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Abstract—Recently, joint subchannel allocation and transmis-
sion power control problems for multi-cell orthogonal frequency-
division multiple access (OFDMA) systems have been actively
studied. However, since the problems are notoriously difficult
and complex, only heuristic approaches are mainly used to study
the problems without trying to achieve the optimal resource
allocation and the maximum system capacity. In this paper, we
study the joint subchannel allocation and transmission power
control problem for multi-cell OFDMA systems from the point
of the optimal resource allocation and the maximum system
capacity with a monotonic optimization approach. Even though
we do not obtain the exact optimal resource allocation that
achieves the maximum system capacity, we develop an algorithm
for resource allocations that provide both upper and lower
bounds on the maximum system capacity. Through numerical
results, we evaluate our algorithm showing that it provides good
approximations to the maximum system capacity in multi-cell
OFDMA systems in most cases.

Index Terms—Resource allocation; multi-cell OFDMA sys-
tems; subchannel allocation; transmission power control; capac-
ity bounds.

I. INTRODUCTION

Orthogonal frequency-division multiple access (OFDMA)

has been one of the widely deployed multiple access schemes

in many wireless systems, and efficient resource allocation for

the OFDMA system is one of the most important research

issues over the last decade. In the OFDMA system, subchan-

nel allocation and transmission power control can be jointly

considered to improve the system performance, and in the past

years, this problem has been extensively studied with various

system models and approaches.

In [1]–[7], joint subchannel allocation and transmission

power control problems for the single-cell OFDMA system is

studied. In the single-cell OFDMA system, since there is no

intracell interference among users, we do not have to consider

interference among users, which makes the resource alloca-

tion problem be relatively easy. Hence, the optimal resource

allocation that achieves the maximum capacity of the system

can be easily obtained. However, if we consider a multi-cell

environment, which is a more realistic scenario, despite of no

intracell interference by using OFDMA, we should deal with
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intercell interference among cells. Hence, the structure of the

problem for the multi-cell system is totally different from that

for the single-cell system, and the problem for the multi-cell

system is much more difficult and complicated than that for the

single-cell system. Hence, in general, it is difficult to directly

apply the above proposed schemes for the single-cell OFDMA

system to the multi-cell OFDMA system.

Hence, more recently, joint subchannel allocation and trans-

mission power control problems in the multi-cell OFDMA

system have been studied [8]–[21]. In [8]–[16], a joint sub-

channel allocation and transmission power control problem

is divided into a subchannel allocation sub-problem and a

transmission power control sub-problem, and heuristic algo-

rithms to solve the two sub-problems are proposed. In [8],

three heuristic iterative algorithms that iteratively compute

subchannel allocation and transmission power are proposed. In

[9], a graph-based two-phased heuristic algorithm is proposed,

and, in [10], to reduce the high complexity of the graph-based

algorithm, a heuristic subchannel allocation algorithm that

requires a polynomial time is proposed. In [11], an algorithm

that consists of the greedy search for subchannel allocation

and the lagrange dual based transmission power control is

proposed. In [12], the subchannel allocation is performed by

using mixed integer linear programming and duality-based

transmission power control algorithm is proposed. In [13], a

heuristic algorithm considering the intercell interference with

the cognitive radio functionality is proposed. In [14], to solve

the joint subchannel allocation and transmission power control

problem, an additional interference constraint is imposed, and

an iterative algorithm that iteratively calculates subchannel

allocation and transmission power is proposed. In [15], a

joint subchannel allocation and transmission power control

problem with a minimum number of subchannel requirement

is decomposed by using Benders’ Decomposition [22] into

two sub-problems, and heuristic iterative algorithms are pro-

posed to solve each of sub-problems. In [16], a two-stage

heuristic resource allocation algorithm is proposed. In the

first stage, subchannel allocation is performed in each cell

without considering the interference from other cells, and in

the second stage, transmission power control is performed by

using geometric programming. The above proposed heuristic

algorithms in [8]–[16] have the limitation that cannot achieve

the optimal solution in the multi-cell OFDMA system.



