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Abstract

In this paper, we prove that for any positive integers n, s, t such that n ≥ 10,
s, t ≥ 2 and n−1 ≥ s+t, there exists a regular polytope with Schläfli type {2s, 2t} and
its automorphism group is of order 2n. Furthermore, we classify regular polytopes
with automorphism groups of order 2n and Schläfli types {4, 2n−3}, {4, 2n−4} and
{4, 2n−5}, therefore giving a partial answer to a problem proposed by Schulte and
Weiss in [Problems on polytopes, their groups, and realizations, Periodica Math.
Hungarica 53(2006) 231-255].
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1 Introduction

Classifications of abstract regular polytopes have been a subject of interest for several
decades. One path has been to fix (families of) groups of automorphisms and determine
the abstract regular polytopes having these groups as full automorphism groups. Some
striking results have been obtained, for instance for the symmetric and alternating groups.
Fernandes and Leemans classified abstract regular polytopes of rank n− 1 and n− 2 for
Sn [9, 12] and more recently, they extended this classification to rank n − 3 and n − 4
with Mixer [13]. Cameron, Fernandes, Leemans and Mixer showed that the highest rank
of an abstract regular polytope with full automorphism group an alternating group An is
b(n − 1)/2c when n ≥ 12 [3], and thanks to two previous papers of Fernandes, Leemans
and Mixer [10, 11], this bound is known to be sharp. More recently, Gomi, Loyola and De
Las Peñas determined the non-degenerate string C-groups of order 1024 in [14].

There exists a well known one-to-one correspondence between abstract regular poly-
topes and string C-groups. We therefore work with string C-groups as it is more convenient
and easier to define them than abstract regular polytopes. In this paper, we study 2-groups
acting on regular polytopes. The starting point of our research was the following problem
proposed by Schulte and Weiss in [22].

*Corresponding author.E-mails: yqfeng@bjtu.edu.cn, 16118416@bjtu.edu.cn,dleemans@ulb.ac.be
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Problem 1.1 Characterize the groups of orders 2n or 2np, with n a positive integer and
p an odd prime, which are automorphism groups of regular or chiral polytopes?

Conder [6] showed that if P is a regular 3-polytope with Schläfli type {k1, k2}, then
|Aut(P)| ≥ 2k1k2. If P has Schläfli type {2s, 2t} and |Aut(P)| = 2n, then n − 1 ≥ s + t.
In this paper, we first show the following theorem.

Theorem 1.2 For any positive integers n, s, t such that n ≥ 10, s, t ≥ 2 and n−1 ≥ s+t,
there exists a string C-group of order 2n with Schläfli type {2s, 2t}.

Cunningham and Pellicer [8] classified the regular 3-polytopes P for the case when
|Aut(P)| = 2k1k2. Note that if |Aut(P)| = 2n and k1 = 4 then k2 ≤ 2n−3. As a special
case, Cunningham and Pellicer [8] obtained the classification of regular 3-polytopes with
automorphism groups of order 2n and Schläfli type {4, 2n−3}, and this was also given in
Loyola [17] by using the classification of 2-groups with a cyclic subgroup of order 2n−3 [19].
We prove the result again independently by using new techniques that are described in
this paper, and the techniques work well for more classifications. In particular, we further
classify the regular 3-polytopes with automorphism groups of order 2n and Schläfli types
{4, 2n−4} and {4, 2n−5} in this paper.

To state the next result, we need to define some groups:

G1 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2
2
, (ρ1ρ2)

2n−3
, (ρ0ρ2)

2, [(ρ0ρ1)
2, ρ2]〉,

G2 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2
2
, (ρ1ρ2)

2n−3
, (ρ0ρ2)

2, [(ρ0ρ1)
2, ρ2](ρ1ρ2)

2n−4〉,
G3 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2

2
, (ρ1ρ2)

2n−4
, (ρ0ρ2)

2, [(ρ0ρ1)
2, (ρ1ρ2)

2]〉,
G4 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2

2
, (ρ1ρ2)

2n−4
, (ρ0ρ2)

2, [(ρ0ρ1)
2, (ρ1ρ2)

2](ρ1ρ2)
2n−5〉,

G5 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2
2
, (ρ1ρ2)

2n−5
, (ρ0ρ2)

2, [ρ0, (ρ1ρ2)
2]2, [ρ0, (ρ1ρ2)

4]〉,
G6 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2

2
, (ρ1ρ2)

2n−5
, (ρ0ρ2)

2, [ρ0, (ρ1ρ2)
2]2(ρ1ρ2)

2n−6
, [ρ0, (ρ1ρ2)

4]〉,
G7 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2

2
, (ρ1ρ2)

2n−5
, (ρ0ρ2)

2, [ρ0, (ρ1ρ2)
2]2, [ρ0, (ρ1ρ2)

4](ρ1ρ2)
2n−6〉,

G8 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2
2
, (ρ1ρ2)

2n−5
, (ρ0ρ2)

2, [ρ0, (ρ1ρ2)
2]2(ρ1ρ2)

2n−6
,

[ρ0, (ρ1ρ2)
4)](ρ1ρ2)

2n−6〉.

Theorem 1.3 For n ≥ 10, let Γ := (G, {ρ0, ρ1, ρ2}) be a string C-group of order 2n. Then

(1) Γ has type {4, 2n−3} if and only if G ∼= G1 or G2;

(2) Γ has type {4, 2n−4} if and only if G ∼= G3 or G4;

(3) Γ has type {4, 2n−5} if and only if G ∼= G5, G6, G7 or G8.

Let n < 10. By [4] or [15], there is a unique string C-group of order 2n with type
{4, 4}, and Theorem 1.3 is true for the types {4, 2n−s} with n − s ≥ 3 and s = 3, 4 or
5, except for the cases when n = 8 or 9 with s = 5. For n = 8 with s = 5, there
are four string C-groups with type {4, 8}: two are G5 and G6, and the other two are
〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2

2
, (ρ1ρ2)

28 , (ρ0ρ2)
2, [(ρ0ρ1)

2, (ρ1ρ2)
2](ρ1ρ2)

4〉 and 〈ρ0, ρ1, ρ2 | ρ20,
ρ21, ρ

2
2, (ρ0ρ1)

22 , (ρ1ρ2)
23 , (ρ0ρ2)

2, [((ρ1ρ2)
2)ρ0 , ρ1ρ2](ρ1ρ2)

4〉. For n = 9 with s = 5, there are
six string C-groups with type {4, 16}: four are Gi with 5 ≤ i ≤ 8, and the other two are
〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2

2
, (ρ1ρ2)

24 , (ρ0ρ2)
2, [(ρ0ρ1)

2, (ρ1ρ2)
2](ρ1ρ2)

4〉 and 〈ρ0, ρ1, ρ2 | ρ20,
ρ21, ρ

2
2, (ρ0ρ1)

22 , (ρ1ρ2)
24 , (ρ0ρ2)

2, [(ρ0ρ1)
2, (ρ1ρ2)

2](ρ2ρ1)
4, [ρ1, ρ0, ρ2, ρ1, ρ0, ρ1, ρ0]〉.
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2 Background results

2.1 String C-groups

Abstract regular polytopes and string C-groups are the same mathematical objects. The
link between these objects may be found for instance in [20, Chapter 2]. We take here the
viewpoint of string C-groups because it is the easiest and the most efficient one to define
abstract regular polytopes.

Let G be a group and let S = {ρ0, · · · , ρd−1} be a generating set of involutions of G.
For I ⊆ {0, · · · , d− 1}, let GI denote the group generated by {ρi : i ∈ I}. Suppose that

* for any i, j ∈ {0, . . . , d−1} with |i−j| > 1, ρi and ρj commute (the string property);

* for any I, J ⊆ {0, · · · , d− 1}, GI ∩GJ = GI∩J (the intersection property).

Then the pair (G,S) is called a string C-group of rank d and the order of (G,S) is simply
the order of G. If (G,S) only satisfies the string property, it is called a string group
generated by involutions or sggi. By the intersection property, S is a minimal generating
set of G. It is known that string C-groups are the same thing as automorphism groups of
regular polytopes [20, Section 2E]. The following proposition is straightforward, and for
details, one may see [5].

Proposition 2.1 The intersection property for a string C-group (G,S) of rank 3 is equiv-
alent to that S is a minimal generating set of G and 〈ρ0, ρ1〉 ∩ 〈ρ1, ρ2〉 = 〈ρ1〉.

The i-faces of the regular d-polytope associated with (G,S) are the right cosets of the
distinguished subgroup Gi = 〈ρj | j 6= i〉 for each i = 0, 1, · · · , d − 1, and two faces are
incident just when they intersect as cosets. The (Schläfli) type of (G,S) is the ordered set
{p1, · · · , pd−1}, where pi is the order of ρi−1ρi. In this paper we always assume that each
pi is at least 3 for otherwise the generated group is a direct product of two smaller groups.
If that happens, the string C-group (and the corresponding abstract regular polytope) is
called degenerate. The following proposition is related to degenerate string C-groups of
rank 3.

Proposition 2.2 For t ≥ 1, let

L1 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)4, (ρ1ρ2)2, (ρ0ρ2)2〉,
L2 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2, (ρ1ρ2)2

t
, (ρ0ρ2)

2〉,
L3 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2

t
, (ρ1ρ2)

2, (ρ0ρ2)
2〉.

Then |L1| = 16, |L2| = |L3| = 2t+2. In particular, the listed exponents are the true orders
of the corresponding elements.

The proof of Propostion 2.2 is straightforward from the fact that L2 = 〈ρ0〉×〈ρ1, ρ2〉 ∼=
Z2×D2t+1 and L3 = 〈ρ0, ρ1〉 × 〈ρ2〉 ∼= D2t+1 ×Z2, where D2t+1 denotes the dihedral group
of order 2t+1.

The following proposition is called the quotient criterion for a string C-group.
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Proposition 2.3 [20, Section 2E] Let (G, {ρ0, ρ1, ρ2}) be an sggi, and let Λ = (〈σ0, σ1, σ2〉,
{σ0, σ1, σ2}) be a string C-group. If the mapping ρj 7→ σj for j = 0, 1, 2 induces a homo-
morphism π : G → Λ, which is one-to-one on the subgroup 〈ρ0, ρ1〉 or on 〈ρ1, ρ2〉, then
(G, {ρ0, ρ1, ρ2}) is also a string C-group.

The following proposition gives some string C-groups with type {4, 4}, which is proved
in [7, Section 8.3] for b ≥ 2 but it is also true for b = 1 by Magma [2].

Proposition 2.4 For b ≥ 1, let

M1 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)4, (ρ1ρ2)4, (ρ0ρ2)2, (ρ2ρ1ρ0)2b〉,
M2 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)4, (ρ1ρ2)4, (ρ0ρ2)2, (ρ1ρ2ρ1ρ0)b〉.

Then |M1| = 16b2 and |M2| = 8b2. In particular, the listed exponents are the true orders
of the corresponding elements.

2.2 Permutation representation graphs and CPR graphs

In [21], Daniel Pellicer introduced CPR-graphs to give a permutation representation of
string C-groups (CPR stands for C-group Permutation Representation). These graphs
are also sometimes called permutation representation graphs.

Let G be a group and S := {ρ0, . . . , ρd−1} be a generating set of involutions of G.
Let φ be an embedding of G into the symmetric group Sn for some n. The permutation
representation graph G of G determined by φ is the multigraph with n vertices, and with
edge labels in the set {0, . . . , d− 1}, such that any two vertices v, w are joined by an edge
of label j if and only if (v)((ρj)φ) = w.

If (G,S) is a string C-group, then the permutation representation graph defined above
is called a CPR-graph by Pellicer.

2.3 Group theory

Let G be a group. For x, y ∈ G, we use [x, y] as an abbreviation for the commutator
x−1y−1xy of x and y, and [H,K] for the subgroup generated by all commutators [x, y]
with x ∈ H and y ∈ K, when H and K are subgroups of G. The following proposition is
a basic property of commutators and its proof is straightforward.

Proposition 2.5 Let G be a group. Then, for any x, y, z ∈ G, [xy, z] = [x, z]y[y, z] and
[x, yz] = [x, z][x, y]z.

The commutator (or derived) subgroup G′ of a group G is the subgroup generated by
all commutators [x, y] for any x, y ∈ G. With Proposition 2.5, it is easy to prove that if
G is generated by a subset M , then G′ is generated by all conjugates in G of elements
[xi, xj] with xi, xj ∈M ; see [16, Hilfsatz III.1.11] for example.

Proposition 2.6 Let G be a group, M ⊆ G and G = 〈M〉. Then G′ = 〈[xi, xj]g | xi, xj ∈
M, g ∈ G〉.
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The Frattini subgroup, denoted by Φ(G), of a finite group G is defined to be the
intersection of all maximal subgroups of G. Let G be a finite p-group for a prime p,
and set f1(G) = 〈gp | g ∈ G〉. The following theorem is the well-known Burnside Basis
Theorem.

Theorem 2.7 [1, Theorem 1.12] Let G be a p-group and |G : Φ(G)| = pd.

(1) G/Φ(G) ∼= Zdp. Moreover, if NCG and G/N is elementary abelian, then Φ(G) ≤ N .

(2) Every minimal generating set of G contains exactly d elements.

(3) Φ(G) = G′f1(G). In particular, if p = 2, then Φ(G) = f1(G).

By Theorem 2.7(2), we have the following important result.

Remark 2.8 A string 2-group has C-group representations in only one rank.

The unique cardinality of all minimal generating set of a 2-group G is called the rank
of G, and denoted by d(G). This is quite different from almost simple groups where in
most cases if a group has string C-group representations of maximal rank d, then it has
string C-group representations of ranks from 3 to d. The only known exception is the
alternating group A11 [10].

For a subgroup H of a group G, the core CoreG(H) of H in G is the largest normal
subgroup of G contained in H. The following result is called Lucchini’s theorem.

Proposition 2.9 [18, Theorem 2.20] Let A be a cyclic proper subgroup of a finite group
G, and let K = CoreG(A). Then |A : K| < |G : A|, and in particular, if |A| ≥ |G : A|,
then K > 1.

