§ g—l, 0<j<T7and
1 < k < 8. The permutations a,b, ¢ on the set {1,2,---,2" 2} are as follows:
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1 . .
a= 48 5(1(2), 25%7:)(1%, Z%)(z%, Z%tg(lgta Z7t)§2 ,th)(éf, zgi)(zu, zg%)(zgg z?;t)4
(i3, ci2,) (i3, cin,) (15, cidy) (i34, cisy) (igy, czt)(z6t, cit) (i4,, i, ) (i3, ciz))

(ig, izﬁlt) (i?» igt) (igt’ igt) (igta th) (ZO’ Z4t) (Zt ) Z5 )(ZQtv Z6t) (Z3t> Z?t)
b= ]._[] OH (jt7 ]t)(i?ﬁ ?t)(?t? ?t)(z’;‘t?zgt)v
c= (00)(06t)(( —DI((§ = 1503, 05,)((§ — 1)§ta (£ = D8) - TIo((& — 13,0800

t
'Hj':o( 18 0 ( ?t?zgt)(i?ﬁZ?t)(Z?t7Z;t) : z 0 ( Lits (i + 1) t)-
Here, (i 4+ 1)% = jt +8(i + 1) 4+ k for 0 < i < £ — 2. Tt is easy to see that ¢ fixes a under
conjugacy, that is, a = a. It follows that (ac)?> = 1. Furthermore,

—1
_ s 2 1 2Nl 52 1 2\l 2 sl 20N\l 22 1 52
ab = (ZOv 00s B> 15¢) (g 5 g 5 T3¢, 93¢) (Lag T4 G6es Te) (G500 U515 G7, 71)

34 6 5N\ 4 6 BN(:3 4 6 o5 N\(3 4 6 .5
(ZOéZQtJ ZZStéCth) (i 513157 ZZQtéCth) (22%7 205 Zznéczag) (ng Ly ZZGtéCZQ§)
(cisy, Cigy, i, 15, ) (Cisy, Cigy, G0, iy ) (Cigys Cily, G5y, 37 ) (City, Cigy, T4y, 70)

78 2T 8\(T 38 T 8\(sT 8 T 8N\(;T 8 7T 8
(2071416’Z4t720)(2tvz5t’15t72t)(z2t726t716t’th)(ZBtvlﬁaZ7t7z3t)7

be = [li_o(1 + 6ti,3 + 6ti,--- , 2t — 1 + 6ti, 2t + 6ti, 2t — 2 + 6ti, - - - , 2 + 6ti)
(2t + 1+ 200, 2t + 3+ 26, -+ 4t — 1+ 2ti, 6t — 2ti, 6t — 2 — 24, - -+, 4t + 2 — 2ti),
E—1,0 N Nl sl el 0 .
(ab)2 = 0 (Z(l)vl%t)(ztlvZét)(z}ltvZét)(létvZ%t)(zgvZ%t)(%%vZ%t)(%tv%t)(lgtﬂ%t)

(i), ci) (37, i) (15, €i%) (15, cigy) (75, cigy) (if, iy ) (i, i%y) (18, cigy)
(igs ci5,) (i, cidy) (i3, €i%,) (15, cigy) (30, cigy) (37, cigy) (15, city) (i34, cigy)
(66, i) (i 15) (88 i6y) (13, 37 (35, 15,) (37 35, (15 16,) (85, 35,),
be)>" ™ = [IZo(+1, 2t—i)(6t+1+i st —i) - [125, 1(2t+1+z 6t — i),
For 0 <i < §{ —2, c interchanges 45, and (i + 1)}, and also ¢i§, and ¢(i — 1)],. Thus,
c(ab)’c = 5;01 (i 1) (i 5 154) (g, 30 ) (i 38,) (08, i3y ) (30, ci5,) (i, cidy ) (if , cify)
(14> cigy) (g, €i3,) (i3, cify) (i34, ci3y) (35, 150) (37 3 (8 13) (i3, 3,)
(107 ciy) (i, cig ) (if, cife) (i, cing) iy, €idy) (i cigy) (i3, €idy) (12, cily)
( i) (if, Z5t)(lgt7 igt)(igt’ igt)(ig, i) (if, igt)(i(git’ izglt)(igt’ igt)v

c(ab)?ch = H (107 W0, iy cily) (cif s cidy, g, 13) (i, g, Ci%y, ity ) (Ciyy, cidy, i8y,Gy)

(ig ZO» czgt, cif ) (City, €7y 154, 16) (14 Tag, Cisy, Cige) (Cigy, i3y, 1y, 144)
(i, 3% CZt , cidy) (i}, cidy, 10, 13,) (i34, g, €Sy, €7 ) (cify, cif, 15, 70)
(i Gt €18y, €i,) (Ci3y, €Ty, 19, 184 (14, Ty, iy, cidy) (cidy, Ciét’ UGt 15 )-