There are game-theoretic approaches to solve joint subchan-

nel allocation and transmission power control problems in the

multi-cell OFDMA system [17]–[19]. In [17], a virtual referee

which monitors the non-cooperative resource competition is

proposed to enhance the performance. In [18], integer data

rates are used to formulate the resource allocation problem and

a non-cooperative algorithm is proposed. In [19], a potential

game is used to minimize the interference-sum for each mobile

station. Note that in general, game-theoretic approaches do not

guarantee achieving the optimal solution and the maximum

system capacity.

In [20], [21], an algorithm that achieves the optimal solution

for the joint subchannel allocation and transmission power

control problem in a two-cell OFDMA system is proposed.

However, the proposed approach in [20], [21], has the limita-

tion that it can be applied only for the two-cell system.

Despite the above extensive studies, to our best knowledge,

the optimal solution of the joint subchannel allocation and

transmission power control problem in the multi-cell OFDMA

system and its maximum system capacity have not been

achieved yet. Hence, in the above works for the multi-cell

OFDMA system, to evaluate the performance of their pro-

posed algorithms, they are compared with relatively simple

heuristic algorithms, e.g., random subchannel allocation, fixed

subchannel allocation, equal transmission power control, etc.

Hence, even though it has been shown that the proposed

algorithms in the previous works [8]–[21] provide relatively

higher performance than some other algorithms and provide

some good properties, we still do not know how close to the

optimal one their performance is.

In this paper, we study the joint subchannel allocation and

transmission power control problem to maximize the sum ca-

pacity of the downlink in the multi-cell OFDMA system. Since

the joint subchannel allocation and transmission power control

problem is a coupled mixed integer non-convex problem, in

general, it is highly difficult to obtain its optimal solution.

Hence, instead of trying to achieve the optimal solution

directly, in this paper, we will take an approach that provides

the solutions for upper and lower bounds on the maximum

sum capacity of the multi-cell OFDMA system. In addition,

we will show that in practical scenarios such as the cases with

interference power dominates noise power or high signal to

interference and noise ratio (SINR), the gap between the two

bounds is very small. To this end, we will use the monotonic

optimization approach [23], [24]. This monotonic optimization

has been successfully used to obtain the optimal transmission

power control (and scheduling) in wireless networks with a

single channel [25], [26]. However, the algorithms in [25], [26]

cannot be directly used for our problem, since the OFDMA

system is a multi-channel system in which we should deal

with not only power control for subchannels that are coupled

with each other but also subchannel allocation to users.

Compared with the previous works for the multi-cell

OFDMA system, we can summarize our contributions as: 1)

we have an algorithm that provides solutions for upper and

lower bounds on the maximum sum capacity; 2) the solution

that provides the lower bound could be a good approximation

to the optimal subchannel allocation and transmission power

control; 3) even though our algorithm might not be practically

implementable due to some practical limitations, the two

bounds could provide the approximated sum capacities that

are very close to the maximum sum capacity of the multi-

cell OFDMA system, which can be used as a benchmark to

evaluate the performance of other heuristic algorithms.

The remainder of this paper is organized as follows. In

Section II, we describe the system model and formulate the

optimization problem. In Section III, joint subchannel alloca-

tion and transmission power control is studied. In Section IV,

the numerical results are provided, and we finally conclude

this paper in Section V.

II. SYSTEM MODEL AND PROBLEM

In this paper, we consider a downlink multi-cell OFDMA

system with K base stations (BSs) and Mk mobile stations

(MSs) for each BS k. We denote the set of BSs as K =
{1, 2, ...,K} and the set of MSs which communicate with BS

k as Mk = {1, 2, ...,Mk}. Each BS has L subchannels and

we denote the set of subchannels as L = {1, 2, ..., L}. We

denote subchannel allocation indicator al(k,m) as

al(k,m) =

{

1, if BS k allocates its subchannel l to MS m

0, otherwise
,

(1)

and let a =
(

al(k,m)

)

∀k∈K,∀m∈Mk,∀l∈L
. We assume that each

BS can assign a subchannel to only one MS in its cell, which

is represented by
∑

m∈Mk

al(k,m) ≤ 1, ∀k ∈ K, ∀l ∈ L. (2)

We denote the transmission power of BS k at subchannel l

as plk. Each BS operates under the total transmission power

constraint as
∑

l∈L

plk ≤ pmax, ∀k ∈ K, (3)

where pmax is the maximum total transmission power of the

BS. Then, obviously, we also have the following transmission

power constraint for each subchannel:

0 ≤ plk ≤ pmax, ∀l ∈ L, ∀k ∈ K. (4)

The SINR for MS m which communicates with BS k at

subchannel l is obtained as

γl(k,m) (p) =
gl(k,m)p

l
k

∑

n∈K,n6=k

gl(n,m)p
l
n +N0

, (5)

where gl(n,m) is the channel gain between BS n and MS m at

subchannel l, N0 is the noise power, and p =
(

plk
)

∀k∈K, ∀l∈L
.