3 Proof of Theorem 1.2

Let n ≥ 10, s, t ≥ 2 and n−s−t ≥ 1. SetR(ρ0, ρ1, ρ2) = {ρ20, ρ21, ρ22, (ρ0ρ1)2
s
, (ρ1ρ2)

2t , (ρ0ρ2)
2,

[(ρ0ρ1)
4, ρ2], [ρ0, (ρ1ρ2)

4]} and define

H =

{
〈ρ0, ρ1, ρ2 | R(ρ0, ρ1, ρ2), [(ρ0ρ1)

2, ρ2]
2
n−s−t−1

2 〉, n− s− t odd

〈ρ0, ρ1, ρ2 | R(ρ0, ρ1, ρ2), [(ρ0ρ1)
2, (ρ1ρ2)

2]2
n−s−t−2

2 〉, n− s− t even.

To prove Theorem 1.2, we only need to show that H is a string C-group of order 2n with
Schläfli type {2s, 2t}. For convenience, write o(h) for the order of h in H.

Note that ρ0 commutes with (ρ1ρ2)
4 because [ρ0, (ρ1ρ2)

4] = 1. Since 〈ρ1, ρ2〉 is a
dihedral group, we have (ρ1ρ2)

ρ1 = (ρ1ρ2)
ρ2 = (ρ1ρ2)

−1. It follows that 〈(ρ1ρ2)4〉 E H.
Similarly, 〈(ρ0ρ1)4〉EH as [(ρ0ρ1)

4, ρ2] = 1.
Let L2 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2, (ρ1ρ2)2

t
, (ρ0ρ2)

2〉. Clearly, ρ0 commutes with
both ρ1 and ρ2 in L2, and hence [ρ0, (ρ1ρ2)

4] = 1. It is easy to see that the generators
ρ0, ρ1, ρ2 in L2 satisfy all relations in H. This implies that L2 is a homomorphic image of
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H. By Proposition 2.2, ρ1ρ2 has order 2t in L2, and hence has order 2t in H. It follows
that |H| = o((ρ1ρ2)

4) · |H/〈(ρ1ρ2)4〉| = 2t−2 · |H/〈(ρ1ρ2)4〉|.
Let L3 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2

s
, (ρ1ρ2)

2, (ρ0ρ2)
2〉. The element ρ2 commutes

with both ρ0 and ρ1 in L3, and hence [(ρ0ρ1)
4, ρ2] = 1. Since ρ0ρ2 = ρ2ρ0, Propo-

sition 2.5 implies [(ρ0ρ1)
2, ρ2] = [ρ1ρ0ρ1, ρ2] = [ρ0, ρ1ρ2ρ1]

ρ1 = [ρ0, (ρ1ρ2)
2]ρ2ρ1 . Hence

[(ρ0ρ1)
2, ρ2] = 1 in L3. Therefore the generators ρ0, ρ1, ρ2 in L3 satisfy all relations in H.

By Proposition 2.2, ρ0ρ1 has order 2s in L3, and hence has order 2s in H. It follows that
|H| = 2s−2 · |H/〈(ρ0ρ1)4〉|.

To finish the proof of Theorem 1.2, we are left to prove that |H| = 2n.

Case 1: s = 2. We distinguish two cases, namely the case where n − t is odd and the
case where n− t is even.

Assume that n − t is odd. Then H = 〈ρ0, ρ1, ρ2 | R(ρ0, ρ1, ρ2), [(ρ0ρ1)
2, ρ2]

2
n−t−3

2 〉.
Since ρ0ρ2 = ρ2ρ0, we have [(ρ0ρ1)

2, ρ2] = (ρ1ρ0ρ1ρ2)
2. It follows that [(ρ0ρ1)

2, ρ2]
2
n−t−3

2 =

(ρ1ρ0ρ1ρ2)
2
n−t−1

2 . Note that (ρ0ρ1)
4 = 1 and 〈(ρ1ρ2)4〉 E H. Thus H/〈(ρ1ρ2)4〉 ∼= H1,

where H1 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2
2
, (ρ1ρ2)

22 , (ρ0ρ2)
2, (ρ1ρ0ρ1ρ2)

2
n−t−1

2 〉. By Proposi-

tion 2.4, |H1| = 8·(2n−t−1
2 )2 = 2n−t+2, and hence |H| = 2t−2·|H/〈(ρ1ρ2)4〉| = 2t−2|H1| = 2n.

Assume that n− t is even. Then H = 〈ρ0, ρ1, ρ2 | R(ρ0, ρ1, ρ2), [(ρ0ρ1)
2, (ρ1ρ2)

2]2
n−t−4

2 〉.
A similar argument as above gives rise toH/〈(ρ1ρ2)4〉 ∼= H2 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2

2
,

(ρ1ρ2)
22 , (ρ0ρ2)

2, [(ρ0ρ1)
2, (ρ1ρ2)

2]2
n−t−4

2 〉. Noting (ρ0ρ1)
2 = (ρ0ρ1)

−2 and (ρ1ρ2)
2 = (ρ1ρ2)

−2

in H2, we have [(ρ0ρ1)
2, (ρ1ρ2)

2]2
n−t−4

2 = (((ρ0ρ1)
2(ρ1ρ2)

2)2)2
n−t−4

2 = (((ρ0ρ1ρ2)
2)2)2

n−t−4
2 =

(ρ0ρ1ρ2)
2·2

n−t−2
2 because ρ0ρ2 = ρ2ρ0, and so H2 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2

2
, (ρ1ρ2)

22 ,

(ρ0ρ2)
2, (ρ0ρ1ρ2)

2·2
n−t−4

2 〉. By Proposition 2.4, |H2| = 16 · (2n−t−2
2 )2 = 2n−t+2, and |H| =

2t−2 · |H/〈(ρ1ρ2)4〉| = 2t−2 · |H2| = 2n.

Case 2: s > 2.

Assume that n− t− s is odd. Then H = 〈ρ0, ρ1, ρ2 | R(ρ0, ρ1, ρ2), [(ρ0ρ1)
2, ρ2]

2
n−t−s−1

2 〉.
It follows H/〈(ρ0ρ1)4〉 ∼= H3, where H3 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2

2
, (ρ1ρ2)

2t , (ρ0ρ2)
2,

[ρ0, (ρ1ρ2)
4], [(ρ0ρ1)

2, ρ2]
2
(n−s+2)−t−3

2 〉. By Case 1, |H3| = 2n−s+2, and therefore |H| = 2s−2 ·
|H/〈(ρ0ρ1)4〉| = 2s−2 · |H3| = 2n.

Assume that n−t−s is even. ThenH/〈(ρ0ρ1)4〉 ∼= H4, whereH4 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22,
(ρ0ρ1)

22 , (ρ1ρ2)
2t , (ρ0ρ2)

2, [ρ0, (ρ1ρ2)
4], [(ρ0ρ1)

2, (ρ1ρ2)
2]2

(n−s+2)−t−4
2 〉. Then |H4| = 2n−s+2

from Case 1, and therefore |H| = 2s−2 · |H4| = 2n.

Corollary 3.1 The pairs (G1, {ρ0, ρ1, ρ2}), (G3, {ρ0, ρ1, ρ2}) and (G5, {ρ0, ρ1, ρ2}), defined
in Theorem 1.3, are string C-groups of order 2n with Schläfli type {4, 2n−3}, {4, 2n−4} and
{4, 2n−5}, respectively.

Proof. By taking (s, t) = (2, n − 3), (2, n − 4), (2, n − 5) in the proof of Theorem 1.2,
we know that (Hi, {ρ0, ρ1, ρ2}) for i = 1, 3, 5 are string C-groups of order 2n with Schläfli
type {4, 2n−3}, {4, 2n−4} and {4, 2n−5} respectively, where
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H1 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2
2
, (ρ1ρ2)

2n−3
, (ρ0ρ2)

2, [ρ0, (ρ1ρ2)
4], [(ρ0ρ1)

2, ρ2]〉,
H3 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2

2
, (ρ1ρ2)

2n−4
, (ρ0ρ2)

2, [ρ0, (ρ1ρ2)
4], [(ρ0ρ1)

2, (ρ1ρ2)
2]〉,

H5 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2
2
, (ρ1ρ2)

2n−5
, (ρ0ρ2)

2, [ρ0, (ρ1ρ2)
4], [ρ0, (ρ1ρ2)

2]2〉.

Since ρ0ρ2 = ρ2ρ0 and ((ρ0ρ1)
2)ρ0 = ((ρ0ρ1)

2)ρ1 = (ρ0ρ1)
2, by Proposition 2.5 we have

the following identities in all Hi and Gi for i = 1, 3, 5:

[(ρ0ρ1)
2, ρ2] = [ρ1ρ0ρ1, ρ2] = [ρ0, ρ1ρ2ρ1]

ρ1 = [ρ0, (ρ1ρ2)
2]ρ2ρ1 ,

[ρ0, (ρ1ρ2)
4] = [ρ0, (ρ1ρ2)

2][ρ0, (ρ1ρ2)
2](ρ1ρ2)

2
= [(ρ0ρ1)

2, ρ2]
ρ1ρ2 [(ρ0ρ1)

2, ρ2]
(ρ1ρ2)3 ,

[(ρ0ρ1)
2, (ρ1ρ2)

2] = [(ρ0ρ1)
2, ρ2][(ρ0ρ1)

2, ρ1ρ2ρ1]
ρ2 = [(ρ0ρ1)

2, ρ2][(ρ0ρ1)
2, ρ2]

ρ1ρ2 .

Clearly, H5 = G5. In G1, [ρ0, (ρ1ρ2)
4] = [(ρ0ρ1)

2, ρ2]
ρ1ρ2 [(ρ0ρ1)

2, ρ2]
(ρ1ρ2)3 = 1 because

[(ρ0ρ1)
2, ρ2] = 1. Thus, H1 = G1. To prove H3 = G3, we only need to show that

[ρ0, (ρ1ρ2)
4] = 1 in G3. Noting that [(ρ0ρ1)

2, (ρ1ρ2)
2] = 1 in G3, we have

[(ρ0ρ1)
2, ρ2]

ρ1 [(ρ0ρ1)
2, ρ2] = [ρ0, (ρ1ρ2)

2]ρ2 [(ρ0ρ1)
2, ρ2] = [ρ0, (ρ2ρ1)

2][(ρ0ρ1)
2, ρ2]

= ρ0(ρ1ρ2)
2ρ0(ρ2ρ1)

2{(ρ0ρ1)2}ρ2(ρ0ρ1)2ρ2 = ρ0{(ρ0ρ1)2}(ρ1ρ2)2ρ0(ρ2ρ1)2ρ2(ρ0ρ1)2ρ2
= ρ1ρ0ρ1(ρ1ρ2)

2ρ0{ρ2(ρ1ρ2)2}(ρ0ρ1)2ρ2 = ρ1ρ0ρ1(ρ1ρ2)
2ρ0ρ2(ρ0ρ1)

2(ρ1ρ2)
2ρ2

= ρ1ρ0ρ1ρ1ρ2ρ1ρ2ρ0ρ2ρ0ρ1ρ0ρ1ρ1ρ2ρ1ρ2ρ2 = 1,

that is, [(ρ0ρ1)
2, ρ2]

ρ1 = [(ρ0ρ1)
2, ρ2]

−1. On the other hand, since 1 = [(ρ0ρ1)
2, ρ2ρ2] =

[(ρ0ρ1)
2, ρ2][(ρ0ρ1)

2, ρ2]
ρ2 and 1 = [(ρ0ρ1)

2, (ρ1ρ2)
2] = [(ρ0ρ1)

2, ρ2][(ρ0ρ1)
2, ρ2]

ρ1ρ2 , we have
[(ρ0ρ1)

2, ρ2]
ρ1 = ([(ρ0ρ1)

2, ρ2]
ρ2)−1 = [(ρ0ρ1)

2, ρ2] . It follows that [(ρ0ρ1)
2, ρ2]

2 = 1 and
[(ρ0ρ1)

2, ρ2]
ρ1ρ2 = [(ρ0ρ1)

2, ρ2]
−1, and so [ρ0, (ρ1ρ2)

4] = [(ρ0ρ1)
2, ρ2]

ρ1ρ2 [(ρ0ρ1)
2, ρ2]

(ρ1ρ2)3 =
[(ρ0ρ1)

2, ρ2]
−2 = 1, as required.

4 Proof of Theorem 1.3

To prove Theorem 1.3, we need the following lemmas.

Lemma 4.1 Let (G, {ρ0, ρ1, ρ2}) be a string C-group of type {2s, 2t} with 2 ≤ s ≤ t. Let
|G| = 2n and 2t ≥ n − 1. Then N = 〈(ρ1ρ2)2

t−1〉 E G and (G, {ρ0, ρ1, ρ2}) is a string
C-group of type {2s, 2t−1} and order 2n−1, where G = G/N and x = xN for any x ∈ G.

Proof. Let H = 〈ρ0ρ1, ρ1ρ2〉 be the rotation subgroup of G. Then |G : H| ≤ 2. Since
{ρ0, ρ1, ρ2} is a minimal generating set of G, Theorem 2.7 (2) implies d(G) = 3, and since
H is generated by two elements, we have |H| = 2n−1.

Let M = 〈ρ1ρ2〉. Then |M | = 2t and |M |2 ≥ |H| as 2t ≥ n− 1. Then Proposition 2.9
implies that CoreH(M) > 1. Since M is cyclic and |N | = 2, N is characteristic in
CoreH(M), and so CoreH(M)EH implies N EH. Noting that N lies in the center of the
dihedral group 〈ρ1, ρ2〉, we have Nρ1 = N , and hence NEG because G = 〈H, ρ1〉. Clearly,
G = 2n−1.

Since t ≥ 2, we have N ≤ f1(G) = 〈g2|g ∈ G〉, and by Theorem 2.7, N ≤ Φ(G) and
G/Φ(G) ∼= Z3

2. Thus, G/Φ(G) has rank 3, and since G/Φ(G) ∼= (G/N)/(Φ(G)/N), G/N
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has rank 3, implying that {ρ0, ρ1, ρ2} is a minimal generating set of G. It follows that
ρ0, ρ1, ρ2 and ρ0ρ2 are involutions. To prove that G has the intersection property, by
Proposition 2.1 we only need to show 〈ρ0, ρ1〉 ∩ 〈ρ1, ρ2〉 = 〈ρ1〉.