Let A = (a,b,c). It is clear that (bc)? 2 interchanges i) and ciy} 7/ for each 1 < j <
8 because i}, +czg T =2t +1 (note that 1 < zg) <t and t+1 < cij”’ < 2t), and
similarly (be)?" " also interchanges i}, and cz5t - , 1%, and ciy;?, and zﬁt and cz7t 7. Thus,
[c(ab)?c,b] = (c(ab)?ch)®> = (be)?" ", and hence [(ab)?, cbe] = (be)*" " as [(be)?" ", ¢] = 1.
Since [(ab)?,b] = 1, Proposition 2.5 implies that [(ab)?, (bc)?] = [(ab)Q,cbc][(ab)Q,b]d’C =
(bc)2n75. It follows that the generators a, b, ¢ of A satisfy the same relations as do pg, p1, p2
in GG, and hence A is isomorphic to G with order 2".

Again let L = (po, p1, p2 | 05, £T, 03, (pop1)*, (p1p2)?, (pop2)?). The generators po, p1, po
in L, satisfy all relations in G. This means that o(pgp1) = 4 in G, and by Proposition 2.3,
(G, {po, p1, p2}) is a string C-group.

To prove the necessity, let (G, {po, p1, p2}) be a string C-group of rank three with type
{4,2"%} and |G| = 2". Then o(py) = o(p1) = o(p2) = o(pop2) = 2, o(pop1) = 4 and
o(p1p2) = 2n=4  To finish the proof, we aim to show that G = G5 or G4. Since both
G'3 and G4 are C-groups of order 2" and of type {4,2" %}, it suffices to show that, in G,

L4t
i3
D
i3
L4t
)-
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gn—>5

[(pop1)?, (p1p2)?] = 1 or [(pop1)?, (p1p2)*](p1p2) = 1, which will be done by induction
on n. This is true for n = 10 by MAGMA.

Assume n > 11. Take N = ((p1p2)¥""). By Lemma 4.1, we have N < G and (G =
G/N,{po, p1, pg}) (with p; = Np;) is a string C-group of rank three of type {4,275}

Since |G| = 2", by induction hypothesis we may assume G = G5 or G4, where

n—>5

e
Gs = (po, p1.pz | o2, P12, p2%, (pop)? . (pip2)*" ", (Pop2)%, [(Popr)?, (P1p2)?]),

)
- - — B P  \92 e \9n—5 n—=6
G4 = (po, p1.pz | o2, P12 p2% (popn)? . (p1p2)*" ", (pop2)?, [(popr)?, (P1p2)* (pip2)?" ).

Suppose? = Gy. Since N = ((p1p2)?"") = Zy, we have [(6/)0/)1)2, (01p2)2(p1p2)*" " =1
r (pip2)®" ", which implies [(pop1)?, (p1p2)?] = (p1p2)**" ", where § = 1 or —1. By
Proposition 2.5, [(pop1)?, (p1p2)"] = [(pop1)?, (prp2)*)[(pop1)?, (p1p2)? ]p1p2 = (p1p2)"?",
and [(pop1)?, (p1p2)®] = (p1p2)**" " = 1, implying [(P0P1)27(Plp2) "] = 1. Thus, 1 =

[(pop1)*, (P1ﬁ2) ] = [(pop1)? (p192)?) " [(popn)?, (prp2)” ] ((prpa)*2"" ) ror)® (0102)52 "
(p1p2) ", which is impossible because O(ppo) =2n—1

Thus, G = Gs. In this case, [(popl) (p1p2)?] = 1 or (p1p2)¥ . For the latter,
(pop)2 (o1p2) (prpa)® " = (prpa)? " = 1. Tt follows that G = Gy or Gi. O

Proof of Theorem 1. 3(3) Let n > 10 and let G = G5, Gg, G7 or Gg, where

Gs = (po, p1.p2 | P& P}, P3, (Pom) ,(p1p2)?" ", (pop2)?, [po, (p1p2)?12, [po, (le) 1)
Ge = (po,p1,p2 | P07P1>P2a(/)0p1) L (p1p2)? " (pop2)?, po, (p1p2) 12 (p1p2)?" ", [P0, (p1p2) %)),
G7 = {(po,p1,p2 | Po,mapza(ﬂopl) (P102)2n " (pop2)2, [P0, (prp2) 2, [P0, (pro2) ) (p1p2)?" "),
Gs = (po,p1,p2 | Po’PpPQa(P ) (PlPQ) B (0002)2,

]2

[0, (p1p2)? (0102)2n % [po. (p1p2) )] (p1p2)*" ")

By Corollary 3.1, we only need to show that Gg, G7 and Gy are string C-groups.