To model the capacity of a link through which BS k

communicates with MS m at subchannel l, we use the Shannon



capacity as

rl(k,m)(a,p) = al(k,m) log
(

1 + γl(k,m) (p)
)

. (6)

Then, the achieved sum capacity of MS m which communi-

cates with BS k is obtained as

Rk,m (a,p) =
∑

l∈L

rl(k,m)(a,p)

=
∑

l∈L

al(k,m) log
(

1 + γl(k,m) (p)
)

,
(7)

and finally the achieved sum capacity of the downlink in the

multi-cell OFDMA system is obtained as

ψ (a,p) =
∑

k∈K

∑

m∈Mk

Rk,m (a,p)

=
∑

k∈K

∑

m∈Mk

∑

l∈L

al(k,m) log
(

1 + γl(k,m) (p)
)

.
(8)

In this paper, we want to maximize the sum capacity

for the downlink multi-cell OFDMA system by optimizing

subchannel allocation for each user and transmission power

for each subchannel considering the constraints for subchannel

allocation in (2) and transmission power in (3) and (4). Hence,

the optimization problem is formulated as

(P1) maximize
a, p

ψ (a,p)

subject to
∑

m∈Mk

al(k,m) ≤ 1, ∀k ∈ K, ∀l ∈ L,

∑

l∈L

plk ≤ pmax, ∀k ∈ K,

a ∈ A, p ∈ P ,

where

A =
{

a

∣

∣

∣
al(k,m) ∈ {0, 1} , ∀k ∈ K, ∀m ∈Mk, ∀l ∈ L

}

and

P =
{

p

∣

∣ 0 ≤ plk ≤ pmax, ∀k ∈ K, ∀l ∈ L
}

.

Note that problem (P1) is a coupled mixed integer non-linear

non-convex problem, which is in general difficult to solve.

III. SUBCHANNEL ALLOCATION AND TRANSMISSION

POWER CONTROL

To solve problem (P1), in this section, we propose an

algorithm that is called a joint subchannel allocation and trans-

mission power control based on polyblock outer approximation

(JSPPA) algorithm, which is based on the algorithm for mono-

tonic optimization [23]–[26]. In monotonic optimization, since

the objective function is a monotonic increasing or decreasing

function, we can find its optimal solution at the boundary of

the feasible region. The proposed algorithm iteratively finds

a feasible solution which is located at the boundary of the

feasible region, and finally converges the optimal solution.

We first introduce some mathematical preliminaries and then

present the proposed algorithm.

A. Mathematical Preliminaries [23], [24]

To begin with, we first introduce some preliminary def-

initions and properties of monotonic optimization. In this

paper, for any two vectors x,x′ ∈ Rn, we write x � x
′

if xi ≤ x
′
i, ∀i = 1, . . . , n, and say that x′ dominates x.

Definition 1 (Box): Given any two vectors x,x′ ∈ Rn
+

(the n-dimensional nonnegative real domain), if x � x
′, the

hyperrectangle [x,x′] =
{

z ∈ Rn
+

∣

∣x � z � x
′
}

is referred

to as a box.

Definition 2 (Normal): A set G ⊂ Rn
+ is said to be normal,

if for any two vectors, x,x′ ∈ Rn
+ such that x � x

′ , if

x
′ ∈ G, then x ∈ G.

Proposition 1: The intersection and the union of normal

sets are still normal sets.

Definition 3 (Reverse Normal): A set H ⊂ Rn
+ is said to

be reverse normal, if for any two vectors, x,x′ ∈ Rn
+ such

that x � x
′ , if x ∈ H, then x

′ ∈ H.