Suppose 〈ρ0, ρ1〉 ∩ 〈ρ1, ρ2〉 6= 〈ρ1〉. Then there exist x1 ∈ 〈ρ0, ρ1〉 and x2 ∈ 〈ρ1, ρ2〉
such that x1 = x2 6∈ 〈ρ1〉, which implies x1 6∈ 〈ρ1〉. Since 〈ρ0, ρ1〉 ∩ 〈ρ1, ρ2〉 = 〈ρ1〉, we
have x1 6= x2 and x1 = x2(ρ1ρ2)

2t−1
as x1 = x2, which is impossible because otherwise

x1 = x2(ρ1ρ2)
2t−1 ∈ 〈ρ0, ρ1〉 ∩ 〈ρ1, ρ2〉 = 〈ρ1〉. Thus, 〈ρ0, ρ1〉 ∩ 〈ρ1, ρ2〉 = 〈ρ1〉, as required.

To finish the proof, we are left to show ρ0ρ1 and ρ1ρ2 have order 2s and 2t−1 respectively.
Since (G, {ρ0, ρ1, ρ2}) has type {2s, 2t}, ρ0ρ1 and ρ1ρ2 have order 2s and 2t respectively.
Since N ≤ 〈ρ1ρ2〉 and |N | = 2, ρ1ρ2 has order 2t−1 and ρ0ρ1 has order 2s or 2s−1.

Suppose ρ0ρ1 has order 2s−1. Then (ρ0ρ1)
2s−1

= (ρ1ρ2)
2t−1 ∈ 〈ρ0, ρ1〉 ∩ 〈ρ1, ρ2〉 = 〈ρ1〉,

and hence (ρ1ρ2)
2t−1

= ρ1 because ρ1ρ2 has order 2t. It follows that (ρ1ρ2)
2t−1−1 = ρ2 and

(ρ1ρ2)
2t−2 = 1, a contradiction. Thus, ρ0ρ1 has order 2s. This completes the proof.

Lemma 4.2 Let G = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ2)2〉. Then G′ = 〈[ρ0, ρ1], [ρ1, ρ2], [ρ0, ρ1]ρ2〉.

Proof. Since ρ0ρ2 = ρ2ρ0, Proposition 2.6 implies G′ = 〈[ρ0, ρ1]g, [ρ2, ρ1]h| g, h ∈ G〉.
Since 〈ρ0, ρ1〉 and 〈ρ1, ρ2〉 are dihedral groups, we have [ρ0, ρ1]

ρ0 = ((ρ0ρ1)
2)ρ0 = (ρ0ρ1)

−2 =
[ρ0, ρ1]

−1, [ρ0, ρ1]
ρ1 = [ρ0, ρ1]

−1, [ρ1, ρ2]
ρ1 = [ρ1, ρ2]

−1 and [ρ1, ρ2]
ρ2 = [ρ1, ρ2]

−1.
Set L = 〈[ρ0, ρ1], [ρ1, ρ2], [ρ0, ρ1]ρ2〉. Since ([ρ0, ρ1]

ρ2)ρ0 = ([ρ0, ρ1]
ρ2)−1, ([ρ0, ρ1]

ρ2)ρ2 =
[ρ0, ρ1] and ([ρ0, ρ1]

ρ2)ρ1 = ρ1ρ2ρ0ρ1ρ0ρ1ρ2ρ1 = [ρ1, ρ2][ρ1, ρ0]
ρ2 [ρ2, ρ1], we have [ρ0, ρ1]

g ∈
L for any g ∈ G. Since [ρ1, ρ2]

ρ0 = ρ0ρ1ρ2ρ1ρ2ρ0 = ρ0ρ1ρ0ρ1ρ1ρ2ρ1ρ2ρ2ρ1ρ0ρ1ρ0ρ2 =
[ρ0, ρ1][ρ1, ρ2][ρ1, ρ0]

ρ2 , we have [ρ1, ρ2]
h ∈ L for any h ∈ G. It follows that G′ ≤ L, and

hence G′ = L.

Proof of Theorem 1.3(1): For the sufficiency, we need to show that both G1 and G2

are string C-groups of order 2n, where n ≥ 10 and

G1 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2
2
, (ρ1ρ2)

2n−3
, (ρ0ρ2)

2, [(ρ0ρ1)
2, ρ2]〉,

G2 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2
2
, (ρ1ρ2)

2n−3
, (ρ0ρ2)

2, [(ρ0ρ1)
2, ρ2](ρ1ρ2)

2n−4〉.
By Corollary 3.1, G1 is a string C-group of order 2n and we are only left with G2.

However, to explain the method clearly, we prove the above fact again for G1 using a
permutation representation graph that is simple and easy to understand. Let G = G1 or
G2. For convenience, we write o(g) for the order of g in G. We first prove the following
claim.

Claim: |G| ≤ 2n.
Note that G/G′ is abelian and is generated by three involutions. Thus |G/G′| ≤ 23.

To prove the claim, it suffices to show |G′| ≤ 2n−3.
For G = G1, we have [(ρ0ρ1)

2, ρ2] = 1 and ρ0ρ2 = ρ2ρ0, which implies [ρ0, ρ1]
ρ2 =

[ρ0, ρ1][ρ1, ρ0][ρ0, ρ1]
ρ2 = [ρ0, ρ1][(ρ0ρ1)

2, ρ2] = [ρ0, ρ1]. Since [ρ0, ρ1]
ρ0 = [ρ0, ρ1]

ρ1 = [ρ0, ρ1]
−1,

we have 〈[ρ0, ρ1]〉 E G, and by Lemma 4.2, we have G′ = 〈[ρ0, ρ1], [ρ1, ρ2], [ρ0, ρ1]ρ2〉 =
〈[ρ0, ρ1], [ρ1, ρ2]〉 = 〈[ρ0, ρ1]〉〈[ρ1, ρ2]〉. This implies that |G′| ≤ |〈[ρ0, ρ1]〉||〈[ρ1, ρ2]〉| =
o((ρ0ρ1)

2)o((ρ1ρ2)
2) ≤ 2 · 2n−4 = 2n−3, as required.
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For G = G2, we have [(ρ0ρ1)
2, ρ2](ρ1ρ2)

2n−4
= 1 and ρ0ρ2 = ρ2ρ0, which implies

[ρ0, ρ1]
ρ2 = [ρ0, ρ1][(ρ0ρ1)

2, ρ2] = [ρ0, ρ1](ρ1ρ2)
−2n−4 ∈ 〈[ρ0, ρ1], [ρ1, ρ2]〉 and [ρ1, ρ2]

ρ0 =
ρ1[(ρ0ρ1)

2, ρ2]ρ2ρ1ρ2 = ρ1(ρ1ρ2)
−2n−4

ρ1(ρ1ρ2)
2 = (ρ1ρ2)

2n−4
(ρ1ρ2)

2 ∈ 〈[ρ1, ρ2]〉. It follows
that 〈[ρ1, ρ2]〉 E G because [ρ1, ρ2]

ρ1 = [ρ1, ρ2]
ρ2 = [ρ1, ρ2]

−1, and by Lemma 4.2, G′ =
〈[ρ0, ρ1], [ρ1, ρ2], [ρ0, ρ1]ρ2〉 = 〈[ρ0, ρ1], [ρ1, ρ2]〉 = 〈[ρ0, ρ1]〉〈[ρ1, ρ2]〉. In particular, |G′| ≤
|〈[ρ0, ρ1]〉||〈[ρ1, ρ2]〉| = o((ρ0ρ1)

2)o((ρ1ρ2)
2) ≤ 2 · 2n−4 = 2n−3, as required.

Now we are ready to finish the sufficiency proof by considering two cases. We use
another method than the quotient method, based on permutation representation graphs.
We give the details for G1 as they are simpler than those of G2 and might help the reader
understand the case G2.

Case 1: G = G1.
The key point is to construct a permutation group A of order at least 2n on a set Ω

that is an epimorphic image of G, that is, A has three generators, say a, b, c, satisfying
the same relations as do ρ0, ρ1, ρ2. The permutation representation graph has vertex set
Ω with a-, b- and c-edges. Recall that an x-edge (x=a, b or c) connects two points in Ω if
and only if x interchanges them. It is easy to have such graphs when n is small by taking
Ω as the set of right cosets of the subgroup 〈ρ0, ρ2〉 in G, where ρ0, ρ1 and ρ2 produce the
a-, b- and c-edges, respectively. We give in Figure 1 a permutation representation graph
for G1 and explain below how it is constructed.

Figure 1: A permutation representation graph corresponding to G1

Set t = 2n−3 and write ikjt = jt+ 4i+ k where 0 ≤ i ≤ t
4
− 1, 0 ≤ j ≤ 1 and 1 ≤ k ≤ 4.

Then a, b, c are permutations on the set {1, 2, · · · , 2n−2}:

a =
∏ t

4
−1

i=0 (i20, i
2
t )(i

3
0, i

3
t ), b =

∏ t
4
−1

i=0 (i10, i
2
0)(i

1
t , i

2
t )(i

3
0, i

4
0)(i

3
t , i

4
t ),

c = (010)(0
1
t )((

t
4 − 1)40)((

t
4 − 1)4t ) ·

∏ t
4
−1

i=0 (i20, i
3
0)(i

2
t , i

3
t ) ·

∏ t
4
−2

i=0 (i40, (i+ 1)10)(i
4
t , (i+ 1)1t ).

Here, (i+ 1)kjt = jt+ 4(i+ 1) + k for 0 ≤ i ≤ t
4
− 2. Note that 1-cycles are also given

in the product of distinct cycles of c and this would be helpful to compute conjugations of
some elements by c. It is easy to see that a is fixed under conjugacy of c, that is, ac = a.
It follows (ac)2 = 1. We further have

ab =
∏ t

4
−1

i=0 (i10, i
2
0, i

1
t , i

2
t )(i

3
0, i

4
t , i

3
t , i

4
0),

bc =
∏1
i=0(1 + ti, 3 + ti, · · · , t− 1 + ti, t+ ti, t− 2 + ti, · · · , 2 + ti),

(ab)2 =
∏ t

8
−1

i=0 (i10, i
1
t )(i

2
0, i

2
t )(i

3
0, i

3
t )(i

4
0, i

4
t ).

Let A = 〈a, b, c〉. Clearly, a2 = b2 = c2 = 1, (ab)4 = 1 and (bc)2
n−3

= 1. Furthermore,
(ab)2 is fixed under conjugacy of c, that is, ((ab)2)c = (ab)2, and hence [(ab)2, c] = 1.
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Clearly, A is transitive on {1, 2, · · · , 2n−2}, and the stabilizer A1 has order at least 4
because a, c ∈ A1. This implies that A is a permutation group of order at least 2n and
its generators a, b, c satisfy the same relations as do ρ0, ρ1, ρ2 in G. Then there is an
epimorphism φ : G 7→ A such that ρφ0 = a, ρφ1 = b and ρφ2 = c. Since |A| ≥ 2n and
|G| ≤ 2n, φ is an isomorphism, implying |G| = 2n.

The generators ρ0, ρ1, ρ2 in L1 := 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)4, (ρ1ρ2)2, (ρ0ρ2)2〉 satisfy
all relations in G. This implies that the map: ρ0 7→ ρ0, ρ1 7→ ρ1, ρ2 7→ ρ2, induces a
homomorphism from G to L1. By Proposition 2.2, o(ρ0ρ1) = 4 in L1 and hence o(ρ0ρ1) = 4
in G, and by Proposition 2.3, (G, {ρ0, ρ1, ρ2}) is a string C-group.

Case 2: G = G2.
As in Case 1, we give in Figure 2 a permutation representation graph for G2. Note

that, as in Case 1, bc consists of two paths of length 2t with alternating labels of b and c,
where t = 2n−4, and here all of the real complexity lies in the definition of a.

Figure 2: A permutation representation graph corresponding to G2

Write ci = t
8
− i − 1 for 0 ≤ i ≤ t

8
− 1, ikjt = jt + 8i + k and cikjt = jt + 8ci + k for

0 ≤ j ≤ 3 and 1 ≤ k ≤ 8. Note that 0 ≤ i ≤ t
8
− 1 if and only if 0 ≤ ci ≤ t

8
− 1. Then

a, b, c are permutations on the set {1, 2, · · · , 2n−2}:

a =
∏ t

8
−1

i=0 (i2t , i
2
2t)(i

2
0, ci

7
2t)(i

2
3t, ci

7
t )(i

7
0, i

7
3t)(i

3
t , i

3
2t)(i

3
0, ci

6
2t)(i

3
3t, ci

6
t )(i

6
0, i

6
3t)

(i40, ci
5
t )(i

5
0, ci

4
t )(i

4
2t, ci

5
3t)(i

5
2t, ci

4
3t),

b =
∏3
j=0

∏ t
8
−1

i=0 (i1jt, i
2
jt)(i

3
jt, i

4
jt)(i

5
jt, i

6
jt)(i

7
jt, i

8
jt),

c =
∏1
i=0(0

1
0+2ti)((

t
8 − 1)8t+2ti)((

t
8 − 1)80+2ti, 0

1
t+2ti)

∏3
j=0(

∏ t
8
−1

i=0 (i2jt, i
3
jt)(i

4
jt, i

5
jt)(i

6
jt, i

7
jt)·∏ t

8
−2

i=0 (i8jt, (i+ 1)1jt)).

Here, (i+ 1)1jt = jt+ 8(i+ 1) + 1 for 0 ≤ i ≤ t
8
− 2. It is easy to see that a is fixed under

conjugacy of c, that is, ac = a. It follows (ac)2 = 1.
Let α = a, b, or c. Then α is an involution. Recall that ci = t

8
− i − 1. Since

0 ≤ i ≤ t
8
− 1 if and only if 0 ≤ ci ≤ t

8
− 1, it is easy to see that if α interchanges ik1j1t and
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ik2j2t then α also interchanges cik1j1t and cik2j2t, and if α interchanges ik1j1t and cik2j2t then α also

interchanges cik1j1t and ik2j2t. These facts are very helpful for the following computations.

ab =
∏ t

8
−1

i=0 (i1t , i
2
t , i

1
2t, i

2
2t)(i

1
0, i

2
0, ci

8
2t, ci

7
2t)(i

1
3t, i

2
3t, ci

8
t , ci

7
t )(i

7
0, i

8
3t, i

7
3t, i

8
0)

(i30, ci
5
2t, i

3
3t, ci

5
t )(i

5
0, ci

3
t , ci

4
2t, i

6
3t)(i

6
0, i

5
3t, ci

3
2t, ci

4
t )(i

4
0, ci

6
t , i

4
3t, ci

6
2t),

bc =
∏1
i=0(1 + 2ti, 3 + 2ti, · · · , 2t− 1 + 2ti, 2t+ 2ti, 2t− 2 + 2ti, · · · , 2 + 2ti),

(ab)2 =
∏ t

8
−1

i=0 (i1t , i
1
2t)(i

1
0, ci

8
2t)(i

8
t , ci

1
3t)(i

8
0, i

8
3t)(i

2
t , i

2
2t)(i

2
0, ci

7
2t)(i

7
t , ci

2
3t)(i

7
0, i

7
3t)

(i30, i
3
3t)(i

3
t , ci

6
3t)(i

6
0, ci

3
2t)(i

6
t , i

6
2t)(i

4
0, i

4
3t)(i

4
t , ci

5
3t)(i

5
0, ci

4
2t)(i

5
t , i

5
2t),

(bc)2
n−4

=
∏t−1
i=0(1 + i, 2t− i)(2t+ 1 + i, 4t− i).