In all cases, [po, (p1p2)'] = 1 or (pip2)?" " It follows from Proposition 2.5 that

00, (p102)%] = [po, (prp2)*]([po. (p1p2)])(P#2)" = 1. Noting that ((p1p2)®)” = (p1p2)™* =

((p1p2)®)P2, we have K = {((p1p2)®) < G. Clearly, |K| < 2778 and the three generators
poK, ;1 K, poK in G/K satisfy the same relations as pg, p1, p2 in G5 when n = 8. By
MAGMA, |G5| = 2% when n = 8, and hence |G| = |G : K| - |K| < 2"

Case 1: G = Gg.

We construct a permutation representation graph of G, and in this graph, bc consists
four paths of length 2¢ and two circles of length 4¢ with alternating labels of b and ¢, where
t = 2776 We omit the drawing of the graph here because it is quite big.

Write i, = jt+8i+k and cif, = jt+8(k —i—1)+k, where 0 <i <t —1,1<k <8,
0 < j < 15. The permutations a, b, c on the set {1,2,---,2""2?} are as follows:

(i3

L1
a= 0 (1(2), Z2t)(lt ) Z3t

=0 ) wl )(Z8t’Z%lt)(.%%ai%4t)(i%3t7i%St)(igtvCi;t)(igt’mgt)
(i3, cila,) (20p, Cigy ) (
9t> Cl13¢)\P1ot> Clgt 3
©

+) (Zt ) Z5t) (Zgw Z‘Zt) (igt’ iZQt) (iIOt’ iht) (Z‘Zu? 2'{50
( £ int)( U12ts 1?415)( ':{’3# i:{%t)(igt’ Cigt)(igt’ Cigt)
(thv Cz?zat)(zlow cigy) 107 i) (if, Z5t)(zgt7 th)(igtv 7:(13275)(7;(13075’ i?4t>(i?1ta 7;?515)
(iét l&t)(zwv igt)(lm CZ15t it 01?415)( 1ots Clnt)(i%t’ Ci?Ot)(ith’ Cii):zt)(i%tv Ci?Qt)
(i, 7, cila)
(i3

f@\ *
oow,;fq

1
7
3 :3\7:3 0
ZO’Z2t)(Ztvz3t)(Z4t’Z g

3 6

NG

N—
oo/\/-\ﬁ

L6t 28t8)(i§1f17 igt)g(loachst ¢ ’0111415 (22t702111t)(ig§7 Ci%ois)(iitécﬁl:?)tz(igtagizﬁt)l .
igg» Cigy ) (igy, Cigy) (7 10t7czl3t)(211t’0112t)( 1265 €i114) (81345 €i50¢) (11445 C115¢) (F1505 Ciar)
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b= ILII; o (il 2 (3,14 (03,18 (07, ).
c= Hz 0(08zt)(06t+8it>((§ DZvsi) ((§ = D% risie) (03 8irs Ok 18i) ((§ - DS ysit (8 = Dirsie)
T (5 = D Oleay) - TEZ (T (24 i3 (i 5064 47,) - TTEg (355, (i + 1D)L)-
Here, (i + 1)?,5 =jt+8(+1)+kfor0<i<£L—2 For0<i<%—2 cinterchanges i?t
and (i 4 1), and also ¢i$, and c(i — 1)j,. It is easy to see that a is fixed under conjugacy
by ¢, that is, a® = a. It follows that (ac)? = 1. Furthermore
t
ab =TIy (188, iby, i) 1 8. idy 8,) (. i 3,) iy, 8y, iy, i)
(iGt’ iﬁtv Cigtv Cigt)(isw Cigta Ci§2t7 i%lt)(iét’ Cigt’ i%ow Ci{&)(ihta Cizzn Cign th)
(hztv Cllw 0215t» 2%4t)(é%3t7 CiIOtv Ciaﬂw i%m)(iﬂt: Cizsw Ci%ta i%Qt)(i%&f? Cihw Ci?ow i%?;t)
(lg 07 Z4t7 Z4t) (l§7 ZZ, th? th) (ign igw igtv igt) (thv Cis%tv i?gw Ci%Ot)
(Zg’ Z2t7 CZ11t> 0215t)(i§a i%t? Ciffow Ci?u)(igtv ié» Ci(li5t’ Ci?lt)(igv z'?, Ci?zlt? Ci?Ot)
(lit Z7ta Z9t7 CZlSt)(ZStJ CZ?ta CZQt? CZ?Zt)(igtﬂ Cigtﬂ i?lt? igt)(igtv iit? Ci(fgtv igt)
(th let? Cth? ZGt)(ZIOtv CZStv Clgy, i) ((7ogs 1z Ci?a cis) (175, 11515 Cig, Ciit)
(4 ?4757 Y1215 CZStv cig) (i} Uists ZlBt? Clgm Clg)@gta Ci?zw Cigt? Cigt)(i%Otv Cigtv Cigtv Cigt)7

be = Tli_o(1 + 8ti,3+8ti,--- 2t — 1+ 8ti, 2t + 8ti, 2t — 2+ 8ti, - - , 2 + 8ti)
(2t 4+ 1+ 8ti,2t + 3+ 8ti, - , 4t — 1 + 8ti, 6t + 8ti, 6t — 2 + 8ti, - -+ , 4t + 2 + 8¢i)
(4t + 1 + 8ti, 4t + 3+ 8ti, -+ , 6t — 1 + 8ti, At + 8ti, 4t — 2+ 8ti, - -+ , 2t + 2 + 8ti)
(6t 4+ 1+ 8ti, 6t + 3+ 8ti,--- ,8 — 1 + 8ti, 8t + 8ti, 8 — 2+ 8ti, -+ - , 6t + 2 + 8ti),