Definition 4 (Increasing Function): A function f : Rn −→
R is said to be increasing function on Rn

+, if for any two

vectors, x,x′ ∈ Rn
+ such that x � x

′, f (x) ≤ f (x′).
Definition 5 (Monotonic Optimization): A monotonic opti-

mization problem is a class of optimization problems which

have the following formulation:

maximize f (x)

subject to x ∈ G ∩ H,

where the domain G is a nonempty normal set, the domain H
is a closed reverse normal set, and the function f (x) is an

increasing function.

Definition 6 (Polyblock): A set P ⊂ Rn
+ is referred to as

a polyblock with the set T in [x,x′] ⊂ Rn
+, if the set P is

the union of a finite number of boxes [x, z], z ∈ T ⊂ [x,x′].
The set T is referred to as the vertex set of the polyblock P .

B. JSPPA Algorithm

To deal with problem (P1), in this subsection, we first

modify problem (P1) by relaxing the total transmission power

constraint (3), which results in the following problem:

(P2) maximize
a, p

ψ (a,p)

subject to
∑

m∈Mk

al(k,m) ≤ 1, ∀k ∈ K, ∀l ∈ L,

a ∈ A, p ∈ P .

In this subsection, we first focus on solving problem (P2), and

then return to problem (P1) and issue on the total transmission

power constraint (3).

We now show that problem (P2) can be represented as a

monotonic optimization problem. The link capacity (6) can be

reformulated as

rl(k,m)(a,p) = al(k,m) log
(

1 + γl(k,m) (p)
)

= log
(

1 + al(k,m)γ
l
(k,m) (p)

)

,

∀k ∈ K, ∀m ∈Mk, ∀l ∈ L.

(9)



Algorithm 1 Polyblock outer approximation algorithm [25]

1: Initialization: Construct the vertex set T0 as

T0 =
{

z

∣

∣z = 1+ a ◦ σ, ∀a ∈ A†
}

,

where

σl
(k,m) =

gl(k,m)pmax

N0
, ∀k ∈ K, ∀m ∈ Mk, ∀l ∈ L,

and set n = 0. Furthermore, we define e
l
(k,m) as the

vector whose every element is equal to zero except that

(k,m, l)th element is equal to one.

2: repeat

3: In the set Tn, select the vertex zn that maximize

the objective of the problem when the selected vertex is

applied as

zn = arg max
z∈Tn

{

f (z) =
∑

k∈K

∑

m∈Mk

∑

l∈L

log
(

zl(k,m)

)

}

.

4: For zn, calculate the point πZ (zn) as

πZ (zn) = λn (zn − 1) + 1,

where λn can be achieved by using the projection algo-

rithm, i.e., Algorithm 2.

5: Update the vertex set as

Tn+1 = (Tn − {zn}) ∪ T
†
n ,

where

T †
n =

{

y
l
(k,m)

∣

∣

∣

∣

∣

y
l
(k,m) = zn − (zn − πZ(zn)) ◦ e

l
(k,m),

∀k ∈ K, ∀m ∈Mk, ∀l ∈ L

}

.

6: n← n+ 1.

7: until
‖zn − πZ(zn)‖

‖zn‖
≤ ǫ.

8: We achieve the optimal vertex z
∗, i.e., the optimal vector

of SINR plus one, as z
∗ = πZ (zn) and the optimal

transmission power p
∗ is achieved from results of the

projection algorithm, Algorithm 2.

Furthermore, we define new variable zl(k,m) that denotes

the SINR plus one for MS m which communicates with BS k

at subchannel l and we let z =
(

zl(k,m)

)

∀k∈K, ∀m∈Mk, ∀l∈L

that is called a vertex. By using this variable, problem (P2)

can be reformulated as the following equivalent optimization

problem:

(P3) maximize
z

f (z) =
∑

k∈K

∑

m∈Mk

∑

l∈L

log
(

zl(k,m)

)

subject to z ∈ Z,

where

Z =

{

z

∣

∣

∣

∣

∣

1 ≤ zl(k,m) ≤ 1 + al(k,m)γ
l
(k,m) (p) ,

∀k ∈ K, ∀m ∈Mk, ∀l ∈ L, ∀a ∈ A
†, ∀p ∈ P

}

and

A† =

{

a

∣

∣

∣

∣

∣

∑

m∈Mk

al(k,m) ≤ 1, ∀k ∈ K, ∀l ∈ L, ∀a ∈ A

}

.

We now show that problem (P3) is a monotonic optimization

problem.