Let A = 〈a, b, c〉. Clearly, (ab)4 = 1 and (bc)2
n−3

= 1. Since ci = t
8
−i−1, 0 ≤ i ≤ t

8
−2

if and only if 1 ≤ ci ≤ t
8
− 1, and since c interchanges i8jt and (i+ 1)1jt, it also interchanges

ci8jt and c(i− 1)1jt, where c(i− 1) = t
8
− (i− 1)− 1. Thus,

c(ab)2c =
∏ t

8
−1

i=0 (i10, i
1
3t)(i

8
0, ci

1
2t)(i

1
t , ci

8
3t)(i

8
t , i

8
2t)(i

2
0, i

2
3t)(i

7
0, ci

2
2t)(i

2
t , ci

7
3t)(i

7
t , i

7
2t)

(i3t , i
3
2t)(i

3
0, ci

6
2t)(i

6
t , ci

3
3t)(i

6
0, i

6
3t)(i

4
t , i

4
2t)(i

4
0, ci

5
2t)(i

5
t , ci

4
3t)(i

5
0, i

5
3t).

It is clear that (bc)2
n−4

interchanges ik0 and ci9−kt as ik0 + ci9−kt = 2t + 1 (note that
1 ≤ ik0 ≤ t and t + 1 ≤ ci9−kt ≤ 2t), and similarly (bc)2

n−4
interchanges ik2t and ci9−k3t .

Then it is easy to check [(ab)2, c] = (ab)2c(ab)2c = (bc)2
n−4

. It follows that the generators
a, b, c of A satisfy the same relations as do ρ0, ρ1, ρ2 in G, and hence A is isomorphic to G
with order 2n. Clearly, A is transitive and A1 has order at least 4 because a, c ∈ A1. It
follows that |A| ≥ 2n and hence |G| = 2n. On the other hand, the generators ρ0, ρ1, ρ2 in
L1 := 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)4, (ρ1ρ2)2, (ρ0ρ2)2〉 (defined in Proposition 2.2) satisfy all
relations in G. This implies that o(ρ0ρ1) = 4 in G, and by Proposition 2.3, (G, {ρ0, ρ1, ρ2})
is a string C-group.

Now we prove the necessity. Let (G, {ρ0, ρ1, ρ2}) be a string C-group of rank three
with type {4, 2n−3} and |G| = 2n. Then each of ρ0, ρ1 and ρ2 has order 2, and we further
have o(ρ0ρ1) = 4, o(ρ0ρ2) = 2 and o(ρ1ρ2) = 2n−3. To finish the proof, we aim to show
that G ∼= G1 or G2. Since both G1 and G2 are C-groups of order 2n of type {4, 2n−3}, it
suffices to show that, in G, [(ρ0ρ1)

2, ρ2] = 1 or [(ρ0ρ1)
2, ρ2](ρ1ρ2)

2n−4
= 1, which will be

done by induction on n. This can easily be checked to be true for n = 10 by using the
computational algebra package Magma [2].

Assume n ≥ 11. Take N = 〈(ρ1ρ2)2
n−4〉. By Lemma 4.1, we have N E G and (G =

G/N, {ρ0, ρ1, ρ2}) (with ρi = Nρi) is a string C-group of rank three of type {4, 2n−4}.
Since |G| = 2n−1, by induction hypothesis we may assume G = G1 or G2, where

G1 = 〈ρ0, ρ1, ρ2 | ρ02, ρ12, ρ22, (ρ0ρ1)2
2
, (ρ1ρ2)

2n−4
, (ρ0ρ2)

2, [(ρ0ρ1)
2, ρ2]〉,

G2 = 〈ρ0, ρ1, ρ2 | ρ02, ρ12, ρ22, (ρ0ρ1)2
2
, (ρ1ρ2)

2n−4
, (ρ0ρ2)

2, [(ρ0ρ1)
2, ρ2](ρ1ρ2)

2n−5〉.

Suppose G = G2. Since N = 〈(ρ1ρ2)2
n−4〉 ∼= Z2, we have [(ρ0ρ1)

2, ρ2](ρ1ρ2)
2n−5

= 1 or
(ρ1ρ2)

2n−4
, implying [(ρ0ρ1)

2, ρ2] = (ρ1ρ2)
δ·2n−5

, where δ = 1 or −1. Since ((ρ0ρ1)
2)ρ0 =

(ρ0ρ1)
−2 = (ρ0ρ1)

2 and ρ0ρ2 = ρ2ρ0, we have [(ρ0ρ1)
2, ρ2]

ρ0 = [(ρ0ρ1)
2, ρ2], and hence

[ρ0, (ρ1ρ2)
δ·2n−5

] = 1. By Proposition 2.5, 1 = [(ρ0ρ1)
4, ρ2] = [(ρ0ρ1)

2, ρ2]
(ρ0ρ1)2 [(ρ0ρ1)

2, ρ2] =
((ρ1ρ2)

δ·2n−5
)(ρ0ρ1)

2
(ρ1ρ2)

δ·2n−5
= (ρ1ρ2)

δ·2n−4
, which is impossible because o(ρ1ρ2) = 2n−3.

11



Thus, G = G1. Since N = 〈(ρ1ρ2)2
n−4〉 ∼= Z2, we have [(ρ0ρ1)

2, ρ2] = 1 or (ρ1ρ2)
2n−4

.
For the latter, [(ρ0ρ1)

2, ρ2](ρ1ρ2)
2n−4

= (ρ1ρ2)
2n−3

= 1. It follows that G ∼= G1 or G2.

Proof of Theorem 1.3(2): For the sufficiency, we need to show that both G3 and G4

are string C-group of order 2n, where n ≥ 10 and

G3 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2
2
, (ρ1ρ2)

2n−4
, (ρ0ρ2)

2, [(ρ0ρ1)
2, (ρ1ρ2)

2]〉,
G4 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2

2
, (ρ1ρ2)

2n−4
, (ρ0ρ2)

2, [(ρ0ρ1)
2, (ρ1ρ2)

2](ρ1ρ2)
2n−5〉.

By Corollary 3.1, we only need to show that G4 is a string C-group.
Let G = G4. Then [(ρ0ρ1)

2, (ρ1ρ2)
2] = (ρ1ρ2)

2n−5
. Noting [(ρ0ρ1)

2, (ρ1ρ2)
2(ρ1ρ2)

2] =
[(ρ0ρ1)

2, (ρ1ρ2)
2][(ρ0ρ1)

2, (ρ1ρ2)
2](ρ1ρ2)

2
= (ρ1ρ2)

2n−4
= 1, we have [(ρ0ρ1)

2, (ρ1ρ2)
2n−5

] =
1, which implies [ρ1, ((ρ1ρ2)

2n−5
)ρ0 ] = 1 as [ρ1, (ρ1ρ2)

2n−5
] = 1. Thus, ρ1 fixes K =

〈(ρ1ρ2)2
n−5
, ((ρ1ρ2)

2n−5
)ρ0〉. Clearly, Kρ0 = Kρ2 = K, and so K E G. The three gen-

erators ρ0K, ρ1K, ρ2K in G/K satisfy the same relations as ρ0, ρ1, ρ2 in G3. In fact,
(ρ1Kρ2K)2

n−5
= K, and hence |G/K| ≤ 2n−1 (here we need to check that |G3| = 29 for

n = 9 and this can be done using Magma). Furthermore, [ρ1ρ2, ((ρ1ρ2)
2n−5

)ρ0 ] = 1 as
[ρ2, ((ρ1ρ2)

2n−5
)ρ0 ] = 1. It follows that |K| ≤ 4 and |G| ≤ 2n+1.

Suppose |G| = 2n+1. Then |G/K| = 2n−1 and |K| = 4. It follows that o(ρ1ρ2K) =
2n−5 in G/K and hence o(ρ1ρ2) = 2n−4 in G. Note that 2(n − 4) ≥ n as n ≥ 10,
by Proposition 2.9, CoreG(〈ρ1ρ2〉) > 1, so 〈(ρ1ρ2)2

n−5〉 E G. It follows that |K| = 2, a
contradiction. Thus |G| ≤ 2n.

We give in Figure 3 a permutation representation graph of G. In this case, bc consists
of two paths of length 2t and a circle of length 4t with alternating labels b and c, where
t = 2n−5.

Figure 3: A permutation representation graph corresponding to G4

Write ikjt = jt+ 8i+ k and cikjt = jt+ 8( t
8
− i− 1) + k for 0 ≤ i ≤ t

8
− 1, 0 ≤ j ≤ 7 and

1 ≤ k ≤ 8. The permutations a, b, c on the set {1, 2, · · · , 2n−2} are as follows:

12



a =
∏ t

8
−1

i=0 (i20, i
2
2t)(i

2
t , i

2
3t)(i

2
4t, i

2
6t)(i

2
5t, i

2
7t)(i

3
0, i

3
2t)(i

3
t , i

3
3t)(i

3
4t, i

3
6t)(i

3
5t, i

3
7t)

(i40, ci
5
7t)(i

5
0, ci

4
7t)(i

4
2t, ci

5
3t)(i

5
2t, ci

4
3t)(i

4
6t, ci

5
t )(i

5
6t, ci

4
t )(i

4
4t, ci

5
5t)(i

5
4t, ci

4
5t)

(i60, i
6
4t)(i

6
t , i

6
5t)(i

6
2t, i

6
6t)(i

6
3t, i

6
7t)(i

7
0, i

7
4t)(i

7
t , i

7
5t)(i

7
2t, i

7
6t)(i

7
3t, i

7
7t),

b =
∏7
j=0

∏ t
8
−1

i=0 (i1jt, i
2
jt)(i

3
jt, i

4
jt)(i

5
jt, i

6
jt)(i

7
jt, i

8
jt),

c = (010)(0
1
6t)((

t
8 − 1)8t )((

t
8 − 1)87t)(0

1
2t, 0

1
4t)((

t
8 − 1)83t, (

t
8 − 1)85t) ·

∏3
i=0((

t
8 − 1)82ti, 0

1
t+2ti)

·
∏7
j=0(

∏ t
8
−1

i=0 (i2jt, i
3
jt)(i

4
jt, i

5
jt)(i

6
jt, i

7
jt) ·

∏ t
8
−2

i=0 (i8jt, (i+ 1)1jt)).

Here, (i+ 1)kjt = jt+ 8(i+ 1) + k for 0 ≤ i ≤ t
8
− 2. It is easy to see that c fixes a under

conjugacy, that is, ac = a. It follows that (ac)2 = 1. Furthermore,

ab =
∏ t

8
−1

i=0 (i10, i
2
0, i

1
2t, i

2
2t)(i

1
t , i

2
t , i

1
3t, i

2
3t)(i

1
4t, i

2
4t, i

1
6t, i

2
6t)(i

1
5t, i

2
5t, i

1
7t, i

2
7t)

(i30, i
4
2t, ci

6
3t, ci

5
7t)(i

3
t , i

4
3t, ci

6
2t, ci

5
6t)(i

3
2t, i

4
0, ci

6
7t, ci

5
3t)(i

3
3t, i

4
t , ci

6
6t, ci

5
2t)

(ci34t, ci
4
6t, i

6
t , i

5
5t)(ci

3
5t, ci

4
7t, i

6
0, i

5
4t)(ci

3
6t, ci

4
4t, i

6
5t, i

5
t )(ci

3
7t, ci

4
5t, i

6
4t, i

5
0)

(i70, i
8
4t, i

7
4t, i

8
0)(i

7
t , i

8
5t, i

7
5t, i

8
t )(i

7
2t, i

8
6t, i

7
6t, i

8
2t)(i

7
3t, i

8
7t, i

7
7t, i

8
3t),

bc =
∏1
i=0(1 + 6ti, 3 + 6ti, · · · , 2t− 1 + 6ti, 2t+ 6ti, 2t− 2 + 6ti, · · · , 2 + 6ti)

(2t+ 1 + 2ti, 2t+ 3 + 2ti, · · · , 4t− 1 + 2ti, 6t− 2ti, 6t− 2− 2ti, · · · , 4t+ 2− 2ti),

(ab)2 =
∏ t

8
−1

i=0 (i10, i
1
2t)(i

1
t , i

1
3t)(i

1
4t, i

1
6t)(i

1
5t, i

1
7t)(i

2
0, i

2
2t)(i

2
t , i

2
3t)(i

2
4t, i

2
6t)(i

2
5t, i

2
7t)

(i30, ci
6
3t)(i

3
t , ci

6
2t)(i

3
2t, ci

6
7t)(i

3
3t, ci

6
6t)(i

6
0, ci

3
5t)(i

6
t , ci

3
4t)(i

6
4t, ci

3
7t)(i

6
5t, ci

3
6t)

(i40, ci
5
3t)(i

4
t , ci

5
2t)(i

4
2t, ci

5
7t)(i

4
3t, ci

5
6t)(i

5
0, ci

4
5t)(i

5
t , ci

4
4t)(i

5
4t, ci

4
7t)(i

5
5t, ci

4
6t)

(i70, i
7
4t)(i

7
t , i

7
5t)(i

7
2t, i

7
6t)(i

7
3t, i

7
7t)(i

8
0, i

8
4t)(i

8
t , i

8
5t)(i

8
2t, i

8
6t)(i

8
3t, i

8
7t),

(bc)2
n−5

=
∏t−1
i=0(1 + i, 2t− i)(6t+ 1 + i, 8t− i) ·

∏2t−1
i=0 (2t+ 1 + i, 6t− i),

For 0 ≤ i ≤ t
8
− 2, c interchanges i8jt and (i+ 1)1jt, and also ci8jt and c(i− 1)1jt. Thus,

c(ab)2c =
∏ t

8
−1

i=0 (i10, i
1
4t)(i

1
t , i

1
5t)(i

1
6t, i

1
2t)(i

1
7t, i

1
3t)(i

2
0, ci

7
3t)(i

7
0, ci

2
5t)(i

2
t , ci

7
2t)(i

7
t , ci

2
4t)