()" " = TIZa(l+i,2t —i)(6t + 14,8t — i) (8¢ + 1+ 4,10t — i) (14t + 1 + i, 16t — 7)

H% Y2t + 14,6t —i)(10t + 1 4 i, 14t — i).
The above computations imply (ab)* = 1 and (be)*"" = 1. Furthermore,
t

(ab)? = 2‘8:_01 (Z'(l)v Z%t) (i, Zzlf,t) (izllt’ l%t) (isl)ta i%Ot) (i%m ci%)(iét, Cigt) (isl;t» Ci%t) (i%lt’ Cigt)
(.12t7 Ci§5t)(7;13t? ciit)(iht, Ci?lt)@ﬁn Ci?Ot)(iga iit)(z-?’ igt)(igtv igt)(igw ZEg:at)
(ZO’ Zzt)(zt ) Z3t)(i421t7 igt)(igtv i%Ot)(igta Ci;t)(i%n cigt)(igt, Ci{2t>(ﬁltv Cigt)
(ﬁzw 07’157&) (7‘1315? C"Lu) (i%4t7 CiI1t> (’5%519 CZZOt) (2'(7), iZt)(iZ? th) (igtv iét) (Zgw iISt)
(Zitv g )(Zﬁn Z?lt) (ig, Ci?lt) (zf, Ci?Ot) (i%tv Ciflit')t)(igtv ci?4t) (igtv Cigt) (i7t’ Ci(ljBt)
(th, CZ2t>('LlOt7 CZGt)(Z?Qtv Ciy )(Zl3t> ZO)(ZMtv CZ5t)(Zl5t’ C@4t)(23t> ZSt)(Z’Yt? Zth)
(i4» iQt) (164, 7114 (Zé, cifyy) (% ; CZlOt) (i3, CZ15t)(Z3tv CZ14t) (Z5t7 CZQt) (47, 011315)
(nga ngt)(ZIOtv ngt)(ﬁ%v ciy )(2131&7 20)(1147:7 CZ5t)(Zl5t’ 014 )(thv ZSt)(ZH? Zth)

(ig )

clab)’c = HS 1(107240(1%72%0(1%1&7Zflst)(zéta1%31‘,)(1%75701675)(@7“CZ5t) t?czllt (llotaczlf)t)
(Z%w CZl4t) (1%27:’ th) (ihta Ci?St) (i%sw 0151527:) (z%, th) (z?, Z3t) Z4t> Z?t) (h%t’ ZlOt)
(Z?ltv g )(Zﬁw Z%lt) (z%, ciLt) (i7, CiIOt) (i%tv Ci{5t>(i:2atv Czht) (thv Cth) (4%, CZISt)
(th, CZQt)( 210t Clgt)( %%v CZZ)( %3t,czg)( %4157 Clgt)(i%&ata Cizlt)(i;t»iﬁt)(igtvigt)
gzéa ig )(Zt ) 7’3t)(zit7 Z%t)(zgtv Z%Ot)(lgtv cz%)(zgt, Clgt)@gta Ci?zt)(ii)’lt: Cigt)
1
o
(ig

G

[N

Y12t fhm)( iﬁft’ 01(1140 (Z:ﬂta Cj?ué(i?m 7402'?0%) (igi igt)gi?’ igi) (iggv igt)gigtv é??:t)
L3¢5 )(27157 Z12t)5<Z0740213t5)(Zt47 0212%)(2227 CZSt)5(14t110215t)5(25t7502145115)(7'gt7 0511075)
Lot Cz5t)( 10t €02 ) (i1145 50) (131, €7 ) (1144, €i34) (17515 €834) (9345 B0y ) (484 1114)
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2 _ 5~ 8 8 ANl 1 8 8V(sl 1 -8 8\(s1 1 -8 -8
[(ab)*,c] = 11_01(Z07C;6t’C;t’zh‘l)(zt?szfit?CZE(;)’C’Ll7t)(z21t>z4t78cz5tvC823t)(lz3t7251t7Cz4té622t)8 .
(th, Z175t7 Cloy, 0214t>(229t7 Clist) 01857 214»:2(@10? 01111577 CZ%St? Zl%t)(z%ltv C@ow gzlzta i13¢)
(2(2)7 01175tv CZt ) Z14t>(lt ) 0214ta Clo, $15t%(22ta 2021157 015? 212$)(z3§, CZ2IOtv C7Z4t> Z%Bt)

