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Abstract—The supervisory control and data acquisition
(SCADA) network in a smart grid requires to be reliable and
efficient to transmit real-time data to the controller. Introducing
SDN into a SCADA network helps in deploying novel grid
control operations, as well as, their management. As the overall
network cannot be transformed to have only SDN-enabled devices
overnight because of budget constraints, a systematic deployment
methodology is needed. In this work, we present a framework,
named SDNSynth, that can design a hybrid network consisting
of both legacy forwarding devices and programmable SDN-
enabled switches. The design satisfies the resiliency requirements
of the SCADA network, which are specified with respect to a
set of identified threat vectors. The deployment plan primarily
includes the best placements of the SDN-enabled switches. The
plan may include one or more links to be installed newly. We
model and implement the SDNSynth framework that includes
the satisfaction of several requirements and constraints involved
in resilient operation of the SCADA. It uses satisfiability modulo
theories (SMT) for encoding the synthesis model and solving
it. We demonstrate SDNSynth on a case study and evaluate its
performance on different synthetic SCADA systems.

Index Terms—SDN architecture; incremental deployment;
smart grid; SCADA; formal modeling; network synthesis

I. INTRODUCTION

Smart grids are large, heterogeneous, and distributed in
nature, which present a high complexity of maintenance for a
large number of intelligent end devices. The SCADA network
infrastructure of smart grid needs to be reliable and efficient to
transmit large amount of real-time data. The observability of
a grid bus system is determined by the successful delivery of
critical measurements collected by the end devices (e.g., intel-
ligent electronic devices (IED), remote terminal units (RTU),
etc.). The overall network should be resilient to cyberattacks
to ensure seamless transmission of control and measurement
data from the devices for system observability.

Network infrastructures in SCADA systems use diverse
protocols and heterogeneous forwarding devices, which make
the management, maintenance, and integration of new devices
difficult [1]. Software defined networking (SDN) has great
potential to be used in SCADA systems [2]. It not only
provides flexibility to implement novel networking solutions
and quality of service (QoS) optimization but also provides
greater resiliency to cyberthreats [3], [4]. SDN can pro-
vide flexible rerouting in case of congestion or compromise,
prioritizing certain network components, and isolate com-

promised sections of the network more effectively [5], [6].
However, network upgrades in SCADA networks are budget
and resource-constrained. It is impractical to substitute all the
legacy switches with SDN switches overnight. The process of
simultaneous deployment of legacy and SDN-enabled switches
remains one of the greatest challenges in incorporating SDN.

In this work, we use the threats to the SCADA system,
which are vulnerable sets of electronic devices discovered
in [7]. The network can be resilient to attacks and the grid
will be observable if these devices can be ensured proper
communication with the control center. This research places
the available SDN switches and links properly so that rerouting
of control and data traffic, as well as setting up virtual
networks, whenever needed, are possible.

The problem of deployment of SDN satisfying grid observ-
ability constraints within a limited budget, is a recent topic and
is generally an NP-hard one [8]. Utilizing the available limited
budget (e.g., a limited number of SDN-enabled switches),
while perceiving the benefits of SDN, is challenging. We pro-
pose to formally model the constraints and requirements into a
constraint satisfaction problem (CSP) and solve it using a CSP
solver to generate the SDN-enabled network architecture. We
present an automated framework, SDNSynth, which solves this
problem using formal verification. It takes the existing network
topology, security requirements, and resources as inputs and
formulates the deployment problem. The problem is solved
by encoding the model into first order logic. We use SMT for
encoding which also provides a solution, if there is any, in the
form of the deployment plan for SDN switches.

II. BACKGROUND AND OBJECTIVE

Several manual heuristic based algorithms have been de-
vised in the literature to determine the locations of the limited
number of SDN switches [8]. Hong et al. systematically stud-
ied the incremental SDN deployment problem by formulating
it as an optimization problem and proposed effective heuristics
for selecting a small set of existing devices for upgrading [8].
Levin et al. present the design and implementation of an ar-
chitecture called Panopticon for operating networks that com-
bine legacy and SDN switches [9]. Panopticon formalizes an
optimal cost-aware upgrade algorithm based on mathematical
programming [10]. A solution for seamless peering between
SDN and existing IP networks is studied by Jonathan et al.
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Fig. 1. The framework architecture of SDNSynth.

