FlexForward: Enabling an SDN Manageable

Forwarding Engine

Rafael D. Vencioneck, Gilmar Vassoler,
Magnos Martinello, Moises R.N. Ribeiro
Federal University of Espirito Santo (UFES)
Vitéria - ES - Brazil
{rafael.vencioneck @aluno, gilmarvassoler@ele,
magnos @inf, moises @ele}.ufes.br

Abstract—This paper presents FlexForward, an approach for
dynamically manage SDN data plane forwarding mechanisms.
This feature leverages SDN flexibility in two aspects: (i) it provides
a new management method, in which topological infrastructure
requirements are satisfied by the most appropriate forwarding
mechanism, residing in each managed network element; (ii)
further decoupling between control and data planes in SDN by
offering tableless forwarding support. As proof of concept, an
implementation with different forwarding methods is carried out
in Open vSwitch. Results show that FlexForward is able to achieve
seamless switchover between forwarding methods. It also allows
efficient tableless forwarding implementations, improving by up
to 31% in latency, and 90% in throughput, when compared to
regular OpenFlow.

I. INTRODUCTION

The large popularity of Software Defined Networking
(SDN) in both academic and industry environments revealed
how relevant is to reach network programmability, enabled
by decoupling of control from the physical infrastructure. A
protocol called OpenFlow (OF) [1] was the first SDN enabler,
providing an Open API to program the network gear.

Despite OF improved features in its latest releases, there
are yet many practical problems to be addressed. Kong et al.
[2] points out latency and flow table size as the main OF issues.
Latency is increased due to communications between switch
and controller, which may take a non-negligible time, and by
the use of small flow table sizes, which forces the switch to
send more Packet-In messages to controller. Larger flow tables
requires more Ternary Content Addressable Memory (TCAM),
increasing substantially the switch cost.

These issues must be considered even on OF most promis-
ing application domain, the Data Center Networks (DCN),
which are divided into network-centric and server-centric de-
signs [3]. While network-centric approach uses a hierarchy
cluster of high-end switches with large number of ports to
interconnect the servers, server-centric networks approach re-
duces or eliminates physical switches and routers. This implies
that servers work as network devices, doing packet forward
besides computational tasks. DCNs typically have thousands of
servers and switches [3], generating a large number of flows in
each SDN data plane element, possibly causing an unnecessary
overload on the remote controller.

The server-centric approach unfolds new implementation

in Open vSwitch

Cesar Marcondes
Federal University of Sao Carlos
Sédo Carlos - SP - Brazil
marcondes @dc.ufscar.br

possibilities for network designs and services, such as routing
algorithms or traffic engineering. Depending on network de-
sign, a specific forwarding model needs to be supported and
deployed in the data plane, which must be programmed to
understand the necessary modifications for supporting a new
algorithm. Although one may argue that this feature could be
handled by the SDN central controller, undesired delay and
throughput issues may affect the performance of this design.

In this paper we propose FlexForward, an approach to
achieve a broader management for network elements by en-
abling flexible adaptation of forwarding algorithms in server-
centric Software Defined DCNs. The topological management,
performed by the controller, defines requirements for a given
time, and by using its network knowledge, it instructs FlexFor-
ward enabled switches to dynamically modify their forwarding
methods by sending an OF message. Our implementation is
an extension of Open vSwitch (OVS) and its performance is
assured by using tableless forwarding techniques.

II. FLEXFORWARD OVERVIEW

Traditional OF enabled equipments provide their table
lookup as unique operation for supporting packet switching.
For illustration purpose, we assume a HyperCube topology
presented at Figure 1(a). In order to configure a route from
point A to B, OF controller must insert a rule in each switch
between the ends. Packets matching those rules from a table
lookup operation are processed by specific actions, to then be
forwarded through the path. Often DCN forwarding models,
regarding to the data plane, are just simple operations [3]-[5],
reaching more efficiency if the switch could itself perform
a specific operation for each model. In HyperCube routing
algorithm, this is a simple logical XOR operation, who gives
the output port for each element.

Based on SDN principles, FlexForward key feature is
to provide a flexible forwarding model by offering building
blocks to support various models in the data plane. An SDN
controller is responsible for managing the whole topology,
being able to automatically choose the routing design that
suits to a specific network interconnection project. Rather than
inserting rules in each switch by sending flow-mod messages
that will process packets in a static table lookup model, it only
needs to instruct which available method the switch should use
by sending OF messages to each of them.