(Z%t 3213t7 gl?m ZlOt)(; té cleté Cloy, Zl“;)»,(%é’ 13¢5 ‘631715’ ‘631915)(27157 §9t7 Clgyt) CZ%t)

(Zga Zlglt’ Cly, CZ15t)(1t 7321516’ Clyp, 0214%(@% ;12153 gl5ta ?115)(23? 113%, 024%, CZ%Ot)

(434> 15015 Clsw CZl3t)(Z5t7 1ts Cz2t7 Ciyar) (g, Clgy, Clay, igy) (i34, Cigy, Clgy, o)

4 5 5 A N(h A 5 BN A 5 5N A 5 h

(22, letv Cltg Z7t)5(lt ) Zitv Cl%a CZ?t?r,(ZQZ Lyt Z%tv CéSt)(Z%t’ 152 Cl4t’40@2t)5 _—
(28> 115t> iy Ci1ag) (1gy, i, Cigyr 11ag) (V00> COT145 CUT3p5 T1¢) (11145 Clllors Ciltars T131),

2 b 8 8 8 1 (sl .8 8 -1 ST 8 .1 18 8 1

[(ab)*,c]” = TLiio (2070115taCltaZ14t)(2tvczl4t’0107115t)(12taClntvc%tﬂl%)(%ta011015702415»11315)
(%t: 62713t7 0713t7 210t2> (gét: CZE%? ?igt’ﬁ”g (iét 77"5131&’ ??t? gigtg (Z%t >7i£1)t7 ?igtv Cigt)
(2(2)7 0226ta Czt7a Z7t)7(lt ) Zgw 02077 cz?t)7(7’2152’ L4t 525“ C$3t) (Z%tv 7’5t2> C7’4t’207’2t) - o
(154> 11515 Clys Ci1ag) (751> Ciinys Clgyy 114¢) (11015 C11gs Citzgs T12¢) (1145 Cilogs Ciiags 1131)
3 6 6 :3N(i3 3 6 6 \(:3 i3 6 6 N(:3 23 6 .6
(i, Cigy, cig, i) (47 iy Cly, Cipg) (i, Eaps Clsys Cligy) (i 15y, Cly, Cly )
3 .3 6 6 \(:3 .6 6 3 \/(:3 6 6 3 N\(:3 -6 6 .3
(Zit ) V15t 62951%7 625141&)(2491535215t75cz8t75214t)5121037 Clet5’ Chgtv ZIQZ)(Z}llt’ Czéow Céma i13¢)
(227 CZ14t7 cip, ciys,) (i, 15, Cip, CiTay ) (G, 1104, Cigy, €i114) (1345 11345 €y, CiTgy)
(O

4 .4 . .5 .5 .4 .5 .5 4 4 5 5 4
idps 110> Ci3gs C3e) (T51> 11145 Cling, CiToy) (Bgpy Cigys Clizy, Tgy) (G745 Cigy, Clgys T )

Let A = (a,b,c). Now, one may see that [(ab)?, c|** = [(ab)?, c]’. By Proposition 2.5,
[a, (bc)?] = [(ab)?, c]* and |a, (cb)?] = [(ab)?, c]’. Tt follows that [a, (bc)?] = [a, (cb)?] and
hence [ (be)!] = 1. For 1 < j < 8, it is clear that (bc)*" " interchanges i and cit_j as
i+ ciy 7 — =2t+1 (note that 1<) < t and t+1 < cz? 7 < 2t), and sunllarly (be)*" * also
mterchanges i3, and cz5t , 1, and cz3t 0 and cz7t zét and czgt i1, and cffgt , i, and
¢/, and i1, and ci5; . Thls implies (bc) ([(ab)z,c]b)2 = ([(ab) ,c]*)? = a, (be)?]?.
It follows that the generators a, b, c of A satisfy the same relations as do pg, p1, p2 in G,
and hence A is isomorphic to GG with order 2.

Again let Ly = (po, p1, p2 | 03, 3, P35 (popr)*s (prp2)?, (pop2)?). The generators po, p1, p2
in L; satisfy all relations in G. This means that o(pgp;) = 4 in G, and by Proposition 2.3,

(G,{po, p1, p2}) is a string C-group.
Case 2: G = G7.

We construct a permutation representation graph of GG, and in this graph, bc consists
one path of length 32¢ with alternating labels of ¢ and b, where t = 2", Again, the graph
is too big to be drawn in this paper.