Proposition 2: Problem (P3) is a monotonic optimization

problem.

Proof: According to the definition of Box, the feasible set

Z of problem (P3) can be represented as a union of infinite

number of boxes. If we define the hyperrectangle for each

subchannel allocation a ∈ A† and each transmission power

p ∈ P as

Z(a,p) = {z |1 � z � 1+ a ◦ γ(p)} 1,

where γ(p) =
(

γl(k,m)(p)
)

∀k∈K, ∀m∈Mk, ∀l∈L
, then feasible

set Z can be represented as

Z =
⋃

a∈A†
, p∈P

Z(a,p).

Since Z(a,p) for any a and p is normal, by Proposition 1,

feasible set Z is also normal. Furthermore, since the objective

function of problem (P3) is an increasing function, problem

(P3) is a monotonic optimization problem.

We can solve problem (P3), which is monotonic optimiza-

tion, by using Algorithm 1, which is called a polyblock outer

approximation algorithm for monotonic optimization [23]–

[26]. For the brevity of the presentation, in this paper, we

do not provide the details for the derivation of Algorithm 1,

but we refer the readers to [23]–[26] for the details. Note that,

in problem (P3), since the objective function is a monotonic

increasing function, the optimal solution of problem (P3) can

be achieved at the boundary of feasible region Z . Hence,

the polyblock outer approximation algorithm, which solves

monotonic optimization, iteratively finds the optimal vertex

z
∗, i.e., SINR plus one, at the boundary of feasible region Z .

To find the optimal vertex z
∗, Algorithm 1 starts with an

infeasible vertex that is located in the outside of the feasible

region of the problem. In Algorithm 1, we first define the

maximum achievable SINR for MS m which communicates

with BS k at subchannel l as σl
(k,m) =

gl(k,m)pmax

N0
, and let

σ =
(

σl
(k,m)

)

∀k∈K, ∀m∈Mk, ∀l∈L
. By using σ, we set the

initial vertex set T0 as

T0 =
{

z

∣

∣z = 1+ a ◦ σ, ∀a ∈ A†
}

.

Since a vertex in the initial vertex set consists of the maximum

achievable SINR for each MS at each subchannel assuming

that there is no interference, it could be an infeasible vertex

that is located in the outside of the feasible region Z . Hence,

1For two vectors with the same dimension, A,B ∈ Rn, the Hadamard
product A◦B is a vector of the same dimension, A◦B ∈ Rn, whose (i, j)
element (A ◦ B)(i,j) is given by (A)(i,j) × (B)(i,j) .



Algorithm 2 Projection algorithm [25], [27]

1: Initialization: For given p, ∀k ∈ K, ∀m ∈M (k) , ∀l ∈
L, we define

νl(k,m)(p) = gl(k,m)p
l
k,

and

µl
(k,m)(p) =

∑

n∈K,n6=k

gl(n,m)p
l
n +N0.

We let ν(p) =
(

νl(k,m)(p)
)

∀k∈K,∀m∈M(k),∀l∈L
, and

µ(p) =
(

µl
(k,m)(p)

)

∀k∈K,∀m∈M(k),∀l∈L
. Furthermore,

for given zn, we define

δ(λ,p) = min (ν(p)− λ (µ(p) ◦ (zn − 1))) ,

where min(a) for a vector a represents the smallest

element of the vector a. Select arbitrary p0 ∈ P , and

set t = 0.

2: repeat

3: For given pt,

λt = min (ν(pt) ◦ (µ(pt) ◦ (zn − 1))−1) .

4: For given λt,

pt+1 = arg max
p∈P

min δ(λt,p).

5: t← t+ 1.
6: until δ(λt,pt) ≤ 0.

7: We achieve λt and pt.

to find the optimal (feasible) vertex which is at the boundary

of the feasible region, we will iteratively find feasible vertices

starting from the initial vertex set.

The operation in each iteration can be summarized as the

following three steps. First, in the current vertex set, we select

a vertex that maximizes the objective function of problem (P3).

Note that the selected vertex may not be feasible. Second,

we find a feasible vertex by projecting the selected vertex

in the first step into the feasible region using Algorithm 2.