OpenFlow Controller

X i
,
'
(a)

User Space i

- - - 3 _____
Kernel Space =

r—)l ovs_flow_tbl lockup()]

Y

l internal dewv_xmit()]

A J

SET_FWMODEL

do_output()]
A

= I i .
sysfs - flexforward execute() —_— J
- T Tableless Forwarding Modes

(b)

Fig. 1: FlexForward: (a) Application in a hypercube topology
(b) Overview of switch Implementation

l ovs_flow extract()]

Regular OpenFlow
Pr—

III. IMPLEMENTATION

As proof of concept, FlexForward was implemented as
an extension of Open vSwitch (OVS)' version 1.9.3, mainly
in kernel module. OVS is integrated on Linux kernel 3.3
or greater. Thus, as OVS supports OpenFlow, it became our
natural choice for SDN southbound API.

The forwarding methods are placed between the flow ex-
traction and the matching functions, as showed in Figurel(b),
making possible to use new headers if necessary, and then
forward packets without checking the flow table. In case of
regular OF traffic, FlexForward function becomes transparent,
not changing usual OVS packet workflow.

It is worth noting that a new forwarding method, when
built from scratch, can require thousands of lines of code. For
instance, BCube model required 17K lines [3]. Leveraging
OVS already implemented forwarding engine, FlexForward
extension provides building blocks for easily define a new
specific function, which may be implemented between others,
reducing implementation cost from thousands to dozens of
lines.

FlexForward improves OpenFlow 1.0 through “vendor
extensions”. New “vendor actions” were added inside OVS
Nicira’s extensions, providing protocol indefinitely expansions
without modifying its standard messages. The first message
is SET_FWMODEL, which tells the switch which forwarding
model to use. In order to ensure operation performance, it
must keep packet processing in OVS kernel module. Therefore,
every variable regarding to network state is stored on sysfs
linux file system, which allows any information coming from
the controller through a vendor message to be handled by OVS
kernel module.

FlexForward controller application was developed to run on
Ryu?. Since Ryu already supports Nicira Extensions, only the
new messages was required to be added in it. All controller
logic for changing the forwarding model by sending vendor
messages, handling OF packet-in (in case of using regular
OF mode), and learning the topology by using Link Layer
Discovery Protocol (LLDP) was also written.

A. Deployed Forwarding modes

The following forwarding modes were used for a initial
deployment.

Regular OpenFlow is the standard mode when FlexFor-
ward comes up. It will behave as OF switch until it receives
a command to change the forwarding design.

Hypercube topology links switches mainly on server-
centric DCNs. The minimal complete configuration is illus-
trated on Figure 1(a), with eight switches. Each element
has three neighbors. To conceive the correct forwarding, the
switches must store addresses for themselves and for each of
its neighbors with associated port. We use 32 bits variables on
sysfs to store these values. When a packet arrives, FlexForward
extracts the first 32 bit of the destination MAC, which contains
HyperCube node’s destination address. A HyperCube node
address must have exactly one different bit, when compared
with its neighbors addresses, unveiled by a logical XOR
operation.

The KeyFlow [4] forwarding method is supposed to be
used in any topology. It relies on Chinese remainder theorem
to design global path ID and switch local keys, in which a
MOD operation between the global path ID and switch local
key gives the output port. The controller calculates the global
path ID and send it inside the packet. The local key is installed
on the switch through an OF message, and stored in a 32 bit
variable. For validation purposes, the path ID is carried in
MAC header destination field.

IV. EVALUATION

In order to evaluate FlexForward, we accomplished two
main tests using the topology described in Figure 1(a). The
first covers overall FlexForward performance through latency,
jitter, and throughput for the forwarding mechanisms presented
in section III-A. For the second test, we verified packet
behavior for a switchover event from HyperCube to KeyFlow.
In OpenFlow tests, the controller ran HyperCube algorithm.

Thttp://openvswitch.org

Zhttp://osrg.github.io/ryu/

Eight virtual machines (VM) were used to set up a min-
imal HyperCube environment. In order to isolate the traffic,
twelve virtual networks were used to emulate point-to-point
connections between VMs. The physical machine is an IBM
Server System x3200M3, with an Intel Xeon X3430, 2.40Ghz
CPU and 32GB of RAM, running VMWare ESXi 5.1.0 3.
Each VM ran a 32 bit linux Debian 7, kernel 3.2 and 4GB
of RAM. A separated VM was used as controller. Figure 1(a)
also illustrates the path used to send packets, i.e., from point
A to B, which reaches the highest number of hops for that
topology.

A. Performance Analysis

FlexForward performance analysis starts with network la-
tency comparison between available forwarding mechanisms,
accomplished by 10000 uniformly sent ping packets to obtain
Round-trip delay time (RTT), with 1 millisecond interval
between them. For OpenFlow, the rules were installed with
infinite duration, meaning no packet-in after the first switch
requisition to controller.