Write i¥ = jt 4+ 16i + k, where 0 < i < £ —1,1 <k <16 and 0 < j < 1. The
permutations a, b, ¢ on the set {1,2,---,2"5} are as follows:

a= L1y (5. 3) (. 80) (65, 4T) (65, 803, i) id0. 110) (i1 i) B2 i)
t o

0
b= (05)(0:)((15

L—1
=18, (45 = DI Tmo (T (651 ) (00, 5 (154, 15) (85, 50 (037, 50
t
—72
(;1527 jt)( ]t? ]t) 1120 (}? (l—|— ]')jt))a
c= Hj:O 16 jt’ jt)( Jto jt)( gt ?t)(zjztvzgt)( ?bl}?)(zjt72}1%)(2;?7@]1'?)(131'?77’;?)'

Here, (i+1), = jt—i- 16(i+1)+k for 0 < i < £ —2. It is easy to see that a is fixed under
conjugacy of ¢, that is, a¢ = a. It follows that (ac)* = 1. Furthermore
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t
ab = ((% - 1)867(% - 1)16) ilGO (Z%Jg)(’b%?z?)(zéazmZ?alt)(zgvZZ)(ZO7Zt)(107Zt)(Z 7Z )
1
(zéo,2%1)(Z6171%°)(262,z%3,1%27163)(2647265)(1%5,1%4)' I1;- o (i ]tv(z +1)j0),
b = (1,3,5,-+ t—1,26,20— 2, t+2,t+1,t+3,--+ 26 —1,t,t —2,--- ,4,2)

The above computations imply (ab)* = 1 and (be)?" " = 1. Moreover, we have

(ab)? 1,1;0 (ig, i) (35, i9) (1%, i) (ig%, it
clab?e = TIE% (i) i) i b, i),
(@bl = TLE% (i) (i, i) (63,37 68, )AL i) (g2, i) G, i) G i),
(@b et = TIE% (3, 82) (i, i) 63,37 6B, ) a0, ) 2, i) G2, i) 82 1),
(ab)2 el = TI2% " (i, i) (i, i?) (6, 68) 5. 85 03, ) bt it ) (g id ) G, ).

Let A = (a,,b,c). Since [a,c] = 1, by Proposition 2.5 we have [a, (bc)?] = [(ab)?, c]*
and hence [a, (bc)?]? = 1. The element (bc)?"* interchanges i¥ and i¥ as i¥ — i¥ = ¢ (note
that 1 < i <tand t+1 <iF < 2t), which implies [(ab)?, ¢]’[(ab)?, ¢]** = (be)*"°. Clearly,
[(ab)?, c]¢ = [(ab)?, ] Again by Proposition 2.5, [a, (bc)!] = [a, (bc)?]a, (bc) 2)(be)* —
[(ab)2, cPel(ab)?, )" = ([(ab)?, cPl(ab)?, o) = ([(ab)?, P[(ab)?, =)0 = (be)>"".
It follows that the generators a,b,c of A satisfy the same relations as do pg, p1, p2 in
G, and hence A is a quotient group of G. In particular, o(bc) = 2" in A, and hence
o(p1p2) = 2" in G. It follows that |G| = o(p1p2)® - |G/{(p1p2)%)| = 278 - 256 = 2".

Again let Ly = (po, p1, p2 | p5, 1, P35, (pop1)*s (p1p2)?, (pop2)?). The generators po, pi, p
in L, satisfy all relations in G. This means that o(pgp;) = 4 in G, and by Proposition 2.3,

(G,{po, p1,p2}) is a string C-group.
Case 3: GG = Gks.
We construct a permutation representation graph of G. In this graph, bc consists two

paths of length 2¢ and a circle of length 4t alternating labels of ¢ and b, where t = 2776,
Again, the graph is too big to be drawn in this paper.

Write %, = jt + 16i + k and cz'] = jt+16(55 —i—1) +k, where 0 < i < & — 1,
1 <k <16and 0 < j < 7. The permutations a, b, c on the set {1,2,--- 2"~ 3} are as
follows:
t
a= T2 1(i(lJv izllt)(i%v Zét)(lén Z6t)(i3t’ i?t)(io’ i4t)(lt ) Z5t)( %t)(liitv l%t)
(igaigt)(igtvi%t)(zgacut)(lgt?mt ) Z4tacz6t)(’§ta@3t)(é %?)(btvi%)
(ifai%t)(iétvlét)(lévCl4t)(l3t’mt )(Zitvc%t)(%ta”?,t)( 5 13)(127577;%?)
(igaiit)(igtvth)(z?)vCZQt)(Z2t7CZ6t)(thvC )(z‘;’t,c%t)(zo 7Z3t)(z4tvi%%)
(igﬂigt)(igtﬂzgt)(ig Cz2t)(z2t7cz6t)(zgt 11)(Z7tacz5t)(lo 723t)(z4t71%)
(i, cing) (i, cigg ) (i gtaCZ%O)(th?CZéO)(Z4t7CZ%?)(th7CZég)(2gt7Czég)(Z;tvCZ%?)
(ig, cigt)(z'?, CZ?Lt)(lgm ciy )(1315’ CZO)( ) CZ?t)( 5¢s ngt)(igtv czgt)(z%, ngt)
(i65’i%?)(i%5,lé?)(11?,zé?)(@%?7@7?)(166,Zé?)(l%ﬁ’lé?)(%i? ige ) (187, 7)),
b= (03)((5 = DI*)(0})((55 — DE)Oh. 0h) (55 1&?«L—DM>Iﬁ:«*—4B%OaH>
o