Third, the vertex set is updated by using the selected vertex

which is achieved in the first step and the feasible vertex

which is achieved in the second step. A new vertex can be

made by replacing the element of the selected vertex to the

element of the feasible vertex. The above three steps are

operated iteratively, and finally, we can achieve the optimal

vertex z
∗ of problem (P3). Since each element of the optimal

vertex z
∗ represents the SINR plus one, if an element of the

optimal vertex is one, then it represents that the corresponding

subchannel is not allocated to the corresponding MS. Hence,

from optimal vertex z
∗, we can achieve subchannel allocation

a
∗ as

al∗(k,m) =

{

1, zl∗(k,m) > 1,

0, zl∗(k,m) = 1
, ∀k ∈ K, ∀m ∈Mk, ∀l ∈ L.

(10)

When we achieve the optimal vertex by using Algorithm 2,

from the result of Algorithm 2, we can obtain transmission

power p
∗ that corresponds the optimal vertex z

∗. Hence,

subchannel allocation a
∗ and transmission power p

∗ consist

the optimal solution of problem (P2).

We now go back to problem (P1). Since in problem (P2),
we relaxed the total transmission power constraint (3) from

problem (P1), transmission power p
∗ may not satisfy the

total transmission power constraint of problem (P1). In other

words, the solution (a∗,p∗) may not be a feasible solution of

problem (P1). To obtain a feasible solution that satisfies all

the constraints in problem (P1), we first define the largest total

transmission power ρ(p∗) among those of BSs when (a∗,p∗)
is applied as

ρ(p∗) = max

{

p∗k

∣

∣

∣

∣

∣

p∗k =
∑

l∈L

pl∗k , ∀k ∈ K

}

. (11)

We then obtain (ã∗, p̃∗) as

p̃
∗ =

(

pmax

ρ(p∗)

)

p
∗ and ã

∗ = a
∗. (12)

Hence, (ã∗, p̃∗) is obtained by transmission power that is

scaled down from power allocation p
∗ by a scaling factor

pmax

ρ(p∗)
, while maintaining the same subchannel allocation as

a
∗. Then, we can easily show that (ã∗, p̃∗) is a feasible

solution of problem (P1) that satisfies all the constraints in

problem (P1). The overall description of our algorithm is

provided in Algorithm 3.

Note that even though (ã∗, p̃∗) is a feasible solution, it may

not be an optimal solution of problem (P1). However, we can

show that two solutions (a∗,p∗) and (ã∗, p̃∗) that can be

obtained from our algorithm provide upper and lower bounds

on the maximum sum capacity of the multi-cell OFDMA

system. We first let (ao,po) be the optimal solution of

problem (P1) that maximizes its objective function ψ(a,p),
while satisfying all of its constraints. Then, we can show the

following relationship, which indicates that (a∗,p∗) provides

the upper bound on the maximum sum capacity of the multi-

cell OFDMA system while (ã∗, p̃∗) provides its lower bound.

Theorem 1:

ψ (ã∗, p̃∗) ≤ ψ (ao,po) ≤ ψ (a∗,p∗) .

Proof: From the fact that the constraint set of problem

(P1) is a subset of the constraint set of problem (P2), we

have ψ (ao,po) ≤ ψ (a∗,p∗). In addition, since (ã∗, p̃∗) is a

feasible solution of problem (P1), we also have ψ (ã∗, p̃∗) ≤
ψ (ao,po), which completes the proof.

IV. NUMERICAL RESULTS

In this section, we provide numerical results to evaluate

the performance of our algorithm and also characterize upper

and lower bounds of the maximum sum capacity that are

achieved by our algorithm. We consider a one-tier seven-cell

system in which each base station is located in the center of

each cell and four mobile stations are located in each cell, as

depicted in Fig. 1. We set the inter-site distance (ISD) to be



Algorithm 3 Joint Subchannel allocation and transmission

Power control based on Polyblock outer Approximation

1: By relaxing the total transmission power constraint (3),

problem (P1) can be modified to problem (P2).

2: Reformulate the link capacity (6) as

rl(k,m)(a,p) = al(k,m) log
(

1 + γl(k,m) (p)
)

= log
(

1 + al(k,m)γ
l
(k,m) (p)

)

,

∀k ∈ K, ∀m ∈Mk, ∀l ∈ L.

3: Define zl(k,m) that denotes the SINR plus one for MS m

which communicates with BS k at subchannel l and we

let z =
(

zl(k,m)

)

∀k∈K, ∀m∈Mk, ∀l∈L
.