[11]. Effective use of SDN for traffic engineering, while SDN
is incrementally being deployed, is discussed by Agarwal et al.
[12]. Das et al. used a slicing pane between the SDN switches
and the controller to partition the data plane into multiple slices
which are controlled by different controllers [13]. However,
none of these works solve the problem from the smart grid
observability point of view. These do not solve the multi-
objective NP-hard problems of generating an SDN topology
considering grid resiliency.

In this paper, we aim to devise a tool to strategically
select a subset of legacy devices in an existing SCADA
network and replace them with SDN. We address the following
multi-objective challenges: 1) upgrade the existing network
with SDN-enabled switches within the available budget; 2)
synthesize the SDN topology with newly available links, which
enhances network resiliency; 3) achieve successful observabil-
ity, given sufficient measurement delivery from IED to MTU,
which leads to successful state estimation.

III. SYNTHESIS OF SDN DEPLOYMENT

A. SDNSynth Framework

Rahman et al. proposed a mechanism for automatic synthe-
sis of a secure set of measurements and intelligent devices,
with respect to a list of security requirements (i.e., expected
attack model) [7]. Their framework can identify the most crit-
ical measurements, based on a given set of attacker capability.
From this work, we will use threat vectors, which are basically
sets of IEDs, as our input to SDNSynth. The devices in the
threat vectors are related to vulnerable measurements and are
considered to be critical. SDNSynth ensures the delivery of
measurements from these critical end devices by placing SDN-
enabled switches on their paths so that they can be prioritized
while data routing easily, as well as the overall network is
more resilient [14]. The security and resiliency requirements,
considered in this work, will ensure that a SCADA control
process receives sufficient data (i.e., measurements from field
devices) to perform its operation even in limited contingencies.

SDNSynth follows a top-down architecture design automa-
tion approach. The SDNSynth architecture is shown in Fig. 1.
The major features of the SDNSynth framework are as follows:
• Formally models the network topology, required config-

urability (i.e., SDN features) of switches by the controller,
and resource constraints.

• Formalizes the incremental SDN design synthesis prob-
lem as the determination of deployment decision of SDN
switches, new links, and their placements that satisfy the
given requirements and constraints.

• Encodes the synthesis problem into SMT logics and
provides a feasible solution using an SMT solver.

The tool takes input from a user using an input file. The
output of the tool indicates the best possible candidates for
switch replacements, as well as the new links that should be
deployed in the network according to the budget.

B. Priority Management

In a SCADA environment, we want to ensure that any
critical end device must be able to communicate with others,
as long as they are not compromised. First, we determine
the criticality/priority of the field devices. To do this, we
systematically assign ranks to all the IEDs. The rank increases
if it has some attached sensors or actuators. The rank also
increases if it is an element of one or more sets of threat
vectors. The rank is used in calculating the priorities of the
IEDs. For example, we can define three levels of priorities
for the IEDs: high, medium, and low. When modeling the
resiliency requirements of the devices, the devices having
higher priority will be ensured more alternate paths and other
resiliency features before others.

C. Resiliency Management

Here we present our model according to several SDN
benefits in the management of security and resiliency of
SCADA.
Alternate Paths: First, we define alternative paths for the
IEDs. In calculating alternate paths from an IED to an MTU,
we consider α-Alternative paths, where α means the percent-
age of overlapped/shared links on the paths. If a path contains
less than α% of common links with another path, it can be
considered as an alternate to the other one.

We consider all possible forwarding paths from an IED i
to the MTU, through one or more RTUs, as Pi. A path pi,y
is defined as the yth path among all possible paths. pi,y is a
set of links, while each link l represents a pair of nodes that
belong to the set L ⊆ N × N, assuming that L is the set of
links and N is the set of all nodes.

Let I be the set of all IEDs in the threat vectors. If
AltPathpi,y,pi,y′ denotes that path pi,y′ is an alternate path
for pi,y , then:

∀i∈I∀pi,y,pi,y′∈PiAltPathpi,y,pi,y′ →

(
∑
l∈pi,y

l ∈ pi,y′) ≤ (|pi,y′ |×α) (1)

Next, we find the switches that split a path of an IED
to create multiple alternate paths. If S is the set of all
candidate switches to be replaced by SDN-enabled ones
and Ls is the set of all links connected to switch s, then
SwitchOnAltPathBranchs ensures that switch s is positioned
where two or more alternate paths for IED i branches.