(i26t, ci
7
5t)(i

7
6t, ci

2
3t)(i

2
7t, ci

7
4t)(i

7
7t, ci

2
2t)(i

3
0, i

3
2t)(i

3
t , i

3
3t)(i

3
6t, i

3
4t)(i

3
7t, i

3
5t)

(i40, ci
5
5t)(i

5
0, ci

4
3t)(i

4
t , ci

5
4t)(i

5
t , ci

4
2t)(i

4
6t, ci

5
3t)(i

5
6t, ci

4
5t)(i

4
7t, ci

5
2t)(i

5
7t, ci

4
4t)

(i60, i
6
4t)(i

6
t , i

6
5t)(i

6
6t, i

6
2t)(i

6
7t, i

6
3t)(i

8
0, i

8
2t)(i

8
t , i

8
3t)(i

8
6t, i

8
4t)(i

8
7t, i

8
5t),

c(ab)2cb =
∏ t

8
−1

i=0 (i10, i
2
4t, ci

8
t , ci

7
3t)(ci

1
t , ci

2
5t, i

8
0, i

7
2t)(i

1
2t, i

2
6t, ci

8
5t, ci

7
7t)(ci

1
3t, ci

2
7t, i

8
4t, i

7
6t)

(i14t, i
2
0, ci

8
3t, ci

7
t )(ci

1
5t, ci

2
t , i

8
2t, i

7
0)(i

1
6t, i

2
2t, ci

8
7t, ci

7
5t)(ci

1
7t, ci

2
3t, i

8
6t, i

7
4t)

(i30, i
4
2t, ci

6
t , ci

5
5t)(ci

3
t , ci

4
3t, i

6
0, i

5
4t)(i

3
2t, i

4
0, ci

6
5t, ci

5
t )(ci

3
3t, ci

4
t , i

6
4t, i

5
0)

(i34t, i
4
6t, ci

6
3t, ci

5
7t)(ci

3
5t, ci

4
7t, i

6
2t, i

5
6t)(i

3
6t, i

4
4t, ci

6
7t, ci

5
3t)(ci

3
7t, ci

4
5t, i

6
6t, i

5
2t).

Let A = 〈a, b, c〉. It is clear that (bc)2
n−5

interchanges ij0 and ci9−jt for each 1 ≤ j ≤
8 because ij0 + ci9−jt = 2t + 1 (note that 1 ≤ ij0 ≤ t and t + 1 ≤ ci9−jt ≤ 2t), and
similarly (bc)2

n−5
also interchanges ij2t and ci9−j5t , ij3t and ci9−j4t , and ij6t and ci9−j7t . Thus,

[c(ab)2c, b] = (c(ab)2cb)2 = (bc)2
n−5

, and hence [(ab)2, cbc] = (bc)2
n−5

as [(bc)2
n−5
, c] = 1.

Since [(ab)2, b] = 1, Proposition 2.5 implies that [(ab)2, (bc)2] = [(ab)2, cbc][(ab)2, b]cbc =
(bc)2

n−5
. It follows that the generators a, b, c of A satisfy the same relations as do ρ0, ρ1, ρ2

in G, and hence A is isomorphic to G with order 2n.
Again let L1 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)4, (ρ1ρ2)2, (ρ0ρ2)2〉. The generators ρ0, ρ1, ρ2

in L1 satisfy all relations in G. This means that o(ρ0ρ1) = 4 in G, and by Proposition 2.3,
(G, {ρ0, ρ1, ρ2}) is a string C-group.

To prove the necessity, let (G, {ρ0, ρ1, ρ2}) be a string C-group of rank three with type
{4, 2n−4} and |G| = 2n. Then o(ρ0) = o(ρ1) = o(ρ2) = o(ρ0ρ2) = 2, o(ρ0ρ1) = 4 and
o(ρ1ρ2) = 2n−4. To finish the proof, we aim to show that G ∼= G3 or G4. Since both
G3 and G4 are C-groups of order 2n and of type {4, 2n−4}, it suffices to show that, in G,

13



[(ρ0ρ1)
2, (ρ1ρ2)

2] = 1 or [(ρ0ρ1)
2, (ρ1ρ2)

2](ρ1ρ2)
2n−5

= 1, which will be done by induction
on n. This is true for n = 10 by Magma.

Assume n ≥ 11. Take N = 〈(ρ1ρ2)2
n−5〉. By Lemma 4.1, we have N E G and (G =

G/N, {ρ0, ρ1, ρ2}) (with ρi = Nρi) is a string C-group of rank three of type {4, 2n−5}.
Since |G| = 2n−1, by induction hypothesis we may assume G = G3 or G4, where

G3 = 〈ρ0, ρ1, ρ2 | ρ02, ρ12, ρ22, (ρ0ρ1)2
2
, (ρ1ρ2)

2n−5
, (ρ0ρ2)

2, [(ρ0ρ1)
2, (ρ1ρ2)

2]〉,

G4 = 〈ρ0, ρ1, ρ2 | ρ02, ρ12, ρ22, (ρ0ρ1)2
2
, (ρ1ρ2)

2n−5
, (ρ0ρ2)

2, [(ρ0ρ1)
2, (ρ1ρ2)

2](ρ1ρ2)
2n−6〉.

Suppose G = G4. Since N = 〈(ρ1ρ2)2
n−5〉 ∼= Z2, we have [(ρ0ρ1)

2, (ρ1ρ2)
2](ρ1ρ2)

2n−6
= 1

or (ρ1ρ2)
2n−5

, which implies [(ρ0ρ1)
2, (ρ1ρ2)

2] = (ρ1ρ2)
δ·2n−6

, where δ = 1 or −1. By
Proposition 2.5, [(ρ0ρ1)

2, (ρ1ρ2)
4] = [(ρ0ρ1)

2, (ρ1ρ2)
2][(ρ0ρ1)

2, (ρ1ρ2)
2](ρ1ρ2)

2
= (ρ1ρ2)

δ·2n−5
,

and [(ρ0ρ1)
2, (ρ1ρ2)

8] = (ρ1ρ2)
δ·2n−4

= 1, implying [(ρ0ρ1)
2, (ρ1ρ2)

2n−6
] = 1. Thus, 1 =

[(ρ0ρ1)
4, (ρ1ρ2)

2] = [(ρ0ρ1)
2, (ρ1ρ2)

2](ρ0ρ1)
2
[(ρ0ρ1)

2, (ρ1ρ2)
2] = ((ρ1ρ2)

δ·2n−6
)(ρ0ρ1)

2
(ρ1ρ2)

δ·2n−6

= (ρ1ρ2)
δ·2n−5

, which is impossible because o(ρ1ρ2) = 2n−4.
Thus, G = G3. In this case, [(ρ0ρ1)

2, (ρ1ρ2)
2] = 1 or (ρ1ρ2)

2n−5
. For the latter,

[(ρ0ρ1)
2, (ρ1ρ2)

2](ρ1ρ2)
2n−5

= (ρ1ρ2)
2n−4

= 1. It follows that G ∼= G3 or G4.

Proof of Theorem 1.3(3): Let n ≥ 10 and let G = G5, G6, G7 or G8, where
G5 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2

2
, (ρ1ρ2)

2n−5
, (ρ0ρ2)

2, [ρ0, (ρ1ρ2)
2]2, [ρ0, (ρ1ρ2)

4]〉,
G6 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2

2
, (ρ1ρ2)

2n−5
, (ρ0ρ2)

2, [ρ0, (ρ1ρ2)
2]2(ρ1ρ2)

2n−6
, [ρ0, (ρ1ρ2)

4]〉,
G7 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2

2
, (ρ1ρ2)

2n−5
, (ρ0ρ2)

2, [ρ0, (ρ1ρ2)
2]2, [ρ0, (ρ1ρ2)

4](ρ1ρ2)
2n−6〉,

G8 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)2
2
, (ρ1ρ2)

2n−5
, (ρ0ρ2)

2,

[ρ0, (ρ1ρ2)
2]2(ρ1ρ2)

2n−6
, [ρ0, (ρ1ρ2)

4)](ρ1ρ2)
2n−6〉.

By Corollary 3.1, we only need to show that G6, G7 and G8 are string C-groups.
In all cases, [ρ0, (ρ1ρ2)

4] = 1 or (ρ1ρ2)
2n−6

. It follows from Proposition 2.5 that
[ρ0, (ρ1ρ2)

8] = [ρ0, (ρ1ρ2)
4]([ρ0, (ρ1ρ2)

4])(ρ1ρ2)
4

= 1. Noting that ((ρ1ρ2)
8)ρ1 = (ρ1ρ2)

−8 =
((ρ1ρ2)

8)ρ2 , we have K = 〈(ρ1ρ2)8〉 E G. Clearly, |K| ≤ 2n−8, and the three generators
ρ0K, ρ1K, ρ2K in G/K satisfy the same relations as ρ0, ρ1, ρ2 in G5 when n = 8. By
Magma, |G5| = 28 when n = 8, and hence |G| = |G : K| · |K| ≤ 2n.

Case 1: G = G6.
We construct a permutation representation graph of G, and in this graph, bc consists

four paths of length 2t and two circles of length 4t with alternating labels of b and c, where
t = 2n−6. We omit the drawing of the graph here because it is quite big.

Write ikjt = jt+ 8i+ k and cikjt = jt+ 8( t
8
− i− 1) + k, where 0 ≤ i ≤ t

8
− 1, 1 ≤ k ≤ 8,

0 ≤ j ≤ 15. The permutations a, b, c on the set {1, 2, · · · , 2n−2} are as follows:

a =
∏ t

8
−1

i=0 (i20, i
2
2t)(i

2
t , i

2
3t)(i

2
4t, i

2
7t)(i

2
8t, i

2
11t)(i

2
12t, i

2
14t)(i

2
13t, i

2
15t)(i

2
5t, ci

7
7t)(i

2
6t, ci

7
2t)

(i29t, ci
7
13t)(i

2
10t, ci

7
8t)(i

7
0, i

7
4t)(i

7
t , i

7
5t)(i

7
3t, i

7
6t)(i

7
9t, i

7
12t)(i

7
10t, i

7
14t)(i

7
11t, i

7
15t)

(i30, i
3
2t)(i

3
t , i

3
3t)(i

3
4t, i

3
7t)(i

3
8t, i

3
11t)(i

3
12t, i

3
14t)(i

3
13t, i

3
15t)(i

3
5t, ci

6
7t)(i

3
6t, ci

6
2t)

(i39t, ci
6
13t)(i

3
10t, ci

6
8t)(i

6
0, i

6
4t)(i

6
t , i

6
5t)(i

6
3t, i

6
6t)(i

6
9t, i

6
12t)(i

6
10t, i

6
14t)(i

6
11t, i

6
15t)

(i46t, i
4
8t)(i

4
7t, i

4
9t)(i

4
0, ci

5
15t)(i

4
t , ci

5
14t)(i

4
2t, ci

5
11t)(i

4
3t, ci

5
10t)(i

4
4t, ci

5
13t)(i

4
5t, ci

5
12t)

(i56t, i
5
8t)(i

5
7t, i

5
9t)(i

5
0, ci

4
15t)(i

5
t , ci

4
14t)(i

5
2t, ci

4
11t)(i

5
3t, ci

4
10t)(i

5
4t, ci

4
13t)(i

5
5t, ci

4
12t)

(i18t, ci
8
9t)(i

1
9t, ci

8
8t)(i

1
10t, ci

8
13t)(i

1
11t, ci

8
12t)(i

1
12t, ci

8
11t)(i

1
13t, ci

8
10t)(i

1
14t, ci

8
15t)(i

1
15t, ci

8
14t),
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b =
∏15
j=0

∏ t
8
−1

i=0 (i1jt, i
2
jt)(i

3
jt, i

4
jt)(i

5
jt, i

6
jt)(i

7
jt, i

8
jt),

c =
∏1
i=0(0

1
8it)(0

1
6t+8it)((

t
8 − 1)8t+8it)((

t
8 − 1)87t+8it)(0

1
2t+8it, 0

1
4t+8it)((

t
8 − 1)83t+8it, (

t
8 − 1)85t+8it)∏7

i=0((
t
8 − 1)82it, 0

1
(2i+1)t) ·

∏15
j=0(

∏ t
8
−1

i=0 (i2jt, i
3
jt)(i

4
jt, i

5
jt)(i

6
jt, i

7
jt) ·

∏ t
8
−2

i=0 (i8jt, (i+ 1)1jt)).