)
'H;:O(l_!ilio (Z?t’i?t)(ﬁt’l?t)(l?t’Z;t)(lgtvi?t)(ijl'?’lgl'tl)(ljl'gvljl'?)(lglzl’ ;?) z‘lio ( Lits (i + 1) )
= HZ o1 1( jl'tv ?t)(i?wi?t)(i?wi?t)(i;t?i?t)(?t?z}?)(i}gv i}f)(z}f,z%)(z]g’, l;?)
Here, i+ = jt—|—16(i—l—1) +kfor 0 <i < {5 —2 For 0 <i <5 —2,binterchanges i}
and (i + )}t, and also cijf and c(i — 1)},. It is easy to see that a is ﬁxed under conJugacy

17



of ¢, that is, a® = a. It follows that (ac)* = 1. Furthermore

ab = (0, 03,08, 01,)(0f, (75 — 1)4t’07t’ (15— 1)3f)
(03t, (* — 1§85 08, (15 — DD (55 — D% (15 — V&2, (5 — Digs (15 — D)3f)

;160 (52 + 1)g, 49, (i + 1)(1515 i39) ((i 4+ 1)f,i39, (i + 1)7t7z3t)
(14 1)g, i Z6t (i + 1)4ta ) (i + 1)3t7z7t NURS 1)5t7 )

tq
6 1.2 3\(:2 3 52 3 3 15 -4 15 14
21‘:0 (Zt1»525t> fgtv ’L%t) (?ta Z61t57 ZStiit )(1127 Zi% ) Cigt ) %41: )1(1315 »12571:»10423::1750% )
(Zzlt Z()172614t1gcz6t1)2(17t47 Zstac% 702375)(20 v"5ta171:7122275)(221&7"17571?720 )
(Zga Clygs 621731& ) EZQt ) (it 1125’ CZ6t ) Z4t) (ZQt’ Ly Z47:a Cfgt )(le)ét’ Cét ) z%, Z6t1)2 13
(th Z51td Cly azst)(%mczzst,clllo 7CZ5t)(ZovczztvCZ7talc§4t )(gzna?czstlalczo 170‘3@:%)
(ZOvCZQtv%tvC%t)(ltthaCl?tacut) ZQtaC%ta%t,CZt ) (@34 6y, Cizg s €l )
6
(1345 ?)
( -8
0

7 11 10\(:7 11 07 A1y(7 11 07 el
i, 1] , cily, cigg ) (igy, iy, cig', cisg) (i, cigg, 17y, cigg ) (i, cig i3y, cigy)

8 8 8\(:8 8 8 _8N\/:9 9 9 9\/:9 .9 .9 .9
00, Clisgs T Clsg ) (g, Ciiy, Ty, Cloy ) (g, Ciy, gy, Cliy ) (07 Ciy, 7y, Clyy),

ch = TIi_o(1 + 6ti,3 + 6ti,--- , 2t — 1 + 6ti, 2t + 6ti, 2t — 2 + 6ti, - -- , 2 + 6ti)
(2t + 1+ 2ti, 2t + 3 + 2ti, - - 4t — 1 + 2ti, 6t — 2ti,6t — 2 — 2ti, - -~ , 4t + 2 — 2ti),
()" = TIZo(i+4,2t —i)(6t + 1+ 0,8t — i) - [[25" (2t + 1 + i, 6t — 0).

The above computations imply (ab)* = 1, (be)?" " = 1, and (be)*"" = (¢b)*"°. Fur-
thermore,

(ab)? = T, (i
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Let A = {(a,,b,c). Now it is easy to see that [(ab)?, c|¢ = [(ab)?, ]t and [(ab)?, c]*¢ =
([(ab)?, c]?)~1. Every 4-cycle in the product of distinct 4-cycles of [(ab)?, c] is either a 4-cycle
or the inverse of a 4-cycle in [(ab)?, c]’, and [(ab)?, c][(ab)?, c]® is an involution, which fixes
on—14 pomts 1nclud1ng the pomt 1. Then [(ab)?, c][(ab)?, c]® = [(ab)?, ¢]®[(ab)?, c]. Tt is clear
that (¢b)2" " interchanges i) and 02%6 7 for each 1 < j < 16 because zo+czt16_ = 2t+1 (note
that 1 < @) <t and t+1< ci;7 < 2t), and similarly (cb)*>"° also interchanges i3, and
c¢ird™7 il and ciy) 7, and i, and 0216 7. Tt follows that (cb)*"° = [(ab)Q, c]? = ([(ab)?, c]*)%.