SwitchOnAltPathBranchs →

AltPathpi,y,pi,y′ ∧
∑

l,l′∈Ls

((l ∈ pi,y) ∧ (l′ ∈ pi,y′)) ≥ 1 (2)



SDN-Enabled Switches: SDN-enabled switches should be
deployed intelligently on the network branches. We want the
SDN-enabled switches to be deployed on the alternate paths
for the IEDs. Also, they should be deployed at the forks of
the paths, so that SDN controller is able to route the data and
command packets to and from IEDs efficiently, and according
to priority. We define such alternate paths as software-defined
alternate paths, SDAltPathpi,y,pi,y′ . If SwitchIsSDN s denotes
whether switch s is SDN-enabled or not, di,y is the set of all
switches on the yth path from IED i to the MTU, and di,y′ is
the set of all switches on path y′, the following should hold:
∀i∈I∀pi,y,pi,y′∈Pi SDAltPathpi,y,pi,y′ →

AltPathpi,y,pi,y′ ∧ ∃s(s ∈ di,y) ∧ (s ∈ di,y′) ∧
SwitchIsSDN s ∧ SwitchOnAltPathBranchs

(3)

∀i∈I AssuredMinAltPathi → (Priority i = m) ∧

∀pi,y
(1 +

∑
y′

SDAltPathpi,y,pi,y′ ≥ minAltPathm) (4)

If m is the priority of IED i, in the Equation 4, minAltPathm

is a constant specifying the minimum number of alternate
paths that need to exist between IED i and the MTU. Each
path pi,y , for an IED i with priority m, should have at least
minAltPathm alternate paths pi,y′ .

Different number of alternate paths may be specified for dif-
ferent levels of priorities. For example, at least five alternative
paths should be deployed for high priority communications,
while low priority devices may require at least two alternate
paths, for each of its paths to the MTU.

All the links in the communication paths and their alternate
paths need to be deployed and up. If Link l is a boolean
variable denoting whether a link is up or not,
∀i∈IAssuredLinksOnAltPathi →

SDAltPathpi,y,pi,y′ ∧ ∀l∈pi,yLink l ∧ ∀l′∈pi,y′Link l′
(5)

AssuredMinAltPathi and AssuredLinksOnAltPathi en-
sure the existence of alternate paths from IED i to the MTU.

∀i∈IAssuredAltPathi →
AssuredMinAltPathi ∧AssuredLinksOnAltPathi

(6)

If altPathExp denotes the expected percentage of IEDs to
have assured alternate paths, then the following should hold:∑

iAssuredAltPathi
|I|

≥ altPathExp (7)

D. Resources and Budget Constraints

It is important in an SDN environment that any communica-
tion is supervised by the SDN controller. This means that any
packet from a source must traverse through at least one SDN
switch on its way to the destination. Let ESwitchIsSDN s

denote an already existing SDN switch s and DSwitchIsSDN s

be the deployable new SDN switch. The following should hold
about the already existing switches or routers and the newly
deployable SDN-enabled switches.
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Fig. 2. SCADA network after deployment of SDN-enabled switches.

SwitchIsSDN s → ESwitchIsSDN s ∨DSwitchIsSDN s (8)

(ESwitchIsSDN s → ¬DSwitchIsSDN s) ∧
(DSwitchIsSDN s → ¬ESwitchIsSDN s)

(9)

Similarly, if DLink l denotes a newly deployed link that
does not exist and need to be set up, then,

Link l → ELink l ∨ DLink l (10)

(ELink l → ¬DLink l) ∧ (DLink l → ¬ELink l) (11)

The total budget, TOT AVAIL BUDGET , hence the
number of available SDN-enabled switches and links are
limited. It is not possible to replace more number of switches
than the total available SDN switches. That is, the sum of
all deployed SDN switches and links must be less than what
we have in budget. This can be represented by the following
constraint, given cLinkl

represents the deployment cost of new
DLink l and cSDN denotes the cost of each SDN switch:

(
∑
l

DLink l)× cLinkl
+ (

∑
s

DSwitchIsSDNs)× cSDN

≤ TOT AVAIL BUDGET
(12)

IV. IMPLEMENTATION AND A CASE STUDY

A. Target Variables in the Model

We implement our model by encoding the system configura-
tion and the constraints into SMT logics [15]. In this encoding
purpose, we use Z3, an efficient SMT solver [16]. The solver
provides a satisfiable (sat) result if all the constraints are sat-
isfied. The sat result provides the value assignments to the re-
quired Boolean parameters of the model, e.g., SwitchIsSDN s,
DLink l, etc., which represent the new network topology.