4: By using this variable, problem (P2) can be reformulated

as problem (P3) that is a monotonic optimization problem

as

(P3) maximize
z

f (z) =
∑

k∈K

∑

m∈Mk

∑

l∈L

log
(

zl(k,m)

)

subject to z ∈ Z.

5: To solve problem (P3), we use polyblock outer approxi-

mation algorithm, i.e., Algorithm 1, that is used to solve

a monotonic optimization problem.

6: By using Algorithm 1, we achieve the optimal vertex z
∗

of problem (P3).

7: From z
∗, the optimal subchannel allocation of problem

(P2) is achieved as

al∗(k,m) =

{

1, zl∗(k,m) > 1,

0, zl∗(k,m) = 1
,

∀k ∈ K, ∀m ∈M (k) , ∀l ∈ L.

8: Furthermore, we achieve the optimal transmission power

p
∗ of problem (P2) from results of Algorithm 1 when we

achieve the optimal vertex z
∗.

9: From the solution of problem (P2), (a∗,p∗), we can

achieve the feasible solution of problem (P1), (ã∗, p̃∗),
as

ã
∗ = a

∗ and p̃
∗ =

(

pmax

ρ(p∗)

)

p
∗,

where ρ(p∗) = max

{

p∗k

∣

∣

∣

∣

∣

p∗k =
∑

l∈L

pl∗k , ∀k ∈ K

}

.

1.5km, total bandwidth to be 10MHz, and the bandwidth of

each subchannel to be 200kHz. Furthermore, we consider the

pathloss model as 128 + 37.6 log(d) where d is the distance

in kilometers, the fading model as Rayleigh fading, the noise

power spectral density as −174dBm/Hz, and the noise figure

as 10dB. Parameters and their values are summarized in Table

I [28].

To evaluate the performance of our algorithm, we define

the normalized difference, ξ (a∗,p∗), between the upper and

lower bounds of the maximum sum capacity as the ratio of

the difference between upper and lower bounds to the lower
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Fig. 1. Position of BSs and MSs in a multi-cell OFDMA system.

TABLE I
SYSTEM PARAMETERS

Parameter Value

ISD 1.5 km

Total Bandwidth 10 MHz

Bandwidth of subchannel 200 kHz

Pathloss model 128+37.6log(d)

Fading Rayleigh

Noise Power Spectral Density -174 dBm/Hz

Noise Figure 10 dB

bound as follows:

ξ (a∗,p∗) =
ψ (a∗,p∗)− ψ (ã∗, p̃∗)

ψ (ã∗, p̃∗)
.

In Fig. 2, we provide the normalized difference varying the

maximum total transmission power pmax. The figure shows

that as the maximum total transmission power increases, the

normalized difference gets smaller. In addition, we can see

that normalized differences are small in all cases, which

implies that our algorithm provides good approximations to the

optimal solution that results in tight upper and lower bounds on

the maximum sum capacity of the multi-cell OFDMA system.

In Fig. 3, we provide the normalized difference varying

the distance between MSs and the according BSs. The figure

shows that as the distance between MSs and the according BSs

gets closer, the normalized difference gets smaller. In addition,

as in the previous case, the normalized differences are small

in all cases, which also supports that our algorithm provides

good approximations to the optimal solution that result in tight

upper and lower bounds on the maximum sum capacity of the

multi-cell OFDMA system.

V. CONCLUSION

In this paper, we studied the joint subchannel allocation and

transmission power control problem for the downlink in the

multi-cell OFDMA system. Through a monotonic optimiza-

tion approach, we developed an algorithm that provides both
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Fig. 2. Normalized difference according to the maximum total transmission
power.
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Fig. 3. Normalized difference according to the distance between BS and
MS.

upper and lower bounds on the maximum sum capacity. We

showed that those two bounds are reasonably close to each

other. This indicates that they can be good approximations

to the maximum sum capacity. Hence, with our algorithm,

we can evaluate the maximum sum capacity of the multi-cell

OFDMA system when transmission power and subchannels

are optimally allocated. In addition, our algorithm can be used

as a tool for a benchmark to evaluate the efficiency of other

heuristic algorithms relative to the maximum sum capacity of

the multi-cell OFDMA system.
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