Smce la,c] =1, by Proposition 2.5 we have [a, (bc)?]? = ([( )2, c)*)? = ([(ab)?, c]’) 2 =
()™ = (be)”"" and [a, (be)*] = la, (be)’][a, (b)) ([( b)?, c]l(ab)?, c]*) =
([(ab)2, ¢)([(ab)?, ] ~2)e)be = ([(ab)?, c]2)Pe = ((cb)¥" " )re = (bc) . This implies that the
generators a, b, ¢ of A satisfy the same relations as do py, p1, p2 in G, and hence A is a
quotient group of G. In particular, o(cb) = 2”5 in A, and hence o(pips) = 2" in G. Tt
follows that |G| = o(p1p2)® - |G/ {(p1p2)®)] = 2778 - 256 = 2".

Again let Ly = (po, p1, p2 | p5, P1 P3: (pop1)*, (p1p2)?, (pop2)?). The generators po, p1, pa
in L, satisfy all relations in G. This means that o(pgp;) = 4 in G, and by Proposition 2.3,
(G, {po, p1,p2}) is a string C-group.

Now we prove the necessity. Let (G,{po, p1,p2}) be a string C-group of rank three
with type {4,2"°} and |G| = 2". Then each of py, p; and ps has order 2, and we further
have o(pop1) = 4, o(pop2) = 2 and o(p1ps) = 2" 5. To finish the proof, we only need to
prove G =2 G5, Gg, G7 or Gg. Since G5, Gg, G7 and Gy are C-groups of order 2" of type
{4,275} it suffices to show that, in G, [po, (p2p1)?]? = 1 or [po, (p2p1)**(p1p2)? " = 1,
and [po, (p2p1)*] = 1 or [po, (p2p1)*](p1p2)*" " = 1, which will be done by induction on n.
This is true for n = 10 by MAGMA.

Assume n > 11. Take N = ((p1p2)?" "). By Lemma 4.1, we have N < G and (G =
G/N,{po,p1,p2}) (with p; = Np;) is a string C-group of rank three of type {4,2"6}.
Since |G| = 2"71, by induction hypothesis we may assume G = G5, Gg, G7 or Gg, where

Gs = (po.p1, 72 | po°. p1%, 22, (pop)*, (pip2)" " [P, (P1p2) )2, (o, (P1p2) ")),

Ge = (po.p1, 72 | po°, p1%, 22, (popn)*, (pip2)?" " [P, (pip2) 2 (pip2)*" . [0, (P1m2) ),
Gr = (po. o172 | ;o o2, 722, (popn) ., (i) (o, (pimn) 12, [Po, (P 1p2) (i) ),
Gs = (70,71, 73 | po°, P2, P22, (Bopn) L, (pip2)?" . [Po, (P1p3) ) (ip)?" . 7o, (Pip2) ] (pip2) "

on—7 2n—6>

2

Then [po, (P172)*] = 1, or [po, (P1p2)*](P1p2)* "~ = 1, and since N = ((p1p2)
Zy, we have [po, (p1p2)Y] = (p1p2)®?", where 6 = 0,41,2. It follows [po, (p1p2)%] =
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[0, (p12) ][0, (p1p2)"]#1#2" = (p1p)*" ", and similarly [po, (p1p2)"®] = (prp2)*"" = 1.

Since n > 11, we have [po, (p1p2)*" ] = 1, that i is, ((p1p2)¥ )P = (p1p2)?"
2 — — T
Suppo_s7e G = Gr or Gg. Then [po,(plpg) ](plpg) = 1, that is, [po, (p1p2)?] =
(prp2)" " for 4 = F1. Tt follows that 1 = [p§, (p1p2)'] = [0, (prp2)"]"[po, (pr2)"] =
((prp2)7 2" )P (prp2)” " = (p1p2)”®" ", which contradicts o(p;ps) = 2775,
- -~ e — \9n—T . n—"T
Suppose G = Gg. Then [po, (P17p2)2]2(01,02>2 = 1, that s, [po, (p12)]* = (p1p2)"?
for v = £1. Recall that ((p1p2)?*" ") = (p1p2)?®" . On the other hand, 1 = [p2, (p1p2)?] =
(00, (p1p2)] [P0, (p1p2)?)", and hence ([po, (p1p2)*]*)* = (7[/307 (p1p2)*1")? = ([po, (P1p2)"]?) 1=
that is, ((p1p2)"%" )% = (p1pa) " " Tt follows (p1p2) ™" " = (p1p2) 7" and (p1po)*""
1, a contrziiictio_n.
Thus, G = G5. Since N = ((p1p2)*"") = Zy, we have [po, (p1p2)?]? = 1 or (p1p2)?
and [po, (p1p2)*] = 1 or (p1p2)?" . It follows that G = Gs, G, Gr or Gs. O

n—6
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