B. A Synthetic Case Study

We present a small network of a 14-bus SCADA system for
our case study. It consists of 26 IEDs, 13 RTUs, and 1 MTU.
There are 18 traditional routers connecting these intelligent
devices. The input file consists of the network topology, the
number of possible new links, etc. It also includes 8 threat
vectors where each is a set of IEDs, the expected percentage
of threat mitigation (75%), average cost of new SDN switches
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($2000) and links ($1000), the available budget ($35,000), the
expected alternate path percentage for critical devices (70%),
etc.

First, we determine the k-resiliency of the SCADA network,
which means the network is resilient to less than k IED
failures [7]. In other words, the system is still observable if
less than k IEDs fail to deliver their measurement data to
the MTU. The value of k in our network is 4, which means
that it is 3-device-failure resilient. If the attacker is capable
of compromising up to 4 devices, this scenario yields 1 threat
vector consisting of 4 devices; whereas, for a 5-device failure
we get 8 different threat vectors. We use the 8-threat vector
scenario for our case study.

We have a budget of $35,000. The SDN-enabled switches
should replace some of the traditional routers. We would
like to mitigate at least 75% of the threat vectors through
the placement of SDN-enabled switches. We have a limited
budget and 6 possible new links. Given all the constraints and
requirements, SDNSynth generates a satisfiable solution that
tells the user to replace the routers 40, 42, 43, 44, and so on.
This is demonstrated in Fig. 2. Also, new links between switch
44 and 55; 45 and 47; 52 and 57; and so on, are suggested.
The proposed network topology ensures alternate paths for the
critical IEDs according to the percentage of expected IEDs
having alternate paths. The alternate paths enable the SDN
controller to reroute any critical data to and from the IEDs in
the case of any link or device failure.

V. EVALUATION

To evaluate SDNSynth, we run experiments on different
synthetic SCADA network topology for different sizes of IEEE
test bus system in smart grids, i.e., 14-bus, 30-bus, 57-bus, and
118-bus. We ran the program on a machine with Windows 10
OS, an Intel Core i7 processor and 16 GB memory.

A. Relationships of Deployment Parameters

In this analysis, the resultant numbers of SDN-enabled
switches and links are the minimum numbers of switches and
links possible with the tightest possible constraints.

In Fig. 3(a), we demonstrate the number of deployed SDN-
enabled switches, as well as the number of newly deployed
links, with respect to the total available budget. The threat
mitigation requirement was set to a value low enough to

utilize all possible resources. As the available budget increases,
the number of newly deployed SDN switches and links also
increases slowly. The resource constraints are responsible for
this increase, as SDNSynth tries to find a solution utilizing the
available budget. Proper positioning of the SDN switches and
links allow more flexible rerouting.

B. Scalability

We evaluate the scalability of SDNSynth by analyzing the
time required to synthesize the network topology by varying
the problem size and other parameters.

Impact of Bus Size: The model synthesis time with respect
to the incoming bus size is shown in Fig. 3(b). Two scenarios,
one for satisfiable results and another for unsatisfiable results,
are presented in the graph for 8 threat vectors. We observe
that the required time increases in somewhere between linear
and quadratic orders with the increment of bus size. The
execution time differs for sat and unsat results for a specific
bus size. The unsat results usually take more time than sat
ones. As the bus size increases, the number of constraints and
requirements increase rapidly. For this reason, we observe such
timing (almost quadratic) for obtaining a result.

Impact of Budget: Fig. 3(c) shows the impact of budget
on the network synthesis time. All the results are taken for
sat solution for the lowest budget. We can observe that if
the bus and SCADA size, threat vectors, as well as all other
requirements are kept constant, the tool requires almost similar
times for synthesizing the network. The network size is larger
for the 57 bus than the 30 bus. As a result, there are more
constraints to solve, hence it takes more time to provide a
satisfiable result.

VI. CONCLUSION

SDNSynth is a tool for synthesizing a resilient SDN topol-
ogy in smart grid SCADA systems. We protect the critical
IEDs, with the use of SDN-enabled switches, which allow
fast rerouting, prioritization of packet flows, novel application-
based routing, etc. The technique successfully generates a
solution depicting the SDN switch and new link placements,
while satisfying the resiliency requirements and budget con-
straints. We evaluate the tool by scalability analysis and satis-
factory relationship between different deployment parameters.
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