As results, which is showed in Figure 2(a), around 90%
of HyperCube forwarding mechanism packets had RTT below
0.25 ms while KeyFlow presented 80%, followed by Open-
Flow, with only 15%. OpenFlow results were improved be-
cause of OVS’ flow-caching feature that decreases the average
time for table lookup of replicated flows, as equal pings.
Nevertheless, OpenFlow average latency was 31.5% higher
than HyperCube and around 25% higher than KeyFlow.

The second analyzed variable was jitter, a latency variation
for arrived packets. Low jitter is a critical network parameter
for some services like VoIP and other real-time transmissions.
To measure it, iperf4 was used, collecting information every
0.5 sec. Figure 2(b) shows that while 99% of jitter values
were lower than 0.05 ms for both HyperCube and KeyFlow,
OpenFlow had 50% greater than 0.3 ms.

Lastly for performance, each forwarding mechanism had
its throughput compared, as showed in Figure 2(c). The server
has 1G physical interfaces, but FlexForward tests were not
limited to it, because communication between virtual interfaces
achieved the maximum value that CPU and bus could handle.
Once more, flows were installed without timeout for OF. For
better graph presentation, instant variations were eliminated by
using simple rolling average. Figure 2(c) shows HyperCube
and KeyFlow performing twice better than OpenFlow. In
average, HyperCube reaches 1.6 Gbit/s, followed by KeyFlow
with 1.55 Gbit/s, while OpenFlow only achieves 0.84 Gbit/s.

Results confirmed that storing less network state improves
switch forwarding speed for server-centric networks. Likewise,
even with pro-actively installed flows, eliminating flow table
lookup showed better latency, throughput and jitter values for
HyperCube and KeyFlow. FlexForward provides faster and
uniform SDN data plane for DCNs.

B. Forwarding Method Switchover Analysis

In order to analyze forwarding mode switchover impact on
the network, UDP packet bursts were generated by iperf, with

3www.vmware.com/br/products/esxi-and-esx/overview
“http://iperf.fr/

100 —
¢—=;v—'
80 /
. —m— HyperCube
/ —e— OpenFlow
2 60 —A—KeyFlow | |
: /
[%)
@
Q.
w5 40 /
ES
20 |
o
|
ol | aud.
0,0 02 04 06 08 1,0

RTT (ms)

(a)

100

f —m— HyperCube|
80 ’

—e— OpenFlow |

—A— KeyFlow
£ 60 o4
% o o00000°®
® e00®®
=% o00®
W 40 000®
S L
S L
B o®
L]
20 *°
b
/.
hd
0 o
0,0 0,1 0,2 03 04
Jitter (ms)

(b)

B A
Q
i S
a 12 — HyperCube]
e v OpenFlow
2 Mg —— KeyFlow
=
L T
o
o
£ 09
[SRVt NAPANN, AN M
08
0,7
016 T T T T T
0 200 400 600 800 1000

Time (seconds)
©

Fig. 2: FlexForward Performance: (a) Latency, (b) Jitter, and
(c) Throughput comparison among OpenFlow, HyperCube, and
KeyFlow forwarding mechanisms

different speed rates, represented by each line in the graph. The
change, from HyperCube to KeyFlow, occurs at 20 seconds.
In our tests, iperf could not generate rates greater than 800
Mbit/sec for UDP.

As showed in Figure 3, a small degradation, during less
than 0.5 second, occurs at the swap event. That is due to
the reconfiguration of switches, as packets already in the path
generated for the old forwarding method are consequently lost.

These results allows network managers to implement algo-

Hypercube

KeyFlow

Flow (Gbits/sec)

0 10 20 30 40
Time (seconds)

Fig. 3: FlexForward end-to-end switchover through different
bandwidth occupation

rithms in accordance with DCN designs that need multiple
customized packet forwarding engines, without introducing
new Layer 2.5 headers. For instance, in case of failures
breaking the hypercube properties, then the routing algorithm
can be changed by the controller, by promptly sending a
command to all network elements.

V. RELATED WORK

There are many works related to flexible data plane
hardware implementations. ServerSwitch [6] is a fully pro-
grammable commodity server with customized network card
and driver for server-centric architectures. CAFE project [7]
provides simple APIs for controlling switch behavior on packet
forwarding. SwitchBlade [8] permits custom forwarding meth-
ods to be executed in parallel by referencing to each data
plane as a Virtual Data Plane(VDP), providing to each VDP a
separate processing pipeline. Each forwarding model is loaded
as a module.