Here, (i+ 1)kjt = jt+ 8(i+ 1) + k for 0 ≤ i ≤ t
8
− 2. For 0 ≤ i ≤ t

8
− 2, c interchanges i8jt

and (i+ 1)1jt, and also ci8jt and c(i− 1)1jt. It is easy to see that a is fixed under conjugacy
by c, that is, ac = a. It follows that (ac)2 = 1. Furthermore

ab =
∏ t

8
−1

i=0 (i10, i
2
0, i

1
2t, i

2
2t)(i

1
t , i

2
t , i

1
3t, i

2
3t)(i

1
4t, i

2
4t, i

1
7t, i

2
7t)(i

1
5t, i

2
5t, ci

8
7t, ci

7
7t)

(i16t, i
2
6t, ci

8
2t, ci

7
2t)(i

1
8t, ci

7
9t, ci

8
12t, i

2
11t)(i

1
9t, ci

7
8t, i

1
10t, ci

7
13t)(i

1
11t, ci

7
12t, ci

8
9t, i

2
8t)

(i112t, ci
7
11t, ci

8
15t, i

2
14t)(i

1
13t, ci

7
10t, ci

8
14t, i

2
15t)(i

1
14t, ci

7
15t, ci

8
11t, i

2
12t)(i

1
15t, ci

7
14t, ci

8
10t, i

2
13t)

(i80, i
7
0, i

8
4t, i

7
4t)(i

8
t , i

7
t , i

8
5t, i

7
5t)(i

8
3t, i

7
3t, i

8
6t, i

7
6t)(i

8
8t, ci

2
9t, i

8
13t, ci

2
10t)

(i30, i
4
2t, ci

6
11t, ci

5
15t)(i

3
t , i

4
3t, ci

6
10t, ci

5
14t)(i

3
2t, i

4
0, ci

6
15t, ci

5
11t)(i

3
3t, i

4
t , ci

6
14t, ci

5
10t)

(i34t, i
4
7t, i

3
9t, ci

5
13t)(i

3
5t, ci

5
7t, ci

6
9t, ci

5
12t)(i

3
6t, ci

5
2t, i

3
11t, i

4
8t)(i

3
7t, i

4
4t, ci

6
13t, i

4
9t)

(i38t, i
4
11t, ci

6
2t, i

4
6t)(i

3
10t, ci

5
8t, ci

6
6t, ci

5
3t)(i

3
12t, i

4
14t, ci

6
t , ci

5
5t)(i

3
13t, i

4
15t, ci

6
0, ci

5
4t)

(i314t, i
4
12t, ci

6
5t, ci

5
t )(i

3
15t, i

4
13t, ci

6
4t, ci

5
0)(i

4
5t, ci

6
12t, ci

5
9t, ci

6
7t)(i

4
10t, ci

6
3t, ci

5
6t, ci

6
8t),

bc =
∏1
i=0(1 + 8ti, 3 + 8ti, · · · , 2t− 1 + 8ti, 2t+ 8ti, 2t− 2 + 8ti, · · · , 2 + 8ti)

(2t+ 1 + 8ti, 2t+ 3 + 8ti, · · · , 4t− 1 + 8ti, 6t+ 8ti, 6t− 2 + 8ti, · · · , 4t+ 2 + 8ti)
(4t+ 1 + 8ti, 4t+ 3 + 8ti, · · · , 6t− 1 + 8ti, 4t+ 8ti, 4t− 2 + 8ti, · · · , 2t+ 2 + 8ti)
(6t+ 1 + 8ti, 6t+ 3 + 8ti, · · · , 8t− 1 + 8ti, 8t+ 8ti, 8t− 2 + 8ti, · · · , 6t+ 2 + 8ti),

(bc)2
n−6

=
∏t−1
i=0(1 + i, 2t− i)(6t+ 1 + i, 8t− i)(8t+ 1 + i, 10t− i)(14t+ 1 + i, 16t− i)
·
∏2t−1
i=0 (2t+ 1 + i, 6t− i)(10t+ 1 + i, 14t− i).

The above computations imply (ab)4 = 1 and (bc)2
n−5

= 1. Furthermore,

(ab)2 =
∏ t

8
−1

i=0 (i10, i
1
2t)(i

1
t , i

1
3t)(i

1
4t, i

1
7t)(i

1
9t, i

1
10t)(i

1
5t, ci

8
7t)(i

1
6t, ci

8
2t)(i

1
8t, ci

8
12t)(i

1
11t, ci

8
9t)

(i112t, ci
8
15t)(i

1
13t, ci

8
14t)(i

1
14t, ci

8
11t)(i

1
15t, ci

8
10t)(i

8
0, i

8
4t)(i

8
t , i

8
5t)(i

8
3t, i

8
6t)(i

8
8t, i

8
13t)

(i20, i
2
2t)(i

2
t , i

2
3t)(i

2
4t, i

2
7t)(i

2
9t, i

2
10t)(i

2
5t, ci

7
7t)(i

2
6t, ci

7
2t)(i

2
8t, ci

7
12t)(i

2
11t, ci

7
9t)

(i212t, ci
7
15t)(i

2
13t, ci

7
14t)(i

2
14t, ci

7
11t)(i

2
15t, ci

7
10t)(i

7
0, i

7
4t)(i

7
t , i

7
5t)(i

7
3t, i

7
6t)(i

7
8t, i

7
13t)

(i34t, i
3
9t)(i

3
6t, i

3
11t)(i

3
0, ci

6
11t)(i

3
t , ci

6
10t)(i

3
2t, ci

6
15t)(i

3
3t, ci

6
14t)(i

3
5t, ci

6
9t)(i

3
7t, ci

6
13t)

(i38t, ci
6
2t)(i

3
10t, ci

6
6t)(i

3
12t, ci

6
t )(i

3
13t, i

6
0)(i

3
14t, ci

6
5t)(i

3
15t, ci

6
4t)(i

6
3t, i

6
8t)(i

6
7t, i

6
12t)

(i44t, i
4
9t)(i

4
6t, i

4
11t)(i

4
0, ci

5
11t)(i

4
t , ci

5
10t)(i

4
2t, ci

5
15t)(i

4
3t, ci

5
14t)(i

4
5t, ci

5
9t)(i

4
7t, ci

5
13t)

(i48t, ci
5
2t)(i

4
10t, ci

5
6t)(i

4
12t, ci

5
t )(i

4
13t, i

5
0)(i

4
14t, ci

5
5t)(i

4
15t, ci

5
4t)(i

5
3t, i

5
8t)(i

5
7t, i

5
12t),

c(ab)2c =
∏ t

8
−1

i=0 (i10, i
1
4t)(i

1
t , i

1
5t)(i

1
3t, i

1
6t)(i

1
8t, i

1
13t)(i

1
2t, ci

8
6t)(i

1
7t, ci

8
5t)(i

1
9t, ci

8
11t)(i

1
10t, ci

8
15t)

(i111t, ci
8
14t)(i

1
12t, i

8
8t)(i

1
14t, ci

8
13t)(i

1
15t, ci

8
12t)(i

8
0, i

8
2t)(i

8
t , i

8
3t)(i

8
4t, i

8
7t)(i

8
9t, i

8
10t)

(i24t, i
2
9t)(i

2
6t, i

2
11t)(i

2
0, ci

7
11t)(i

2
t , ci

7
10t)(i

2
2t, ci

7
15t)(i

2
3t, ci

7
14t)(i

2
5t, ci

7
9t)(i

2
7t, ci

7
13t)

(i28t, ci
7
2t)(i

2
10t, ci

7
6t)(i

2
12t, ci

7
t )(i

2
13t, ci

7
0)(i

2
14t, ci

7
5t)(i

2
15t, ci

7
4t)(i

7
7t, i

7
12t)(i

7
8t, i

7
3t)

(i30, i
3
2t)(i

3
t , i

3
3t)(i

3
4t, i

3
7t)(i

3
9t, i

3
10t)(i

3
5t, ci

6
7t)(i

3
6t, ci

6
2t)(i

3
8t, ci

6
12t)(i

3
11t, ci

6
9t)

(i312t, ci
6
15t)(i

3
13t, ci

6
14t)(i

3
14t, ci

6
11t)(i

3
15t, ci

6
10t)(i

6
0, i

6
4t)(i

6
t , i

6
5t)(i

6
3t, i

6
6t)(i

6
8t, i

6
13t)

(i43t, i
4
8t)(i

4
7t, i

4
12t)(i

4
0, ci

5
13t)(i

4
t , ci

5
12t)(i

4
2t, ci

5
8t)(i

4
4t, ci

5
15t)(i

4
5t, ci

5
14t)(i

4
6t, ci

5
10t)

(i49t, ci
5
5t)(i

4
10t, ci

5
t )(i

4
11t, i

5
0)(i

4
13t, ci

5
7t)(i

4
14t, ci

5
3t)(i

4
15t, ci

5
2t)(i

5
4t, i

5
9t)(i

5
6t, i

5
11t),
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[(ab)2, c] =
∏ t

8
−1

i=0 (i10, ci
8
6t, ci

8
t , i

1
7t)(i

1
t , i

1
6t, ci

8
0, ci

8
7t)(i

1
2t, i

1
4t, ci

8
5t, ci

8
3t)(i

1
3t, i

1
5t, ci

8
4t, ci

8
2t)

(i18t, i
1
15t, ci

8
9t, ci

8
14t)(i

1
9t, ci

8
15t, ci

8
8t, i

1
14t)(i

1
10t, ci

8
11t, ci

8
13t, i

1
12t)(i

1
11t, ci

8
10t, ci

8
12t, i

1
13t)

(i20, ci
7
15t, ci

7
t , i

2
14t)(i

2
t , ci

7
14t, ci

7
0, i

2
15t)(i

2
2t, ci

7
11t, ci

7
5t, i

2
12t)(i

2
3t, ci

7
10t, ci

7
4t, i

2
13t)

(i24t, ci
7
13t, ci

7
3t, i

2
10t)(i

2
5t, ci

7
12t, ci

7
2t, i

2
11t)(i

2
6t, i

2
8t, ci

7
7t, ci

7
9t)(i

2
7t, i

2
9t, ci

7
6t, ci

7
8t)

(i30, i
3
14t, ci

6
t , ci

6
15t)(i

3
t , i

3
15t, ci

6
0, ci

6
14t)(i

3
2t, i

3
12t, ci

6
5t, ci

6
11t)(i

3
3t, i

3
13t, ci

6
4t, ci

6
10t)

(i34t, i
3
10t, ci

6
3t, ci

6
13t)(i

3
5t, i

3
11t, ci

6
2t, ci

6
12t)(i

3
6t, ci

6
9t, ci

6
7t, i

3
8t)(i

3
7t, ci

6
8t, ci

6
6t, i

3
9t)

(i40, ci
5
6t, ci

5
t , i

4
7t)(i

4
t , i

4
6t, ci

5
0, ci

5
7t)(i

4
2t, i

4
4t, ci

5
5t, ci

5
3t)(i

4
3t, i

4
5t, ci

5
4t, ci

5
2t)

(i48t, i
4
15t, ci

5
9t, ci

5
14t)(i

4
9t, ci

5
15t, ci

5
8t, i

4
14t)(i

4
10t, ci

5
11t, ci

5
13t, i

4
12t)(i

4
11t, ci

5
10t, ci

5
12t, i

4
13t),

[(ab)2, c]b =
∏ t

8
−1

i=0 (i10, ci
8
15t, ci

8
t , i

1
14t)(i

1
t , ci

8
14t, ci

8
0, i

1
15t)(i

1
2t, ci

8
11t, ci

8
5t, i

1
12t)(i

1
3t, ci

8
10t, ci

8
4t, i

1
13t)

(i14t, ci
8
13t, ci

8
3t, i

1
10t)(i

1
5t, ci

8
12t, ci

8
2t, i

1
11t)(i

1
6t, i

1
8t, ci

8
7t, ci

8
9t)(i

1
7t, i

1
9t, ci

8
6t, ci

8
8t)

(i20, ci
7
6t, ci

7
t , i

2
7t)(i

2
t , i

2
6t, ci

7
0, ci

7
7t)(i

2
2t, i

2
4t, ci

7
5t, ci

7
3t)(i

2
3t, i

2
5t, ci

7
4t, ci

7
2t)

(i28t, i
2
15t, ci

7
9t, ci

7
14t)(i

2
9t, ci

7
15t, ci

7
8t, i

2
14t)(i

2
10t, ci

7
11t, ci

7
13t, i

2
12t)(i

2
11t, ci

7
10t, ci

7
12t, i

2
13t)

(i30, ci
6
6t, ci

6
t , i

3
7t)(i

3
t , i

3
6t, ci

6
0, ci

6
7t)(i

3
2t, i

3
4t, ci

6
5t, ci

6
3t)(i

3
3t, i

3
5t, ci

6
4t, ci

6
2t)

(i38t, i
3
15t, ci

6
9t, ci

6
14t)(i

3
9t, ci

6
15t, ci

6
8t, i

3
14t)(i

3
10t, ci

6
11t, ci

6
13t, i

3
12t)(i

3
11t, ci

6
10t, ci

6
12t, i

3
13t)

(i40, ci
4
14t, ci

5
t , ci

5
15t)(i

4
t , i

4
15t, ci

5
0, ci

5
14t)(i

4
2t, i

4
12t, ci

5
5t, ci

5
11t)(i

4
3t, i

4
13t, ci

5
4t, ci

5
10t)

(i44t, i
4
10t, ci

5
3t, ci

5
13t)(i

4
5t, i

4
11t, ci

5
2t, ci

5
12t)(i

4
6t, ci

5
9t, ci

5
7t, i

4
8t)(i

4
7t, ci

5
8t, ci

5
6t, i

4
9t),

Let A = 〈a, b, c〉. Now, one may see that [(ab)2, c]bc = [(ab)2, c]b. By Proposition 2.5,
[a, (bc)2] = [(ab)2, c]bc and [a, (cb)2] = [(ab)2, c]b. It follows that [a, (bc)2] = [a, (cb)2] and
hence [a, (bc)4] = 1. For 1 ≤ j ≤ 8, it is clear that (bc)2

n−6
interchanges ij0 and ci9−jt as

ij0 + ci9−jt = 2t+ 1 (note that 1 ≤ ij0 ≤ t and t+ 1 ≤ ci9−jt ≤ 2t), and similarly (bc)2
n−6

also
interchanges ij2t and ci9−j5t , ij4t and ci9−j3t , ij6t and ci9−j7t , ij8t and ci9−j9t , ij10t and ci9−j13t , ij12t and
ci9−j11t , and ij14t and ci9−j15t . This implies (bc)2

n−6
= ([(ab)2, c]b)2 = ([(ab)2, c]bc)2 = [a, (bc)2]2.

It follows that the generators a, b, c of A satisfy the same relations as do ρ0, ρ1, ρ2 in G,
and hence A is isomorphic to G with order 2n.

Again let L1 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)4, (ρ1ρ2)2, (ρ0ρ2)2〉. The generators ρ0, ρ1, ρ2
in L1 satisfy all relations in G. This means that o(ρ0ρ1) = 4 in G, and by Proposition 2.3,
(G, {ρ0, ρ1, ρ2}) is a string C-group.

Case 2: G = G7.
We construct a permutation representation graph of G, and in this graph, bc consists

one path of length 32t with alternating labels of c and b, where t = 2n−5. Again, the graph
is too big to be drawn in this paper.

Write ikjt = jt + 16i + k, where 0 ≤ i ≤ t
16
− 1, 1 ≤ k ≤ 16 and 0 ≤ j ≤ 1. The

permutations a, b, c on the set {1, 2, · · · , 2n−5}, are as follows:

a =
∏ t

16
−1

i=0 (i50, i
5
t )(i

6
0, i

6
t )(i

7
0, i

7
t )(i

8
0, i

8
t )(i

9
0, i

9
t )(i

10
0 , i

10
t )(i110 , i

11
t )(i120 , i

12
t )

b = (010)(0
1
t )((

t
16 − 1)160 , (

t
16 − 1)16t )

∏1
j=0(

∏ t
16
−1

i=0 (i2jt, i
3
jt)(i

4
jt, i

5
jt)(i

6
jt, i

7
jt)(i

8
jt, i

9
jt)(i

10
jt , i

11
jt )

(i12jt , i
13
jt )(i

14
jt , i

15
jt ) ·

∏ t
16
−2

i=0 (i16jt , (i+ 1)1jt)),

c =
∏1
j=0

∏ t
16
−1

i=0 (i1jt, i
2
jt)(i

3
jt, i

4
jt)(i

5
jt, i

6
jt)(i

7
jt, i

8
jt)(i

9
jt, i

10
jt )(i

11
jt , i

12
jt )(i

13
jt , i

14
jt )(i

15
jt , i

16
jt ).

Here, (i+ 1)kjt = jt+ 16(i+ 1) +k for 0 ≤ i ≤ t
16
− 2. It is easy to see that a is fixed under

conjugacy of c, that is, ac = a. It follows that (ac)2 = 1. Furthermore

16



ab = (( t
16 − 1)160 , (

t
16 − 1)16t ) ·

∏ t
16
−1

i=0 (i20, i
3
0)(i

2
t , i

3
t )(i

4
0, i

5
0, i

4
t , i

5
t )(i

6
0, i

7
t )(i

7
0, i

6
t )(i

8
0, i

9
t )(i

9
0, i

8
t )

(i100 , i
11
t )(i110 , i

10
t )(i120 , i

13
t , i

12
t , i

13
0 )(i140 , i

15
0 )(i15t , i

14
t ) ·

∏1
j=0

∏ t
16
−2

i=0 (i16jt , (i+ 1)1jt),

cb = (1, 3, 5, · · · , t− 1, 2t, 2t− 2, · · · , t+ 2, t+ 1, t+ 3, · · · , 2t− 1, t, t− 2, · · · , 4, 2)

The above computations imply (ab)4 = 1 and (bc)2
n−5

= 1. Moreover, we have

(ab)2 =
∏ t

16
−1

i=0 (i40, i
4
t )(i

5
0, i

5
t )(i

12
0 , i

12
t )(i130 , i

13
t ),

c(ab)2c =
∏ t

16
−1

i=0 (i30, i
3
t )(i

6
0, i

6
t )(i

11
0 , i

11
t )(i140 , i

14
t ),

[(ab)2, c] =
∏ t

16
−1

i=0 (i30, i
3
t )(i

4
0, i

4
t )(i

5
0, i

5
t )(i

6
0, i

6
t )(i

11
0 , i

11
t )(i120 , i

12
t )(i130 , i

13
t )(i140 , i

14
t ),

[(ab)2, c]b =
∏ t

16
−1

i=0 (i20, i
2
t )(i

4
0, i

4
t )(i

5
0, i

5
t )(i

7
0, i

7
t )(i

10
0 , i

10
t )(i120 , i

12
t )(i130 , i

13
t )(i150 , i

15
t ),

[(ab)2, c]bc =
∏ t

16
−1

i=0 (i10, i
1
t )(i

3
0, i

3
t )(i

6
0, i

6
t )(i

8
0, i

8
t )(i

9
0, i

9
t )(i

11
0 , i

11
t )(i140 , i

14
t )(i160 , i

16
t ).

Let A = 〈a, , b, c〉. Since [a, c] = 1, by Proposition 2.5 we have [a, (bc)2] = [(ab)2, c]bc,
and hence [a, (bc)2]2 = 1. The element (bc)2

n−6
interchanges ik0 and ikt as ikt − ik0 = t (note

that 1 ≤ ik0 ≤ t and t+ 1 ≤ ikt ≤ 2t), which implies [(ab)2, c]b[(ab)2, c]bc = (bc)2
n−6

. Clearly,
[(ab)2, c]c = [(ab)2, c]. Again by Proposition 2.5, [a, (bc)4] = [a, (bc)2][a, (bc)2](bc)

2
=

[(ab)2, c]bc[(ab)2, c](bc)
3

= ([(ab)2, c]cb[(ab)2, c]bc)(bc)
2

= ([(ab)2, c]b[(ab)2, c]bc)(bc)
2

= (bc)2
n−6

.
It follows that the generators a, b, c of A satisfy the same relations as do ρ0, ρ1, ρ2 in
G, and hence A is a quotient group of G. In particular, o(bc) = 2n−5 in A, and hence
o(ρ1ρ2) = 2n−5 in G. It follows that |G| = o(ρ1ρ2)

8 · |G/〈(ρ1ρ2)8〉| = 2n−8 · 256 = 2n.
Again let L1 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)4, (ρ1ρ2)2, (ρ0ρ2)2〉. The generators ρ0, ρ1, ρ2

in L1 satisfy all relations in G. This means that o(ρ0ρ1) = 4 in G, and by Proposition 2.3,
(G, {ρ0, ρ1, ρ2}) is a string C-group.

Case 3: G = G8.
We construct a permutation representation graph of G. In this graph, bc consists two

paths of length 2t and a circle of length 4t alternating labels of c and b, where t = 2n−6.
Again, the graph is too big to be drawn in this paper.

Write ikjt = jt + 16i + k and cikjt = jt + 16( t
16
− i − 1) + k, where 0 ≤ i ≤ t

16
− 1,

1 ≤ k ≤ 16 and 0 ≤ j ≤ 7. The permutations a, b, c on the set {1, 2, · · · , 2n−3} are as
follows:

a =
∏ t

16
−1

i=0 (i10, i
1
4t)(i

1
t , i

1
5t)(i

1
2t, i

1
6t)(i

1
3t, i

1
7t)(i

2
0, i

2
4t)(i

2
t , i

2
5t)(i

2
2t, i

2
6t)(i

2
3t, i

2
7t)

(i3t , i
3
2t)(i

3
5t, i

3
6t)(i

3
0, ci

14
4t )(i

3
3t, ci

14
t )(i34t, ci

14
6t )(i

3
7t, ci

14
3t )(i

14
0 , i

14
5t )(i

14
2t , i

14
7t )

(i4t , i
4
2t)(i

4
5t, i

4
6t)(i

4
0, ci

13
4t )(i

4
3t, ci

13
t )(i44t, ci

13
6t )(i

4
7t, ci

13
3t )(i

13
0 , i

13
5t )(i

13
2t , i

13
7t )

(i5t , i
5
4t)(i

5
3t, i

5
6t)(i

5
0, ci

12
2t )(i

5
2t, ci

12
6t )(i

5
5t, ci

12
t )(i57t, ci

12
5t )(i

12
0 , i

12
3t )(i

12
4t , i

12
7t )

(i6t , i
6
4t)(i

6
3t, i

6
6t)(i

6
0, ci

11
2t )(i

6
2t, ci

11
6t )(i

6
5t, ci

11
t )(i67t, ci

11
5t )(i

11
0 , i

11
3t )(i

11
4t , i

11
7t )

(i70, ci
10
5t )(i

7
t , ci

10
4t )(i

7
2t, ci

10
t )(i73t, ci

10
0 )(i74t, ci

10
7t )(i

7
5t, ci

10
6t )(i

7
6t, ci

10
3t )(i

7
7t, ci

10
2t )

(i80, ci
9
5t)(i

8
t , ci

9
4t)(i

8
2t, ci

9
t )(i

8
3t, ci

9
0)(i

8
4t, ci

9
7t)(i

8
5t, ci

9
6t)(i

8
6t, ci

9
3t)(i

8
7t, ci

9
2t)

(i150 , i
15
2t )(i

15
t , i

15
3t )(i

15
4t , i

15
6t )(i

15
5t , i

15
7t )(i

16
0 , i

16
2t )(i

16
t , i

16
3t )(i

16
4t , i

16
6t )(i

16
5t , i

16
7t ),

b = (010)((
t
16 − 1)16t )(016t)((

t
16 − 1)167t )(0

1
2t, 0

1
4t)((

t
16 − 1)163t , (

t
16 − 1)165t ) ·

∏3
i=0((

t
16 − 1)162ti, 0

1
(2i+1)t)

·
∏7
j=0(

∏ t
16
−1

i=0 (i2jt, i
3
jt)(i

4
jt, i

5
jt)(i

6
jt, i

7
jt)(i

8
jt, i

9
jt)(i

10
jt , i

11
jt )(i

12
jt , i

13
jt )(i

14
jt , i

15
jt ) ·

∏ t
16
−2

i=0 (i16jt , (i+ 1)1jt)),

c =
∏7
j=0

∏ t
16
−1

i=0 (i1jt, i
2
jt)(i

3
jt, i

4
jt)(i

5
jt, i

6
jt)(i

7
jt, i

8
jt)(i

9
jt, i

10
jt )(i

11
jt , i

12
jt )(i

13
jt , i

14
jt )(i

15
jt , i

16
jt ).

Here, (i+ 1)kjt = jt+ 16(i+ 1) +k for 0 ≤ i ≤ t
16
−2. For 0 ≤ i ≤ t

16
−2, b interchanges i16jt

and (i+ 1)1jt, and also ci16jt and c(i− 1)1jt. It is easy to see that a is fixed under conjugacy

17



of c, that is, ac = a. It follows that (ac)2 = 1. Furthermore

ab = (010, 0
1
2t, 0

1
6t, 0

1
4t)(0

1
t , (

t
16 − 1)164t , 0

1
7t, (

t
16 − 1)162t )

(013t, (
t
16 − 1)166t , 0

1
5t, (

t
16 − 1)160 )(( t

16 − 1)16t , (
t
16 − 1)165t , (

t
16 − 1)167t , (

t
16 − 1)163t )∏ t

16
−2

i=0 ((i+ 1)10, i
16
4t , (i+ 1)16t, i

16
2t )((i+ 1)1t , i

16
5t , (i+ 1)17t, i

16
3t )

((i+ 1)12t, i
16
6t , (i+ 1)14t, i

16
0 )((i+ 1)13t, i

16
7t , (i+ 1)15t, i

16
t )·∏ t

16
−1

i=0 (i2t , i
3
5t, i

2
6t, i

3
2t)(i

2
2t, i

3
6t, i

2
5t, i

3
t )(i

2
0, i

3
4t, ci

15
6t , ci

14
4t )(i

2
3t, i

3
7t, ci

15
3t , ci

14
t )

(i24t, i
3
0, ci

15
4t , ci

14
6t )(i

2
7t, i

3
3t, ci

15
t , ci

14
3t )(i

14
0 , i

15
5t , i

14
7t , i

15
2t )(i

14
2t , i

15
7t , i

14
5t , i

15
0 )

(i40, ci
12
4t , ci

13
7t , ci

12
2t )(i

4
t , i

5
2t, ci

13
6t , i

5
4t)(i

4
2t, i

5
t , i

4
4t, ci

12
6t )(i

4
3t, ci

12
t , i

4
5t, i

5
6t)

(i46t, i
5
5t, ci

13
t , i

5
3t)(i

4
7t, ci

12
3t , ci

13
0 , ci

12
5t )(i

5
0, ci

13
2t , ci

12
7t , ci

13
4t )(i

5
7t, ci

13
5t , ci

12
0 , ci

13
3t )

(i60, ci
10
2t , i

6
7t, ci

10
5t )(i

6
t , i

7
4t, ci

11
7t , ci

10
4t )(i

6
2t, ci

10
6t , i

6
5t, ci

10
t )(i63t, i

7
6t, ci

11
3t , ci

10
0 )

(i64t, i
7
t , ci

11
4t , ci

10
7t )(i

6
6t, i

7
3t, ci

11
0 , ci

10
3t )(i

7
0, ci

11
5t , i

7
7t, ci

11
2t )(i

7
2t, ci

11
t , i

7
5t, ci

11
6t )

(i80, ci
8
5t, i

8
6t, ci

8
3t)(i

8
t , ci

8
4t, i

8
7t, ci

8
2t)(i

9
0, ci

9
3t, i

9
6t, ci

9
5t)(i

9
t , ci

9
2t, i

9
7t, ci

9
4t),

cb =
∏1
i=0(1 + 6ti, 3 + 6ti, · · · , 2t− 1 + 6ti, 2t+ 6ti, 2t− 2 + 6ti, · · · , 2 + 6ti)

(2t+ 1 + 2ti, 2t+ 3 + 2ti, · · · , 4t− 1 + 2ti, 6t− 2ti, 6t− 2− 2ti, · · · , 4t+ 2− 2ti),

(cb)2
n−6

=
∏t−1
i=0(1 + i, 2t− i)(6t+ 1 + i, 8t− i) ·

∏2t−1
i=0 (2t+ 1 + i, 6t− i).