Recently, Bosshart et al. [9] has proposed an architec-
ture for switching chips, called Reconfigurable Match Ta-
ble (RMT), that allows changing the data plane forwarding
behavior without coding the hardware. Nevertheless, some
forwarding models have their design impaired if every packet
without an entry in the table is sent to the controller, potentially
causing degradation in latency. Also, the network state needed
to be stored is still considerable.

FlexForward, differs from the previous works by leveraging
the best of SDN and server-centric DCN, providing flexible
forwarding at the data plane relying in a software design in
kernel space to enable the switch forwarding setup. It uses
the SDN control plane allowing the controller to decide which
forwarding model is better for a given situation, reconfiguring
the network elements to the most suitable technique.

VI. CONCLUSIONS AND FURTHER WORK

This paper introduced FlexForward as a proposal to help
achieving a new management model with more decoupling
and flexibility on Data Center software defined architecture. It
works by enabling easier implementation of new forwarding
methods and allowing greater management on the network

element. The controller acts as a manager, leveraging its cen-
tralized network knowledge in order to automatically instruct
a forwarding method switchover to the switches.

It is implemented by modifying OVS to understand new OF
vendor messages, keeping it fully compatible with the protocol,
but also talking customized messages. In addition to enabling
a way for designing new efficient forwarding methods on the
same switch, FlexForward provides support for a seamless
switchover between them.

In our tests, FlexForward presented two times better
throughput performance, in comparison with OpenFlow. Also,
RTT and jitter values were 90% below 0.25 ms and 99% below
0.05 ms, versus OF having 15% below 0.25 ms and 50% above
0.3 ms, respectively.

As future work, we plan to implement FlexForward consid-
ering larger DCN topologies, with more forwarding options, as
well as providing multiple modes in parallel, creating network
virtualization. Another direction to be explored will be the
use of hardware instruction sets provided by some Intel chips,
using for example Intel DPDK.

REFERENCES

[1] McKeown, Nick et al., “OpenFlow: enabling innovation in campus
networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp.
69-74, Mar. 2008. [Online]. Available: http://doi.acm.org/10.1145/
1355734.1355746

[2] X. Kong, Z. Wang, X. Shi, X. Yin, and D. Li, “Performance evaluation
of software-defined networking with real-life isp traffic,” in Computers
and Communications (ISCC), 2013 IEEE Symposium on, July 2013, pp.
000 541-000 547.

[3] C. Guo et al., “Bcube: A high performance, server-centric network
architecture for modular data centers,” ser. SIGCOMM ’09. New
York, NY, USA: ACM, 2009, pp. 63-74. [Online]. Available:
http://doi.acm.org/10.1145/1592568.1592577

[4] M. Martinello, M. Ribeiro, R. de Oliveira, and R. de Angelis Vitoi,
“Keyflow: a prototype for evolving sdn toward core network fabrics,”
Network, IEEE, vol. 28, no. 2, pp. 12-19, March 2014.

[5] C. R. Ramon Ramos, Magnos Martinello, “Slickflow: Resilient source
routing in data center networks unlocked by openflow,” in Proc. of IEEE
Local Computer Networks 2013 Conference, 2013.

[6] Guohan Lu et al., “Serverswitch: A programmable and high performance
platform for data center networks,” in Proc. of the 8th USENIX
Conference on Networked Systems Design and Implementation, ser.
NSDI'11. Berkeley, CA, USA: USENIX Association, 2011, pp. 2-2.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1972457.1972460

[71 G. Lu, Y. Shi, C. Guo, and Y. Zhang, “Cafe: A configurable packet
forwarding engine for data center networks,” in Proc. of the 2Nd ACM
SIGCOMM Workshop on Programmable Routers for Extensible Services
of Tomorrow, ser. PRESTO 09. New York, NY, USA: ACM, 2009, pp.
25-30. [Online]. Available: http://doi.acm.org/10.1145/1592631.1592638

[8] M. B. Anwer, M. Motiwala, M. b. Tariq, and N. Feamster, “Switchblade:
A platform for rapid deployment of network protocols on programmable
hardware,” in Proc. of the ACM SIGCOMM, 2010, ser. SIGCOMM ’10.
New York, NY, USA: ACM, 2010, pp. 183-194. [Online]. Available:
http://doi.acm.org/10.1145/1851182.1851206

[91 P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis:
Fast programmable match-action processing in hardware for sdn,” in
Proc. of the ACM SIGCOMM 2013 Conference on SIGCOMM, ser.
SIGCOMM °’13. New York, NY, USA: ACM, 2013, pp. 99-110.
[Online]. Available: http://doi.acm.org/10.1145/2486001.2486011

Shttp://www.intel.com/go/dpdk