The above computations imply (ab)4 = 1, (bc)2
n−5

= 1, and (bc)2
n−6

= (cb)2
n−6

. Fur-
thermore,

(ab)2 =
∏ t

16
−1

i=0 (i10, i
1
6t)(i

1
t , i

1
7t)(i

1
2t, i

1
4t)(i

1
3t, i

1
5t)(i

16
0 , i

16
6t )(i
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t , i

16
7t )(i

16
2t , i

16
4t )(i

16
3t , i

16
5t )

(i2t , i
2
6t)(i
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2t, i
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5t)(i
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15
6t )(i

2
3t, ci

15
3t )(i

2
4t, ci

15
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15
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2t , i
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3
2t, i

3
5t)(i

3
0, ci

14
6t )(i

3
3t, ci
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13
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(i52t, i
5
4t)(i

5
3t, i
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12
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6t, ci
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0 )(i122t , i
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3t , i
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6
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2t, i

6
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11
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6
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6
4t, ci
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6
6t, ci
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11
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7
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7
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7
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10
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7
4t, ci
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7
6t, ci
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6t )(i
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5t )

(i80, i
8
6t)(i

8
t , i

8
7t)(i

8
2t, i

8
4t)(i

8
3t, i

8
5t)(i

9
0, i

9
6t)(i

9
t , i

9
7t)(i

9
2t, i

9
4t)(i

9
3t, i

9
5t)

c(ab)2c =
∏ t
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6t)(i
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1
5t)(i

1
0, ci

16
6t )(i
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3t, ci

16
3t )(i

1
4t, ci

16
4t )(i

1
7t, ci

16
t )(i160 , i

16
7t )(i

16
2t , i

16
5t )

(i20, i
2
6t)(i

2
t , i

2
7t)(i

2
2t, i

2
4t)(i

2
3t, i

2
5t)(i

15
0 , i

15
6t )(i

15
t , i

15
7t )(i

15
2t , i

15
4t )(i

15
3t , i

15
5t )

(i32t, i
3
4t)(i

3
3t, i

3
5t)(i

3
0, ci

14
7t )(i

3
t , ci

14
6t )(i

3
6t, ci

14
t )(i37t, ci

14
0 )(i142t , i

14
4t )(i

14
3t , i

14
5t )

(i4t , i
4
6t)(i

4
2t, i

4
5t)(i

4
0, ci

13
6t )(i

4
3t, ci

13
3t )(i

4
4t, ci

13
4t )(i

4
7t, ci

13
t )(i130 , i

13
7t )(i

13
2t , i

13
5t )

(i50, i
5
7t)(i

5
2t, i

5
5t)(i

5
t , ci

12
7t )(i

5
3t, ci

12
3t )(i

5
4t, ci

12
4t )(i

5
6t, ci

12
0 )(i12t , i

12
6t )(i

12
2t , i

12
5t )

(i62t, i
6
4t)(i

6
3t, i

6
5t)(i

6
0, ci

11
7t )(i

6
t , ci

11
6t )(i

6
6t, ci

11
t )(i67t, i

11
0 )(i112t , i

11
4t )(i

11
3t , i

11
5t )

(i70, i
7
6t)(i

7
t , i

7
7t)(i

7
2t, i

7
4t)(i

7
3t, i

7
5t)(i

10
0 , i

10
6t )(i

10
t , i

10
7t )(i

10
2t , i

10
4t )(i

10
3t , i

10
5t )

(i80, i
8
7t)(i

8
2t, i

8
5t)(i

8
t , ci

9
7t)(i

8
3t, ci

9
3t)(i

8
4t, ci

9
4t)(i

8
6t, ci

9
0)(i

9
t , i

9
6t)(i

9
2t, i

9
5t)

[(ab)2, c] =
∏ t

16
−1

i=0 (i10, i
1
t , ci

16
t , ci

16
0 )(i12t, ci

16
4t , ci

16
5t , i

1
3t)(i

1
4t, i

1
5t, ci

16
3t , ci

16
2t )(i

1
6t, ci

16
6t , ci

16
7t , i

1
7t)

(i20, ci
15
0 , ci

15
t , i

2
t )(i

2
2t, i

2
3t, ci

15
5t , ci

15
4t )(i

2
4t, ci

15
2t , ci

15
3t , i

2
5t)(i

2
6t, i

2
7t, ci

15
7t , ci

15
6t )

(i30, i
3
t , ci

14
t , ci

14
0 )(i32t, i

3
3t, ci

14
5t , ci

14
4t )(i

3
4t, ci

14
2t , ci

14
3t , i

3
5t)(i

3
6t, ci

14
6t , ci

14
7t , i

3
7t)

(i40, ci
13
0 , ci

13
t , i

4
t )(i

4
2t, ci

13
4t , ci

13
5t , i

4
3t)(i

4
4t, i

4
5t, ci

13
3t , ci

13
2t )(i

4
6t, i

4
7t, ci

13
7t , ci

13
6t )

(i50, i
5
t , ci

12
t , ci

12
0 )(i52t, ci

12
4t , ci

12
5t , i

5
3t)(i

5
4t, i

5
5t, ci

12
3t , ci

12
2t )(i

5
6t, ci

12
6t , ci

12
7t , i

5
7t)

(i60, ci
11
0 , ci

11
t , i

6
t )(i

6
2t, i

6
3t, ci

11
5t , ci

11
4t )(i

6
4t, ci

11
2t , ci

11
3t , i

6
5t)(i

6
6t, i

6
7t, ci

11
7t , ci

11
6t )

(i70, i
7
t , ci

10
t , ci

10
0 )(i72t, i

7
3t, ci

10
5t , ci

10
4t )(i

7
4t, ci

10
2t , ci

10
3t , i

7
5t)(i

7
6t, ci

10
6t , ci

10
7t , i

7
7t)

(i80, ci
9
0, ci

9
t , i

8
t )(i

8
2t, ci

9
4t, ci

9
5t, i

8
3t)(i

8
4t, i

8
5t, ci

9
3t, ci

9
2t)(i

8
6t, i

8
7t, ci

9
7t, ci

9
6t),
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[(ab)2, c]b =
∏ t

16
−1

i=0 (i10, ci
16
0 , ci

16
t , i

1
t )(i

1
2t, ci

16
4t , ci

16
5t , i

1
3t)(i

1
4t, i

1
5t, ci

16
3t , ci

16
2t )(i

1
6t, i

1
7t, ci

16
7t , ci

16
6t )

(i20, i
2
t , ci

15
t , ci

15
0 )(i22t, i

2
3t, ci

15
5t , ci

15
4t )(i

2
4t, ci

15
2t , ci

15
3t , i

2
5t)(i

2
6t, ci

15
6t , ci

15
7t , i

2
7t)

(i30, ci
14
0 , ci

14
t , i

3
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3
2t, i

3
3t, ci

14
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14
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3
4t, ci

14
2t , ci

14
3t , i

3
5t)(i

3
6t, i

3
7t, ci

14
7t , ci

14
6t )

(i40, i
4
t , ci

13
t , ci

13
0 )(i42t, ci

13
4t , ci

13
5t , i

4
3t)(i

4
4t, i

4
5t, ci

13
3t , ci

13
2t )(i

4
6t, ci

13
6t , ci

13
7t , i

4
7t)

(i50, ci
12
0 , ci

12
t , i

5
t )(i

5
2t, ci

12
4t , ci

12
5t , i

5
3t)(i

5
4t, i

5
5t, ci

12
3t , ci

12
2t )(i

5
6t, i

5
7t, ci

12
7t , ci

12
6t )

(i60, i
6
t , ci

11
t , ci

11
0 )(i62t, i

6
3t, ci

11
5t , ci

11
4t )(i

6
4t, ci

11
2t , ci

11
3t , i

6
5t)(i

6
6t, ci

11
6t , ci

11
7t , i

6
7t)

(i70, ci
10
0 , ci

10
t , i

7
t )(i

7
2t, i

7
3t, ci

10
5t , ci

10
4t )(i

7
4t, ci

10
2t , ci

10
3t , i

7
5t)(i

7
6t, i

7
7t, ci

10
7t , ci

10
6t )

(i80, i
8
t , ci

9
t , ci

9
0)(i

8
2t, ci

9
4t, ci

9
5t, i

8
3t)(i

8
4t, i

8
5t, ci

9
3t, ci

9
2t)(i

8
6t, ci

9
6t, ci

9
7t, i

8
7t),

Let A = 〈a, , b, c〉. Now it is easy to see that [(ab)2, c]c = [(ab)2, c]−1 and [(ab)2, c]bc =
([(ab)2, c]b)−1. Every 4-cycle in the product of distinct 4-cycles of [(ab)2, c] is either a 4-cycle
or the inverse of a 4-cycle in [(ab)2, c]b, and [(ab)2, c][(ab)2, c]b is an involution, which fixes
2n−4 points including the point 1. Then [(ab)2, c][(ab)2, c]b = [(ab)2, c]b[(ab)2, c]. It is clear
that (cb)2

n−6
interchanges ij0 and ci16−jt for each 1 ≤ j ≤ 16 because ij0+ci16−jt = 2t+1 (note

that 1 ≤ ij0 ≤ t and t + 1 ≤ ci16−jt ≤ 2t), and similarly (cb)2
n−6

also interchanges ij2t and
ci16−j5t , ij3t and ci16−j4t , and ij6t and ci16−j7t . It follows that (cb)2

n−6
= [(ab)2, c]2 = ([(ab)2, c]b)2.

Since [a, c] = 1, by Proposition 2.5 we have [a, (bc)2]2 = ([(ab)2, c]bc)2 = ([(ab)2, c]b)−2 =
(cb)−2

n−6
= (bc)2

n−6
and [a, (bc)4] = [a, (bc)2][a, (bc)2](bc)

2
= ([(ab)2, c][(ab)2, c]bcbc)bc =

([(ab)2, c]([(ab)2, c]−b)bc)bc = ([(ab)2, c]2)bc = ((cb)2
n−6

)bc = (bc)2
n−6

. This implies that the
generators a, b, c of A satisfy the same relations as do ρ0, ρ1, ρ2 in G, and hence A is a
quotient group of G. In particular, o(cb) = 2n−5 in A, and hence o(ρ1ρ2) = 2n−5 in G. It
follows that |G| = o(ρ1ρ2)

8 · |G/〈(ρ1ρ2)8〉| = 2n−8 · 256 = 2n.
Again let L1 = 〈ρ0, ρ1, ρ2 | ρ20, ρ21, ρ22, (ρ0ρ1)4, (ρ1ρ2)2, (ρ0ρ2)2〉. The generators ρ0, ρ1, ρ2

in L1 satisfy all relations in G. This means that o(ρ0ρ1) = 4 in G, and by Proposition 2.3,
(G, {ρ0, ρ1, ρ2}) is a string C-group.

Now we prove the necessity. Let (G, {ρ0, ρ1, ρ2}) be a string C-group of rank three
with type {4, 2n−5} and |G| = 2n. Then each of ρ0, ρ1 and ρ2 has order 2, and we further
have o(ρ0ρ1) = 4, o(ρ0ρ2) = 2 and o(ρ1ρ2) = 2n−5. To finish the proof, we only need to
prove G ∼= G5, G6, G7 or G8. Since G5, G6, G7 and G8 are C-groups of order 2n of type
{4, 2n−5}, it suffices to show that, in G, [ρ0, (ρ2ρ1)

2]2 = 1 or [ρ0, (ρ2ρ1)
2]2(ρ1ρ2)

2n−6
= 1,

and [ρ0, (ρ2ρ1)
4] = 1 or [ρ0, (ρ2ρ1)

4](ρ1ρ2)
2n−6

= 1, which will be done by induction on n.
This is true for n = 10 by Magma.

Assume n ≥ 11. Take N = 〈(ρ1ρ2)2
n−6〉. By Lemma 4.1, we have N E G and (G =

G/N, {ρ0, ρ1, ρ2}) (with ρi = Nρi) is a string C-group of rank three of type {4, 2n−6}.
Since |G| = 2n−1, by induction hypothesis we may assume G = G5, G6, G7 or G8, where

G5 = 〈ρ0, ρ1, ρ2 | ρ02, ρ12, ρ22, (ρ0ρ1)4, (ρ1ρ2)2
n−6

, [ρ0, (ρ1ρ2)
2]2, [ρ0, (ρ1ρ2)

4]〉,

G6 = 〈ρ0, ρ1, ρ2 | ρ02, ρ12, ρ22, (ρ0ρ1)4, (ρ1ρ2)2
n−6

, [ρ0, (ρ1ρ2)
2]2(ρ1ρ2)

2n−7
, [ρ0, (ρ1ρ2)

4]〉,

G7 = 〈ρ0, ρ1, ρ2 | ρ02, ρ12, ρ22, (ρ0ρ1)4, (ρ1ρ2)2
n−6

, [ρ0, (ρ1ρ1)
2]2, [ρ0, (ρ1ρ2)

4](ρ1ρ2)
2n−7〉,

G8 = 〈ρ0, ρ1, ρ2 | ρ02, ρ12, ρ22, (ρ0ρ1)4, (ρ1ρ2)2
n−6

, [ρ0, (ρ1ρ2)
2]2(ρ1ρ2)

2n−7
, [ρ0, (ρ1ρ2)

4](ρ1ρ2)
2n−7〉.

Then [ρ0, (ρ1ρ2)
4] = 1, or [ρ0, (ρ1ρ2)

4](ρ1ρ2)
2n−7

= 1, and since N = 〈(ρ1ρ2)2
n−6〉 ∼=

Z2, we have [ρ0, (ρ1ρ2)
4] = (ρ1ρ2)

δ·2n−7
, where δ = 0,±1, 2. It follows [ρ0, (ρ1ρ2)

8] =
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[ρ0, (ρ1ρ2)
4][ρ0, (ρ1ρ2)

4](ρ1ρ2)
4

= (ρ1ρ2)
δ·2n−6

, and similarly [ρ0, (ρ1ρ2)
16] = (ρ1ρ2)

δ·2n−5
= 1.

Since n ≥ 11, we have [ρ0, (ρ1ρ2)
2n−7

] = 1, that is, ((ρ1ρ2)
2n−7

)ρ0 = (ρ1ρ2)
2n−7

.
Suppose G = G7 or G8. Then [ρ0, (ρ1ρ2)

4](ρ1ρ2)
2n−7

= 1, that is, [ρ0, (ρ1ρ2)
4] =

(ρ1ρ2)
γ·2n−7

for γ = ±1. It follows that 1 = [ρ20, (ρ1ρ2)
4] = [ρ0, (ρ1ρ2)

4]ρ0 [ρ0, (ρ1ρ2)
4] =

((ρ1ρ2)
γ·2n−7

)ρ0(ρ1ρ2)
γ·2n−7

= (ρ1ρ2)
γ·2n−6

, which contradicts o(ρ1ρ2) = 2n−5.
Suppose G = G6. Then [ρ0, (ρ1ρ2)

2]2(ρ1ρ2)
2n−7

= 1, that is, [ρ0, (ρ1ρ2)
2]2 = (ρ1ρ2)

γ2n−7

for γ = ±1. Recall that ((ρ1ρ2)
γ2n−7

)ρ0 = (ρ1ρ2)
γ2n−7

. On the other hand, 1 = [ρ20, (ρ1ρ2)
2] =

[ρ0, (ρ1ρ2)
2][ρ0, (ρ1ρ2)

2]ρ0 , and hence ([ρ0, (ρ1ρ2)
2]2)ρ0 = ([ρ0, (ρ1ρ2)

2]ρ0)2 = ([ρ0, (ρ1ρ2)
2]2)−1,

that is, ((ρ1ρ2)
γ2n−7

)ρ0 = (ρ1ρ2)
−γ2n−7

. It follows (ρ1ρ2)
γ2n−7

= (ρ1ρ2)
−γ2n−7

and (ρ1ρ2)
γ2n−6

=
1, a contradiction.

Thus, G = G5. Since N = 〈(ρ1ρ2)2
n−6〉 ∼= Z2, we have [ρ0, (ρ1ρ2)

2]2 = 1 or (ρ1ρ2)
2n−6

and [ρ0, (ρ1ρ2)
4] = 1 or (ρ1ρ2)

2n−6
. It follows that G ∼= G5, G6, G7 or G8.
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